SC6/SM9 Graphical Models

Michaelmas Term, 2021

Course Website

The class site is at

http://www.stats.ox.ac.uk/~evans/gmns/

You'll find
® |ecture notes;
Robin Evans ® slides;
® problem sheets;
evans@stats.ox.ac.uk
Department of Statistics ® data sets.

University of Oxford

There will be four problem sheets and four associated classes.

Details will be available on the website.
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Main lIssues

There are two main problems with large data sets that we will consider
in this course:

® statistical;

we need to predict outcomes from scenarios that have never been . .

observed (i.e., we need a model). COndltlonal Independence
® computational:

® we can't store probabilities for all combinations of variables;
® even if we could, we can’t sum/integrate them to find a marginal or
conditional probability:

P(X=1)=> P(X=zY =y).

Our solution will be to impose nonparametric structure, in the form of
conditional independences.



Simpson's Paradox Simpson's Paradox

L, Defendant’s Race
Defendant’s Race Victim's Race Death Penalty? White Black
Death Penalty? )
White Black . Yes 53 11
Yes 53 15 White No 414 37
No 430 176 Black Yes 0 4
ac No 16 139
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Morals

Let:

® D be an indicator that the death penalty was imposed;
® |/ be an indicator for the race of the victim;

® 1R be an indicator for the race of the defendant.

Exponential Families

By changing the numbers only very slightly, it is easy to obtain either:
D1R and DX R|V,

or DLR and D1R|V.
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Contingency Tables: Some Notation

We will consider multivariate systems of vectors Xy = (X, : v € V) for
someset V ={1,...,p}.

Write X4 = (X, :v€ A) forany ACV.
We assume that each X, € {1,...,d,} (usually d, = 2).

If we have n i.i.d. observations write

X = O X =t
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Marginal Table

Defendant’s Race
L, ?
Victim's Race  Death Penalty? White Black
_ Yes 53 11
White No 414 37
Yes 0 4
Black No 16 139

If we sum out the Victim's race...

Death Penalty? Defendant’s Race

White Black
Yes 53 15
No 430 176
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Contingency Tables: Some Notation

We typically summarize categorical data by counts:

aspirin

heart attack

<zZzzZz<<

Write

z2z2z=2<22

n(zy) = Z H{Xfi) =x,...

n

=1

heart attack
Y N

no aspirin | 28 656
aspirin 18 658

7X1(Jl) = :L‘p}

A marginal table only counts some of the variables.

n

n(xa) = Z KXY =z,:ae A} = Z n(wa, vy 4)-

Contingency Tables

The death penalty data is on the class website.

> getwd ()

=1

Ty\ A

[1] "/Users/robinevans/Dropbox/Teaching/Graphical Models"

> deathpen <- read.table("deathpen.txt", header=TRUE)

> deathpen

DeathPen
Yes

No

Yes

No

Yes

No

Yes

No

0 N O O WN -

Defendant
White
White
Black
Black
White
White
Black
Black

Victim freq

White
White
White
White
Black
Black
Black
Black

53
414
11
37
0
16
4
139

14
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Contingency Tables

We can fit models on it in R:

> summary(glm(freq ~ Victim*Defendant + Victim*DeathPen,

+ family=poisson, data=deathpen))
Coefficients:

Estimate Std. Error
(Intercept) 4.93737 0.08459
VictimWhite -1.19886 0.16812
DefendantWhite -2.19026 0.26362
DeathPenYes -3.65713 0.50641
VictimWhite:DefendantWhite 4.46538 0.30408
VictimWhite:DeathPenYes 1.70455 0.52373
Residual deviance: 5.394 on 2 degrees of freedom

(So p = 0.07 in hypothesis test of model fit.)
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Contingency Tables

We can also check that the subsets of S = {Victim} are given by the
other condition we had:

Aw =M+ AR - A

> outl <- glm(freq ~ Victim*Defendant, family=poisson,
+ data=deathpen) $coef [1:2]

> out2 <- glm(freq ~ Victim*DeathPen, family=poisson,
+ data=deathpen) $coef [1:2]

> out <- glm(freq ~ Victim, family=poisson,

+ data=deathpen) $coef [1:2]

>
>

outl + out2 - out

(Intercept) VictimWhite
4.937366 -1.198864

Indeed these match the coefficients from the larger model.
19

Contingency Tables

If we fit the marginal table over the races of Victim and Defendant, the
parameters involving ‘Defendant’ are the same.

