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Course Websites

The class site is at

http://www.stats.ox.ac.uk/~evans/gms/

The Canvas site is

https://canvas.ox.ac.uk/courses/224067/

You’ll find

• lecture notes;

• slides;

• problem sheets;

• data sets.

There will be four problem sheets and four associated classes.
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Books

These books might be useful.

• Lauritzen (1996). Graphical Models, OUP.

• Wainwright and Jordan (2008). Graphical Models, Exponential
Families, and Variational Inference. (Available online).

• Pearl (2009). Causality, (3rd edition), Cambridge.

• Koller and Friedman (2009), Probabilistic Graphical Models:
Principles and Techniques, MIT Press.

• Agresti (2002). Categorical Data Analysis, (2nd edition), John
Wiley & Sons.
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Medical Diagnosis
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Psychometrics
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Gene Regulatory Networks
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Main Issues

There are two main problems with large data sets that we will consider
in this course:

• statistical;
we need to predict outcomes from scenarios that have never been
observed (i.e., we need a model).

• computational:
• we can’t store probabilities for all combinations of variables;
• even if we could, we can’t sum/integrate them to find a marginal or

conditional probability:

P (X = x) =
∑
y

P (X = x,Y = y).

Our solution will be to impose nonparametric structure, in the form of
conditional independences.
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Conditional Independence
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Simpson’s Paradox

Death Penalty?
Defendant’s Race
White Black

Yes 53 15
No 430 176
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Simpson’s Paradox

Victim’s Race Death Penalty?
Defendant’s Race
White Black

White
Yes 53 11
No 414 37

Black
Yes 0 4
No 16 139
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Morals

Let:

• D be an indicator that the death penalty was imposed;

• V be an indicator for the race of the victim;

• R be an indicator for the race of the defendant.

By changing the numbers only very slightly, it is easy to obtain either:

D ⊥⊥ R and D 6⊥⊥ R | V.

Similarly, one can generate tables such that

D 6⊥⊥ R and D ⊥⊥ R | V.
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Exponential Families
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Contingency Tables: Some Notation

We will consider multivariate systems of vectors XV ≡ (Xv : v ∈ V ) for
some set V = {1, . . . , p}.

Write XA ≡ (Xv : v ∈ A) for any A ⊆ V .

We assume that each Xv ∈ {1, . . . , dv} (usually dv = 2).

If we have n i.i.d. observations write

X
(i)
V ≡ (X

(i)
1 , . . . , X(i)

p )T , i = 1, . . . , n.
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Contingency Tables: Some Notation

We typically summarize categorical data by counts:

aspirin heart attack
Y N
Y Y
N N
N N
Y N
...

...

heart attack
Y N

no aspirin 28 656
aspirin 18 658

Write

n(xV ) =

n∑
i=1

1{X(i)
1 = x1, . . . , X

(i)
p = xp}

A marginal table only counts some of the variables.

n(xA) =

n∑
i=1

1{X(i)
a = xa : a ∈ A} =

∑
xV \A

n(xA, xV \A).
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Marginal Table

Victim’s Race Death Penalty?
Defendant’s Race
White Black

White
Yes 53 11
No 414 37

Black
Yes 0 4
No 16 139

If we sum out the Victim’s race...

Death Penalty?
Defendant’s Race
White Black

Yes 53 15
No 430 176
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Contingency Tables

The death penalty data is on the class website.

> getwd()

[1] "/Users/robin/Dropbox/Teaching/Graphical Models/Datasets"

> deathpen <- read.table("deathpen.txt", header=TRUE)

> deathpen

DeathPen Defendant Victim freq

1 Yes White White 53

2 No White White 414

3 Yes Black White 11

4 No Black White 37

5 Yes White Black 0

6 No White Black 16

7 Yes Black Black 4

8 No Black Black 139
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Contingency Tables

We can fit models on it in R:

> summary(glm(freq ~ Victim*Defendant + Victim*DeathPen,

+ family=poisson, data=deathpen))

Coefficients:

Estimate Std. Error

(Intercept) 4.93737 0.08459

VictimWhite -1.19886 0.16812

DefendantWhite -2.19026 0.26362

DeathPenYes -3.65713 0.50641

VictimWhite:DefendantWhite 4.46538 0.30408

VictimWhite:DeathPenYes 1.70455 0.52373

Residual deviance: 5.394 on 2 degrees of freedom

(So p ≈ 0.07 in hypothesis test of model fit.)
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Contingency Tables

If we fit the marginal table over the races of Victim and Defendant, the
parameters involving ‘Defendant’ are the same.

> summary(glm(freq ~ Victim*Defendant,

+ family=poisson, data=deathpen))

Coefficients:

Estimate Std. Error

(Intercept) 4.26970 0.08362

VictimWhite -1.09164 0.16681

DefendantWhite -2.19026 0.26360

VictimWhite:DefendantWhite 4.46538 0.30407
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Contingency Tables

We can also check that the subsets of S = {Victim} are given by the
other condition we had:

λW = λASW + λBSW − λSW .

> out1 <- glm(freq ~ Victim*Defendant, family=poisson,

+ data=deathpen)$coef[1:2]

> out2 <- glm(freq ~ Victim*DeathPen, family=poisson,

+ data=deathpen)$coef[1:2]

> out <- glm(freq ~ Victim, family=poisson,

+ data=deathpen)$coef[1:2]

>

> out1 + out2 - out

(Intercept) VictimWhite

4.937366 -1.198864

Indeed these match the coefficients from the larger model.
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Poisson-Multinomial Equivalence

The following distributions are equivalent.

1. Independent Poisson random variables:

Xi ∼ Poisson(µi) for i = 1, . . . , k.

2. One Poisson random variable N ∼ Poisson(µ) where µ =
∑

i µi;
and a multinomial

(X1, . . . , Xk)
T |{N = n} ∼ Multinom(n, (π1, . . . , πk)

T ),

where πi = µi/µ.
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Poisson-Multinomial Equivalence

We can see this by comparing the likelihoods.

