
Graphical Models: Worksheet 1 MT 2024

Warm-up and Optional questions will not be marked, but solutions will be provided.

A: Warm-Up

A1. Conditional Independence

Let X,Y be independent random variables taking the value 0 with probability 1
2 ,

and 1 otherwise. Now let Z be a random variable with conditional distribution

P (Z = 1 | X = x, Y = y) =

{
3
4 if x = y
1
4 if x ̸= y

with P (Z = 0 | X = x, Y = y) = 1− P (Z = 1 | X = x, Y = y).

(a) Find P (X,Y | Z = 1).

(b) Show that X ⊥⊥ Z and Y ⊥⊥ Z but that X,Y ̸⊥⊥ Z.

A2. Prove that properties (ii) and (iv) of Theorem 2.4 are equivalent to (i), (iii) and (v).

A3. Show that X ⊥⊥ Y | Z is equivalent to

p(x, y, z) · p(x′, y′, z) = p(x′, y, z) · p(x, y′, z)

for Z-almost all x, x′, y, y′, z.

B: Core Questions

B1. Graphoids.

By completing the implications of the theorem from lectures, show that

X ⊥⊥ Y,W | Z ⇐⇒ X ⊥⊥W | Z and X ⊥⊥ Y |W,Z.

Show that, in general,

X ⊥⊥ Y | Z and X ⊥⊥ Z | Y ≠⇒ X ⊥⊥ Y, Z.

[Hint: X ⊥⊥ Y | Y for any X,Y .]
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B2. Some Strange Independences.

(a) Let (X1, X2, X3) follow a multivariate Gaussian distribution with covariance ma-
trix Σ. Show that X1 ⊥⊥ X2 | X3 if and only if

σ33σ12 − σ13σ23 = 0.

(b) Deduce that for jointly Gaussian random variables,

X1 ⊥⊥ X2 | X3 and X1 ⊥⊥ X2 ⇐⇒ X1 ⊥⊥ X2, X3 or X2 ⊥⊥ X1, X3.

(c) Let X,Y be discrete random variables. Show that X ⊥⊥ Y | Z = z if and only if
the matrix M z = (πxyz)x,y, where πxyz = P (X = x, Y = y, Z = z), has rank one.

[Hint: Recall that a matrix M has rank one if and only if it can be written as
M = αβT for vectors α, β.]

(d) Let A,B be a × c and b × c matrices each of rank c. Show that ABT also has
rank c.

(e) Hence, or otherwise, show that for binary Z and finite discrete X,Y we have

X ⊥⊥ Y | Z and X ⊥⊥ Y ⇐⇒ X ⊥⊥ Y, Z or Y ⊥⊥ X,Z.

[Hint: show that if X ⊥⊥ Y | Z, then (πxy+)xy can be written as a product of
matrices of rank 2].

B3. Factorization and Conditional Independence.

Consider four binary variables A,B,C,D; let the support (i.e. the set of combinations
whose probability is > 0) of these variables be:

(a, b, c, d) =(0, 0, 0, 0) (1, 0, 0, 0) (1, 1, 0, 0) (1, 1, 1, 0)

(1, 1, 1, 1) (0, 1, 1, 1) (0, 0, 1, 1) (0, 0, 0, 1).

(a) Show that A ⊥⊥ C | B,D and B ⊥⊥ D | A,C for any distribution with support in
this set.

(b) Show that we cannot write the joint distribution in the form

P (A = a,B = b, C = c,D = d) = ψab(a, b) · ψbc(b, c) · ψcd(c, d) · ψda(d, a).
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C: Optional

C1. Möbius Inversion

(a) Let (ζM )M⊆V be a vector indexed by subsets, and let

ηM =
∑
Z⊆M

ζZ , ∀M ⊆ V.

Show the Möbius inversion formula:

ζM =
∑
Z⊆M

(−1)|M\Z|ηZ , ∀M ⊆ V.

Deduce that ηM = 0 for all M if and only if ζM = 0 for all M .

[Hint: any non-empty set A has the same number of even-sized subsets as odd-
sized subsets.]

(b) Now let XV be binary variables with joint distribution

log p(xV ) =
∑
A⊆V

λA(xA)

using the identifiability constraints from lectures. Let a, b ∈ V and W = V \
{a, b}. By considering

log p(xa, xb, xW ) + log p(1, 1, xW )− log p(1, xb, xW )− log p(xa, 1, xW )

or otherwise, show that the joint distribution factorizes as p(xV ) = f(xa, xW )g(xb, xW )
if and only if λabD = 0 for all D ⊆W .

(c) Deduce that a positive distribution p(xV ) on binary variables is Markov with
respect to an undirected graph G if and only if λA = 0 whenever A is not a
complete set of vertices in G.

(d) Extend the result to arbitrary discrete variables.

C2. Conditional Expectation. [Involves some measure theory, though could be ‘proved’
without knowing it]. Given an integrable random variable X and two other random
variables Y,Z, we say that X is conditionally independent of Y given Z if for any
integrable f(X) we have

E[f(X) | Y,Z] = E[f(X) | Z] (a.s.).

Equivalently,

E[f(X,Z) | Y,Z] = E[f(X,Z) | Z] (a.s.).

[Why is this equivalent?]

Consider the following alternative statements.

A. E[f(X,Z)g(Y,Z)] = E[E[f(X,Z) | Z]E[g(Y, Z) | Z]] for all integrable f, g.
B. E[f(X,Z)g(Y,Z) | Z] = E[f(X,Z) | Z]E[g(Y, Z) | Z] a.s. for all integrable f, g.

Show that A and B are equivalent to one another, and also to the definition of
conditional independence.

[Hint: you will need the tower property: E[X | Y ] = E[E[X | Y,Z] | Y ] holds for
any Y, Z and integrable X, and ‘taking out what is known’: E[f(X)g(Z) | Z] =
g(Z)E[f(X) | Z].]
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