The Poisson likelihood is

L(µ1, . . . , µk;x1, . . . , xk)

=

k∏
i=1

e−µiµxii =

k∏
i=1

e−µπiµxiπxii

= µ
∑

i xie−µ
∑

i πi

k∏
i=1

πxii

= µne−µ
k∏
i=1

πxii

= L(µ;n) · L(π1, . . . , πk;x1, . . . , xk | n).

Hence the distributions are equivalent.
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Undirected Graphical Models
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Undirected Graphs

3

1

2

4

5

V = {1, 2, 3, 4, 5}
E = {{1, 2}, {1, 3}, {2, 3}, {3, 4}, {3, 5}, {4, 5}}.
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Paths

3

1

2

4

5

Paths:

π1 : 1− 2− 3− 5

π2 : 3

Note that paths may consist of one vertex and no edges. In this case it
is a path of ‘length 0’.
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Induced Subgraph

3

1

2

4

5

The induced subgraph G{1,2,4,5} drops any edges that involve {3}.
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Separation

3

1

2

4

5

All paths between {1, 2} and {5} pass through {3}.

Hence {1, 2} and {5} are separated by {3}.
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Cliques and Running Intersection

1 2

3 4

5

6

Cliques:

{1, 2} {2, 3, 4} {2, 4, 5} {4, 6}.

Separator sets:

∅ {2} {2, 4} {4}.
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Cliques and Running Intersection

1 2

3 4

5

6

A different ordering of the cliques:

{2, 3, 4} {2, 4, 5} {4, 6} {1, 2}.

Separator sets:

∅ {2, 4} {4} {2}.

Any ordering works in this case as long {1, 2} and {4, 6} aren’t the first
two entries.
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Estimation

Given a decomposition of the graph, we have an associated conditional
independence: e.g. ({1, 3}, {2, 4}, {5, 6}) suggests

X1, X3 ⊥⊥ X5, X6 | X2, X4

p(x123456) · p(x24) = p(x1234) · p(x2456).

1 2

3 4

5

6

1 2

3 4

2

4

5

6

And p(x1234) and p(x2456) are Markov with respect to G1234 and G2456
respectively.
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Estimation

1 2

3 4

5

6

Repeating this process on each subgraph we obtain:

p(x123456) · p(x24) · p(x2) · p(x4) = p(x12) · p(x234) · p(x245) · p(x46).

i.e.

p(x123456) =
p(x12) · p(x234) · p(x245) · p(x46)

p(x24) · p(x2) · p(x4)
.
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Non-Decomposable Graphs

But can’t we do this for any factorization?

1 2

34

No! Although

p(x1234) = ψ12(x12) · ψ23(x23) · ψ34(x34) · ψ14(x14),

the ψs are constrained by the requirement that∑
x1234

p(x1234) = 1.

There is no nice representation of the ψCs in terms of p.
31



Non-Decomposable Graphs

1 2

34

If we ‘decompose’ without a complete separator set then we introduce
constraints between the factors:

p(x1234) = p(x1 | x2, x4) · p(x3 | x2, x4) · p(x2, x4),

but how to ensure that X2 ⊥⊥ X4 | X1, X3?
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Iterative Proportional Fitting
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The Iterative Proportional Fitting Algorithm

function IPF(collection of margins q(xCi))
set p(xV ) to uniform distribution;
while maxi maxxCi

|p(xCi)− q(xCi)| > tol do
for i in 1, . . . , k do

update p(xV ) to p(xV \Ci
| xCi) · q(xCi);

end for
end while
return distribution p with margins p(xCi) ≈ q(xCi).

end function

If any distribution satisfying p(xCi) = q(xCi) for each i = 1, . . . , k
exists, then the algorithm converges to the unique distribution with
those margins and which is Markov with respect to the graph with
cliques C1, . . . , Ck.
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Some Data

X2 = 0 X2 = 1
X1 = 0 1 0 1

X4 = 0
X3 = 0 9 9 0 8

1 6 4 4 3

X4 = 1
0 22 0 2 6
1 5 3 10 5
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Margins

Suppose we want to fit the 4-cycle model:

1 2

34

The relevant margins are:

n(x12) X2 = 0 1
X1 = 0 42 16

1 16 22

n(x23) X3 = 0 1
X2 = 0 40 18

1 16 22

n(x34) X4 = 0 1
X3 = 0 26 30

1 17 23

n(x14) X4 = 0 1
X1 = 0 19 39

1 24 14
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Start with a Uniform Table

p(0)
X2 = 0 X2 = 1

X1 = 0 1 0 1

X4 = 0
X3 = 0 6 6 6 6

1 6 6 6 6

X4 = 1
0 6 6 6 6
1 6 6 6 6
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Set margin X1, X2 to correct value

p(1)
X2 = 0 X2 = 1

X1 = 0 1 0 1

X4 = 0
X3 = 0 10.5 4 4 5.5

1 10.5 4 4 5.5

X4 = 1
0 10.5 4 4 5.5
1 10.5 4 4 5.5

Replace

p(1)(x1, x2, x3, x4) = p(0)(x1, x2, x3, x4) ·
n(x1, x2)/n

p(0)(x1, x2)
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Set Margin X2, X3 to Correct Value

p(2)
X2 = 0 X2 = 1

X1 = 0 1 0 1

X4 = 0
X3 = 0 14.48 5.52 3.37 4.63

1 6.52 2.48 4.63 6.37

X4 = 1
0 14.48 5.52 3.37 4.63
1 6.52 2.48 4.63 6.37

Replace

p(2)(x1, x2, x3, x4) = p(1)(x1, x2, x3, x4) ·
n(x2, x3)/n

p(1)(x2, x3)
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Set Margin X3, X4 to Correct Value

p(3)
X2 = 0 X2 = 1

X1 = 0 1 0 1

X4 = 0
X3 = 0 13.45 5.12 3.13 4.3

1 5.54 2.11 3.94 5.41

X4 = 1
0 15.52 5.91 3.61 4.96
1 7.49 2.86 5.33 7.32

Replace

p(3)(x1, x2, x3, x4) = p(2)(x1, x2, x3, x4) ·
n(x3, x4)/n

p(2)(x3, x4)
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Set Margin X1, X4 to Correct Value

p(4)
X2 = 0 X2 = 1

X1 = 0 1 0 1

X4 = 0
X3 = 0 9.81 7.26 2.28 6.09

1 4.04 2.99 2.87 7.67

X4 = 1
0 18.94 3.93 4.41 3.3
1 9.15 1.9 6.5 4.87

Replace

p(4)(x1, x2, x3, x4) = p(3)(x1, x2, x3, x4) ·
n(x1, x4)/n

p(3)(x1, x4)

Notice that sum of first column is now 41.94.
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Set margin X1, X2 to correct value again

p(5)
X2 = 0 X2 = 1

X1 = 0 1 0 1

X4 = 0
X3 = 0 9.82 7.27 2.28 6.1

1 4.02 2.97 2.86 7.63

X4 = 1
0 18.87 3.92 4.39 3.29
1 9.18 1.91 6.52 4.89

Replace

p(5)(x1, x2, x3, x4) = p(4)(x1, x2, x3, x4) ·
n(x1, x2)/n

p(4)(x1, x2)
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Eventually...

p̂
X2 = 0 X2 = 1

X1 = 0 1 0 1

X4 = 0
X3 = 0 10.07 7.41 2.29 6.23

1 3.87 2.85 2.77 7.51

X4 = 1
0 18.7 3.83 4.26 3.22
1 9.36 1.91 6.68 5.04

Waiting for this process to converge leads to the MLE.

p(5)(x1, x2, x3, x4) = p(4)(x1, x2, x3, x4) ·
n(x1, x2)/n

p(4)(x1, x2)

Notice that sum of first column is now ...
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Gaussian Graphical Models
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Multivariate Data

> library(ggm)

> data(marks)

> dim(marks)

[1] 88 5

> head(marks, 8)

mechanics vectors algebra analysis statistics

1 77 82 67 67 81

2 63 78 80 70 81

3 75 73 71 66 81

4 55 72 63 70 68

5 63 63 65 70 63

6 53 61 72 64 73

7 51 67 65 65 68

8 59 70 68 62 56
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Multivariate Data

> sapply(marks, mean)

mechanics vectors algebra analysis statistics

39.0 50.6 50.6 46.7 42.3

> cor(marks)

mechanics vectors algebra analysis statistics

mechanics 1.000 0.553 0.547 0.409 0.389

vectors 0.553 1.000 0.610 0.485 0.436

algebra 0.547 0.610 1.000 0.711 0.665

analysis 0.409 0.485 0.711 1.000 0.607

statistics 0.389 0.436 0.665 0.607 1.000
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Multivariate Data

> conc <- solve(cov(marks)) # concentration matrix

> round(1000*conc, 2)

mechanics vectors algebra analysis statistics

mechanics 5.24 -2.44 -2.74 0.01 -0.14

vectors -2.44 10.43 -4.71 -0.79 -0.17

algebra -2.74 -4.71 26.95 -7.05 -4.70

analysis 0.01 -0.79 -7.05 9.88 -2.02

statistics -0.14 -0.17 -4.70 -2.02 6.45
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Undirected Graphs

algebra

vectors

mechanics

statistics

analysis

mech vecs alg anlys stats

mechanics 5.24 -2.43 -2.72 0.01 -0.15

vectors -2.43 10.42 -4.72 -0.79 -0.16

algebra -2.72 -4.72 26.94 -7.05 -4.70

analysis 0.01 -0.79 -7.05 9.88 -2.02

statistics -0.15 -0.16 -4.70 -2.02 6.45
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The Multivariate Gaussian Distribution

Let XV ∼ Np(0,Σ), where Σ ∈ Rp×p is a symmetric positive definite
matrix.

log p(xV ; Σ) = −1

2
log |Σ| − 1

2
xTV Σ−1xV + const.

The log-likelihood for Σ is

l(Σ) = −n
2

log |Σ| − n

2
tr(SΣ−1)

where S is the sample covariance matrix, and this is maximized by
choosing Σ̂ = S.
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Gaussian Graphical Models

We have Xa ⊥⊥ Xb | XV \{a,b} if and only if kab = 0.

analysis

algebra

statistics mechanics

vectors

mechanics vectors algebra analysis statistics
mechanics k11 k12 k13 0 0

vectors k22 k23 0 0
algebra k33 k34 k35
analysis k44 k45

statistics k55
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Likelihood

From Lemma 4.23, we have

log p(xV ) + log p(xS) = log p(xA, xS) + log p(xB, xS).

This becomes

xTV Σ−1xV + xTS (ΣSS)−1xS − xTAS(ΣAS,AS)−1xAS − xTSB(ΣSB,SB)−1xSB = 0

But can rewrite each term in the form xTVMxV , e.g.:

xTAS(ΣAS,AS)−1xAS = xTV

 (ΣAS,AS)−1
0
0

0 0 0

xV

Equating terms gives:

Σ−1 =

 (ΣAS,AS)−1
0
0

0 0 0

+

0 0 0
0

(ΣSB,SB)−1
0

−
0 0 0

0 (ΣSS)−1 0
0 0 0
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Maximum Likelihood Estimation

Iterating this process with a decomposable graph shows that:

Σ−1 =

k∑
i=1

{
(ΣCi,Ci)

−1}
Ci,Ci

−
k∑
i=1

{
(ΣSi,Si)

−1}
Si,Si

.

For maximum likelihood estimation, using Theorem 4.24 we have

Σ̂−1 =

k∑
i=1

{
(Σ̂Ci,Ci)

−1
}
Ci,Ci

−
k∑
i=1

{
(Σ̂Si,Si)

−1
}
Si,Si

=

k∑
i=1

{
(WCi,Ci)

−1}
Ci,Ci

−
k∑
i=1

{
(WSi,Si)

−1}
Si,Si

where WCC = 1
n

∑
iX

(i)
C X

(i)T
C is the sample covariance matrix.
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Example

> true_inv # true concentration matrix

[,1] [,2] [,3] [,4]

[1,] 1.0 0.3 0.2 0.0

[2,] 0.3 1.0 -0.1 0.0

[3,] 0.2 -0.1 1.0 0.3

[4,] 0.0 0.0 0.3 1.0

> solve(true_inv) # Sigma

[,1] [,2] [,3] [,4]

[1,] 1.17 -0.382 -0.30 0.090

[2,] -0.38 1.136 0.21 -0.063

[3,] -0.30 0.209 1.19 -0.356

[4,] 0.09 -0.063 -0.36 1.107

> # rmvnorm is in the mvtnorm package

> dat <- rmvnorm(1000, mean=rep(0,4), sigma = solve(true_inv))

> W <- cov(dat) # sample covariance
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Example

> round(W, 3) # sample covariance

[,1] [,2] [,3] [,4]

[1,] 1.158 -0.374 -0.242 0.036

[2,] -0.374 1.099 0.227 -0.065

[3,] -0.242 0.227 1.169 -0.378

[4,] 0.036 -0.065 -0.378 1.085

> round(solve(W), 3) # sample concentration

[,1] [,2] [,3] [,4]

[1,] 0.995 0.308 0.160 0.040

[2,] 0.308 1.044 -0.138 0.004

[3,] 0.160 -0.138 1.026 0.344

[4,] 0.040 0.004 0.344 1.040

Note that these are fairly close to the true values.
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Example

Fit the model with decomposition
({1, 2}, {3}, {4}):

1

2

3 4

> K_hat = matrix(0, 4, 4)

> K_hat[1:3, 1:3] = solve(W[1:3, 1:3])

> K_hat[3:4, 3:4] = K_hat[3:4, 3:4] + solve(W[3:4, 3:4])

> K_hat[3, 3] = K_hat[3, 3] - 1/W[3, 3]

> K_hat

[,1] [,2] [,3] [,4]

[1,] 0.993 0.308 0.146 0.000

[2,] 0.308 1.044 -0.139 0.000

[3,] 0.146 -0.139 1.021 0.336

[4,] 0.000 0.000 0.336 1.038

Note this is close to the true concentration matrix.
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Directed Graphical Models
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Marginal Independences

The graphs considered so far are all undirected.

Undirected graphs are very powerful, but they are also restrictive, in the
sense that they cannot represent a marginal independence.

This rules out, for example, regression type models, where we might
assume that some of the inputs are marginally independent.

academics

admission

sports

A graph representing admission to the Holly-League School Yarvard.
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Directed Graphs

Directed graphs give each edge an orientation.

A directed graph G is a pair (V,D), where

• V is a set of vertices;

• D is a set of ordered pairs (i, j) with i, j ∈ V and i 6= j.

If (i, j) ∈ D we write i→ j.

V = {1, 2, 3, 4, 5}
D = {(1, 3), (2, 3), (2, 4), (3, 5), (4, 5)}.

If i→ j or i← j we say i and
j are adjacent and write
i ∼ j.

1 2

3 4

5
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Acyclicity

Paths are sequences of adjacent vertices, without repetition:

1→ 3← 2→ 4→ 5 1→ 3→ 5.

The path is directed if all the arrows point away from the start.

(A path of length 0 is just a single vertex.)

A directed cycle is a directed path from i to j 6= i, together with j → i.

1 2

34

1

2

Graphs that contain no directed cycles are called acyclic. or more
specifically, directed acyclic graphs (DAGs).

All the directed graphs we consider are acyclic.
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Happy Families

i→ j

{
i ∈ paG(j) i is a parent of j

j ∈ chG(i) j is a child of i

a→ · · · → b
or a = b

{
a ∈ anG(b) a is an ancestor of b

b ∈ deG(a) b is a descendant of a

If w 6∈ deG(v) then w is a non-descendant of v:

ndG(v) = V \ deG(v).

(Notice that no v is a non-descendant of itself).
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Examples

1 2

3 4

5

paG(3) = {1, 2} anG(4) = {2, 4}
chG(5) = ∅ deG(1) = {1, 3, 5}

ndG(1) = {2, 4}.
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Topological Orderings

If the graph is acyclic, we can find a topological ordering: i.e. one in
which no vertex comes before any of its parents. (Proof: induction)

Topological orderings:

1, 2, 3, 4, 5

1, 2, 4, 3, 5

2, 1, 3, 4, 5

2, 1, 4, 3, 5

2, 4, 1, 3, 5

1 2

3 4

5
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Parameter Estimation

G : group assigned to patient;

A : patient’s age in years;

V : whether patient received flu vaccine;

H : patient hospitalized with respiratory problems;

G V H

A

63



Parameter Estimation

We can model the data (Gi, Ai, Vi, Hi) as

group : Gi ∼ Bernoulli(p);
age : Ai ∼ N(ν, σ2);

vaccine : Vi | Ai, Gi ∼ Bernoulli(µi) where

logitµi = β0 + β1Ai + β2Gi.

hospital : Hi | Vi ∼ Bernoulli(expit(θ0 + θ1Vi)).

Assuming independent priors:

G

p

V

β

H

θ

Aν, σ2
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Bayesian Inference

From our argument, we have

π(β | G,A, V,H) = π(β | G,A, V )

∝ p(V | A,G,β) · π(β).

Looking at the moral graph we see

G V

β

A

H

θp

ν, σ2
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Markov Equivalence

All undirected graphs induce distinct models.

v 6∼ w ⇐⇒ Xv ⊥⊥ Xw | XV \{v,w} implied

The same is not true for directed graphs:

Z

X Y

p(x) · p(y | x) · p(z | x, y)

Z

X Y

p(z) · p(x | z) · p(y | x, z)

Z

X Y

ψXY Z(x, y, z)
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Markov Equivalence

Z

X Y

p(x) · p(z | x) · p(y | z)
X ⊥⊥ Y | Z Z

X Y

p(y) · p(z | y) · p(x | z)
X ⊥⊥ Y | Z

Z

X Y

p(z) · p(x | z) · p(y | z)
X ⊥⊥ Y | Z

Z

X Y

p(x) · p(y) · p(z | x, y)

X ⊥⊥ Y

Z

X Y

ψXZ(x, z) · ψY Z(y, z)

X ⊥⊥ Y | Z
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Expert Systems
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Expert Systems

Asia

tuberculosis lung cancer

smokes

bronchitis

cancer or tub.

x-ray dyspnoea

The ‘Chest Clinic’ network, a fictitious diagnostic model.
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Variables

A

T L

S

B

E

X
D

A has the patient recently visited southern Asia?

S does the patient smoke?

T,L,B tuberculosis, lung cancer, bronchitis.

E logical: tuberculosis OR lung cancer.

X shadow on chest X-ray?

D does the patient have dyspnoea?
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Conditional Probability Tables

A

T L

S

B

E

X
D

We have our factorization:

p(a, s, t, `, b, e, x, d) = p(a) · p(s) · p(t | a) · p(` | s) · p(b | s)·
· p(e | t, `) · p(x | e) · p(d | e, b).

Assume that we are given each of these factors. How could we calculate
p(` | x, d, a, s)?
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Probabilities

p(a) =
yes no

0.01 0.99
p(s) =

yes no

0.5 0.5

p(t | a) =
A yes no

yes 0.05 0.95
no 0.01 0.99

p(` | s) =
S yes no

yes 0.1 0.9
no 0.01 0.99

p(b | s) =
S yes no

yes 0.6 0.4
no 0.3 0.7

p(x | e) =
E yes no

yes 0.98 0.02
no 0.05 0.95

p(d | b, e) =

B E yes no

yes
yes 0.9 0.1
no 0.8 0.2

no
yes 0.7 0.3
no 0.1 0.9
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Factorizations

p(` | x, d, a, s) =
p(`, x, d | a, s)∑
`′ p(`

′, x, d | a, s)

From the graph p(`, x, d | a, s) is∑
t,e,b

p(t | a) · p(` | s) · p(b | s) · p(e | t, `) · p(x | e) · p(d | e, b).

By this method there are up to 5× 256 multiplications and
256− 32 = 224 additions.

This amounts to a complexity of around 1504 arithmetic operations.
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Factorizations

But this is the same as:

p(` | s)
∑
e

p(x | e)

(∑
b

p(b | s) · p(d | e, b)

)(∑
t

p(t | a) · p(e | t, `)

)
.

Each large bracket requires 16 multiplications and 8 additions, and gives
a vector of length 8.

Then the outer sum has 64 entries, so at most 128 multiplications and
32 additions.

This totals 208 arithmetic operations.
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Junction Trees
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Junction Trees

A junction tree:

• is a (connected) undirected graph without cycles (a tree);

• has vertices Ci that consist of subsets of a set V ;

• satisfies the property that if Ci ∩ Cj = S then every vertex on the
(unique) path from Ci to Cj contains S.

Example.

1, 2 2, 3, 4

2, 4, 5

4, 6

6, 7, 8
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Junction Trees

The following graphs are not junction trees:

1, 2 2, 3 1, 3

1, 2 2, 3

3, 41, 4
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Junction Trees

Junction trees can be constructed directly from sets of cliques satisfying
running intersection.

C1 C2

C3

C4C5

C6

Ci ∩
⋃
j<i

Cj = Ci ∩ Cσ(i).
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Example: Junction Trees and RIP

Given sets {1, 2}, {2, 3, 4}, {2, 4, 5}, {4, 6}, {6, 7, 8}, we can build this
tree:

1, 2 2, 3, 4

2, 4, 5

4, 6

6, 7, 8
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Example: Junction Trees and RIP

Equally, we could use a different ordering:

{6, 7, 8}, {4, 6}, {2, 4, 5}, {1, 2}, {2, 3, 4}.

6, 7, 8

4, 6

2, 4, 5

1, 2 2, 3, 4
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Forming A Junction Tree

A

T L

S

B

E

X
D

Steps to Forming a Junction Tree:
Moralize
Drop directions
Triangulate (add edges to get a decomposable graph)
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Forming A Junction Tree

A

T L

S

B

E

X
D

Steps to Forming a Junction Tree:
Moralize
Drop directions
Triangulate (add edges to get a decomposable graph)
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Forming A Junction Tree

A

T L

S

B

E

X
D

Steps to Forming a Junction Tree:
Moralize
Drop directions
Triangulate (add edges to get a decomposable graph)
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Forming A Junction Tree

Finally, form the tree of cliques.

LEBTEL

LBS

EDBEX

AT
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Message Passing
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Updating / Message Passing

Suppose we have two vertices and one separator set.

X,Y Y Y, Z

ψXY (x, y)
y = 0 1

x
0 0.3 0.9
1 0.7 0.1

ψY (y)
y = 0 1

1 1

ψY Z(y, z)
z = 0 1

y
0 0.3 0.1
1 0.2 0.4

Initialize with

ψXY (x, y) = p(x | y) ψY Z(y, z) = p(z | y) · p(y) ψY (y) = 1.
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Updating / Message Passing

Suppose we have two vertices and one separator set.

X,Y Y Y, Z

ψXY (x, y)
y = 0 1

x
0 0.3 0.9
1 0.7 0.1

ψY (y)
y = 0 1

1 1

ψY Z(y, z)
z = 0 1

y
0 0.3 0.1
1 0.2 0.4

Pass message from X,Y to Y,Z. We set

ψ′Y (y) =
∑
x

ψXY (x, y) = (1, 1);

ψ′Y Z(y, z) =
ψ′Y (y)

ψY (y)
ψY Z(y, z) = ψY Z(y, z).

So in this case nothing changes.
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Updating / Message Passing

Suppose we have two vertices and one separator set.

X,Y Y Y,Z

ψXY (x, y)
y = 0 1

x
0 0.3 0.9
1 0.7 0.1

ψ′Y (y)
y = 0 1

1 1

ψ′Y Z(y, z)
z = 0 1

y
0 0.3 0.1
1 0.2 0.4

Pass message from Y,Z to X,Y . We set

ψ′′Y (y) =
∑
x

ψY Z(y, z) = (0.4, 0.6);

ψ′XY (x, y) =
ψ′′Y (y)

ψ′Y (y)
ψXY (x, y) =

0.12 0.54
0.28 0.06

.

And now we note that ψ′XY (x, y) = p(x, y) as intended.
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Rooting

1, 2 2, 3, 4

2, 4, 5

4, 6

6, 7, 8

Given a tree, we can pick any vertex as a ‘root’, and direct all edges
away from it.
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Collection and Distribution

function Collect(rooted tree T , potentials ψt)
let 1 < . . . < k be a topological ordering of T
for t in k, . . . , 2 do

send message from ψt to ψσ(t);
end for
return updated potentials ψt

end function

1, 2 2, 3, 4

2, 4, 5

4, 6

6, 7, 8

1

1 1

2
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Collection and Distribution

function Distribute(rooted tree T , potentials ψt)
let 1 < . . . < k be a topological ordering of T
for t in 2, . . . , k do

send message from ψσ(t) to ψt;
end for
return updated potentials ψt

end function

1, 2 2, 3, 4

2, 4, 5

4, 6

6, 7, 8

1

1

1

2
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Initialization

p(a) =
yes no

0.01 0.99
p(s) =

yes no

0.5 0.5

p(t | a) =
A yes no

yes 0.05 0.95
no 0.01 0.99

p(` | s) =
S yes no

yes 0.1 0.9
no 0.01 0.99

p(b | s) =
S yes no

yes 0.6 0.4
no 0.3 0.7

p(x | e) =
E yes no

yes 0.98 0.02
no 0.05 0.95

p(d | b, e) =

B E yes no

yes
yes 0.9 0.1
no 0.8 0.2

no
yes 0.7 0.3
no 0.1 0.9
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Initialization

LEBLETEL

LB

LBS

EB

EDB

E

EX

T

AT

Can set, for example:

ψAT (a, t) = p(a) · p(t | a) ψLBS(`, b, s) = p(s) · p(` | s) · p(b | s)
ψTEL(t, e, `) = p(e | t, `) ψELB(e, `, b) = 1

ψEX(e, x) = p(x | e) ψEDB(e, d, b) = p(d | e, b).

91



Evidence

Now, suppose we want to calculate p(x | z = 0).

X,Y Y Y,Z

ψXY (x, y)
y = 0 1

x
0 0.12 0.54
1 0.28 0.06

ψY (y)
y = 0 1

0.4 0.6

ψY Z(y, z)
z = 0 1

y
0 0.6 0
1 0.4 0

Replace ψY Z(y, z) with p(y | z = 0).

Pass message from Y,Z to X,Y . We set

ψY (y) =
∑
z

ψY Z(y, z) = (0.6, 0.4);

ψ′XY (x, y) =
ψ′′Y (y)

ψ′Y (y)
ψXY (x, y) =

0.18 0.36
0.42 0.04

.

And now calculate
∑

y ψXY (x, y) = (0.54, 0.46).
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From the Chest Clinic Network

Marginal Probability Tables:

E \X yes no

yes 0.06 0
no 0.05 0.89

B yes no

L \S yes no yes no

yes 0.03 0 0.02 0
no 0.27 0.15 0.18 0.35

E yes no

T \L yes no yes no

yes 0 0 0.01 0
no 0.05 0 0 0.94

A \T yes no

yes 0 0.01
no 0.01 0.98

E yes no

L \B yes no yes no

yes 0.03 0.02 0 0
no 0 0.01 0.41 0.52

E yes no

B \D yes no yes no

yes 0.03 0 0.02 0.01
no 0.33 0.08 0.05 0.47
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From the Chest Clinic Network

Suppose now that we have a shadow on the chest X-ray:

E \X yes no

yes 0.58 -
no 0.42 -

B yes no

L \S yes no yes no

yes 0.27 0.01 0.18 0.03
no 0.15 0.08 0.1 0.19

E yes no

T \L yes no yes no

yes 0.01 0 0.09 0
no 0.48 0 0 0.42

A \T yes no

yes 0 0.01
no 0.09 0.9

E yes no

L \B yes no yes no

yes 0.28 0.21 0 0
no 0.04 0.05 0.19 0.24

E yes no

B \D yes no yes no

yes 0.29 0.03 0.18 0.08
no 0.15 0.04 0.02 0.21
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Causal Inference
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Correlation
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Controlling for Covariates

−4 −2 0 2 4

−
3

−
2

−
1

0
1

x

y
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Controlling for Covariates

−4 −2 0 2 4

−
3

−
2

−
1

0
1

x

y
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Causation

Example. Smoking is strongly predictive of lung cancer. So maybe
smoking causes lung cancer to develop.

smokes cancer

BUT: how do we know that this is a causal relationship? And what do
we mean by that?

The central question is: “if we stop people from smoking, will they be
less likely to get lung cancer?”

That is: does this ‘intervention’ on one variable change the distribution
of another variable?
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Alternative Explanations

smokes cancer

Reverse Causation. Lung cancer causes smoking: people with
(undiagnosed) lung cancer smoke to soothe irritation in the lungs.

smokes cancer

gene

Confounding / Common Cause. There is a gene that makes people
likely to smoke, and also more likely to get lung cancer.
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Historical Causal Arguments

Ronald Fisher (who was a heavy smoker) disputed the
idea that observational data could be used to prove that
smoking is a cause of lung cancer. He offered other
explanations.

The great epidemiologists Austin Bradford Hill
and Richard Doll published huge amounts of data
noting the very strong associations.

Jerome Cornfield, an American biostatistician developed
the Cornfield inequality, which notes that any
confounding factor that could explain the association
would have to be at least nine times more prevalent in
smokers than nonsmokers.

101



Causal Models

A DAG model can also encode causal information:

X

Z

T

W

Y

If we intervene to experiment on X, just delete incoming edges.

In distribution, just delete factor corresponding to X:

p(t, z, w, x, y) = p(t) · p(z) · p(w | z) · p(x | t, z) · p(y |w, x).

p(t, z, w, y | do(x)) = p(t) · p(z) · p(w | z) × p(y |w, x).

All other factors are preserved.
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do-Calculus

Note that (generally) p(y | do(x)) 6= p(y |x) and p(y | do(x)) 6= p(y).

It is neither a conditional nor an ordinary marginal distribution.
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Causal Discovery is hard!

Determining which of the three explanations is correct is generally very
hard, though methods do exist for distinguishing between such models.

Consider the following causal model, which we will assume is correct:

S D

G

Here G is gender, S is smoking, and D is an indicator of lung damage.
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Example

Suppose we take 32 men and 32 women, ask them whether they smoke
and check for lung damage.

women men
not smoke smoke not smoke smoke

no damage 21 6 6 6

damage 3 2 2 18

Marginally, there is clearly a strong relationship between smoking and
damage

not smoke smoke

no damage 27 12
damage 5 20

P (D = 1 | S = 1) =
5

8
P (D = 1 | S = 0) =

5

32
.
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Example

This might suggest that if we had prevented them all from smoking,
only 5

32 × 64 = 10 would have had damage, whereas if we had made
them all smoke, 5

8 × 64 = 40 would have damage.

But: both smoking and damage are also correlated with gender, so this
estimate may be inaccurate. If we repeat this separately for men and
women:

no-one smoking:

3

21 + 3
× 32 +

2

6 + 2
× 32 = 12

everyone smoking

2

6 + 2
× 32 +

18

18 + 6
× 32 = 32.

Compare these to 10 and 40.
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‘do’ notation

In this example there is a difference between predicting damage when
we ‘observe’ that someone smokes . . .

P (D = 1 | S = 1) =
5

8
,

. . . and prediciting damage when we intervene to make someone smoke:

P (D = 1 | do(S = 1)) =
32

64
=

1

2
.
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Adjustment
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Causal and Non-Causal Paths

A directed path from T to Y is said to be causal for T → Y .

Any other path is said to be non-causal.

T

ZW X

Y
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Adjustment Using Parents

Note that we have

p(w, z, x, y | do(t)) =
p(w, z, t, x, y)

p(t |w, z)
.

Hence, to obtain (e.g.) p(y | do(t)) we just marginalize:∑
w,z,x

p(y, w, z, x | do(t)) =
∑
w,z,x

p(y, w, z, t, x)

p(t |w, z)

=
∑
w,z,x

p(w, z) · p(x, y | t, z, w)

=
∑
w,z

p(w, z) · p(y | t, z, w).

In this case we call {W,Z} an adjustment set.

The set of parents of a variable is always a valid adjustment set.
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Back-Door Paths

T

ZW X

Y

A back-door path from T to Y starts with an arrowhead at T .

Example. T ← Z → X → Y .

To estimate p(y | do(t)) we must block all back-door paths without
blocking any causal ones, nor inducing any selection bias.
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Back-Door Criterion

Definition

A back-door adjustment set for the pair (T, Y ) is one which:

• blocks all back-door paths from T to Y ;

• does not contain any descendants of T .

T

ZW X

M

Y

Examples:

{Z}, {X}, {Z,X}
{W,Z}, {W,X}, {W,Z,X}.
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Adjustment Sets

T

ZW X

M
L

Y

S

In this graph we:

• must leave causal paths open, so do not adjust for M (or T or Y );

• need to block back-door path, so must adjust for Z, X or both;

• can decide whether to adjust for any of W , L, S.
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Efficient Adjustment

Indeed, Rotnitzky and Smucler (2020) show that the most efficient
adjustment set to use is:

paG(cnG(T → Y )) \ (cnG(T → Y ) ∪ {T}),

where cnG(T → Y ) is everything on a causal (i.e. directed) path from T
to Y , excluding T itself.

T

ZW X

ML

Y

S

In our case cnG(T → Y ) = {M,Y }.

And the optimal adjustment set is then parents of this set not on the
causal path; i.e. C = {X,L, S}.
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Intuition behind Efficient Adjustment

Notice that we adjust for some unnecessary variables (L and S), even
though these are not actually confounders.

T

ZW X

ML

Y

S

Notice also that we do not control for instruments. (i.e. variables
affecting only treatment).

In theory conditioning on an instrument will increase the variance in the
estimate, because it reduces variance in X. In practice, conditioning on
an instrument will also induce bias.
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Intuition behind Efficient Adjustment

Think of effect estimation as a regression.

> T <- rnorm(100, sd=1)

> Y <- T + rnorm(100, sd=1)

> summary(lm(Y ~ T))$coef[,1:2]

Estimate Std. Error

(Intercept) -0.10 0.098

T 0.95 0.107

> T <- rnorm(100, sd=0.1)

> Y <- T + rnorm(100, sd=1)

> summary(lm(Y ~ T))$coef[,1:2]

Estimate Std. Error

(Intercept) -0.03 0.11

T 0.51 1.10

Reducing the variation in T increases the standard error.
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Intuition behind Efficient Adjustment

Think of effect estimation as a regression.

> T <- rnorm(100, sd=1)

> Y <- T + rnorm(100, sd=1)

> summary(lm(Y ~ T))$coef[,1:2]

Estimate Std. Error

(Intercept) -0.10 0.098

T 0.95 0.107

> T <- rnorm(100, sd=1)

> Y <- T + rnorm(100, sd=0.1)

> summary(lm(Y ~ T))$coef[,1:2]

Estimate Std. Error

(Intercept) -0.003 0.011

T 0.995 0.011

However, reducing the variation in Y decreases the standard error.
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More about Efficient Adjustment

The key quantity is:

residual variance in Y

residual variance in T
.

We want the top to be small and the bottom to be large for good
precision.

The result giving OG(T → Y ) was first proved in the multivariate
Gaussian case by Henckel et al. (2019).

It was extended to the general case by Rotnitzky and Smulcer.

It has been extended further to models that also have hidden variables
(we do not discuss these today, see Smucler et al., 2020).
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Linear Gaussian Causal Models

T

Z X

W Y
0.8

−1.5

1

0.7

−1

> set.seed(513)

> n <- 1e3

> Z <- rnorm(n)

> W <- rnorm(n)

> X <- Z + rnorm(n)

> T <- 0.8*W - 1.5*Z + rnorm(n)

> Y <- 0.7*X - T + rnorm(n)
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Back-Door Paths

> summary(lm(Y ~ T))$coefficients[,1:2]

Estimate Std. Error

(Intercept) 0.035 0.04

T -1.285 0.02

> summary(lm(Y ~ T + Z))$coefficients[,1:2]

Estimate Std. Error

(Intercept) 0.043 0.038

T -1.024 0.032

Z 0.645 0.062

> summary(lm(Y ~ T + X))$coefficients[,1:2]

Estimate Std. Error

(Intercept) 0.029 0.031

T -1.011 0.019

X 0.668 0.027
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Instruments

Adding in unnecessary variables to the regression generally increases the
variance.

> summary(lm(Y ~ T + Z + W))$coefficients[,1:2]

Estimate Std. Error

(Intercept) 0.044 0.038

T -1.009 0.039

Z 0.665 0.070

W -0.030 0.048

> summary(lm(Y ~ T + X + Z))$coefficients[,1:2]

Estimate Std. Error

(Intercept) 0.028 0.031

T -1.026 0.026

X 0.682 0.031

Z -0.053 0.061
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Simulating Intervention

T

Z X

W Y

1

0.7

−1

> Z <- rnorm(n)

> T <- rnorm(n)

> W <- Z + rnorm(n)

> X <- rnorm(n, sd=sd(X)) # set X independently

> Y <- 0.7*W - X + rnorm(n)

> summary(lm(Y ~ X))$coefficients[,1:2]

Estimate Std. Error

(Intercept) -0.04 0.045

X -1.04 0.031
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Example: HIV Treatment

A L B

Y

A treatment with AZT (an HIV drug);
L opportunisitic infection;
B treatment with antibiotics;
Y survival at 5 years.

p(a, `, b, y) = p(a) · p(` | a) · p(b | `) · p(y | a, `, b)
p(`, y | do(a, b)) = p(` | a) · p(y | a, `, b)

p(y | do(a, b)) =
∑
`

p(` | a) · p(y | a, `, b).
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Structural Equation Models
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Covariance Matrices

Let G be a DAG with variables V .

X

Y

Z
β

γα

X = εx Y = αX + εy Z = βX + γY + εz.

XY
Z

 =

0 0 0
α 0 0
β γ 0

XY
Z

+

εxεy
εz

 .
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Covariance Matrices

Rearranging:  1 0 0
−α 1 0
−β −γ 1

XY
Z

 =

εxεy
εz

 .

Now, you can check that:

(I −B)−1 =

 1 0 0
−α 1 0
−β −γ 1

−1 =

 1 0 0
α 1 0

β + αγ γ 1

 ,

so (recalling that D = I)

Σ = (I −B)−1(I −B)−T

=

 1 α β + αγ
α 1 + α2 αβ + γ + α2γ

β + αγ αβ + γ + α2γ 1 + γ2 + β2 + 2αβγ + α2γ2

 .
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Treks

Let G be a DAG with variables V .

A trek from i to j with source k is a pair (πl, πr) of directed paths.

• πl (the left side) is directed from k to i;

• πr (the right side) is directed from k to j.

k

. . .

i

. . .

j
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Trek Examples

Consider this DAG:

X

Y

Z

The treks from Z to Z are:

Z Z ← Y → Z

Z ← X → Z Z ← Y ← X → Z

Z ← X → Y → Z Z ← Y ← X → Y → Z.

Note that:

• A vertex may be in both the left and right sides.

• We may have i = k or j = k or both.
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Treks

Let Σ be Markov with respect to a DAG G, so that

Σ = (I −B)−1D(I −B)−T .

Let τ = (πl, πr) be a trek with source k. The trek covariance
associated with τ is:

c(τ) = dkk

 ∏
(i→j)∈πl

bji

 ∏
(i→j)∈πr

bji

 .
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Trek Covariance Examples

Consider this DAG:

X

Y

Z
β

γα

Trek covariances include:

c(Z) = 1 c(Z ← X) = β

c(Z ← X → Y → Z) = β · α · γ c(Y → Z) = γ.

Note that an empty product is 1 by convention.
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Covariance Matrices

X

Y

Z
β

γα

Z Z ← Y → Z

Z ← X → Z Z ← Y ← X → Z

Z ← X → Y → Z Z ← Y ← X → Y → Z.

Recall that

σzz = 1 + γ2 + β2 + 2αβγ + α2γ2.
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The Trek Rule

Theorem (8.20, The Trek Rule)

Let G be a DAG and let XV be Gaussian and Markov with respect to G.
Then

σij =
∑
τ∈Tij

c(τ),

where Tij is the set of treks from i to j.

That is, the covariance between each Xi and Xj is the sum of the trek
covariances over all treks between i and j.
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