> summary(glm(freq ~ Victim*Defendant,

+ family=poisson, data=deathpen))
Coefficients:

Estimate Std. Error
(Intercept) 4.26970 0.08362
VictimWhite -1.09164 0.16681
DefendantWhite -2.19026 0.26360

VictimWhite:DefendantWhite 4.46538 0.30407
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Poisson-Multinomial Equivalence

The following distributions are equivalent.

1. Independent Poisson random variables:

X; ~ Poisson(p;) fori=1,...,k.

2. One Poisson random variable N ~ Poisson(p) where =", ;;
and a multinomial

(X1,..., Xp)TH{N = n} ~ Multinom(n, (1, ..., 7)7),

where m; = u;/p.

20



Poisson-Multinomial Equivalence

We can see this by comparing the likelihoods.

The Poisson likelihood is

L(,ul,. ey ME; XLy - ,[Ek)
k k
=ITe = [Lermpnt Undirected Graphical Models

k
— i T —MZ»W-H ;
—,U/ i ’be 7 ' 7ri
i=1

k
= e [ =
i=1

:L(,u;n)~L(7r1,...,7rk;x1,...,xk | T'L)

Hence the distributions are equivalent.
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Undirected Graphs

Q. @
© (3

@& ©
Paths:

V =1{1,2,3,4,5} m:1-2-3-5
E={{1,2},{1,3},{2,3},{3,4},{3,5},{4,5}}. T 13

Note that paths may consist of one vertex and no edges.
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Induced Subgraph Separation

All paths between {1,2} and {5} pass through {3}.

The induced subgraph Gy, 5 4 53 drops any edges that involve {3}.
Hence {1,2} and {5} are separated by {3}.
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Cliques and Running Intersection Cliques and Running Intersection

A different ordering of the cliques:

Cliques:

{1,2} {2,3,4} {2,4,5} {4,6}. {2,3,4} {2,4,5} {4,6} {1,2}.

Separator sets:
0 {2,4} {4} {2}.

Any ordering works in this case as long {1,2} and {4,6} aren't the first

two entries.
27 28

Separator sets:

0 {2} {2,4} {4}.



Given a decomposition of the graph, we have an associated conditional Given a decomposition of the graph, we have an associated conditional
independence: e.g. ({1,3},{2,4},{5,6}) suggests independence: e.g. ({1,3},{2,4},{5,6}) suggests
X1, X3 L X5, Xe | Xa, X4 X1, X5 L X5, Xe | X2, X4
P(123456) - P(24) = p(T1234) - P(T2456)- P(123456) - P(724) = p(T1234) - P(T2456)-

And p(z1234) and p(x2456) are Markov with respect to G234 and Gagse
respectively.

29 29

But can't we do this for any factorization?

|
Repeating this process on each subgraph we obtain: Nol Although

D(133156) - P(ran) - pls) - p(a) = plas) - plaras) - plass) - plas). p(1234) = P12(212) - Y23(223) - Y34(234) - Y14(714),

the s are constrained by the requirement that

Z p(x1234) = 1.

1234

i.e.

p(12) - p(x234) - P(T245) - P(246)
p(w24) - p(22) - p(24) '

p(x123456) =

There is no nice representation of the ¥¢s in terms of p.
30 31



Non-Decomposable Graphs

Oan©
(O—® lterative Proportional Fitting

If we ‘decompose’ without a complete separator set then we introduce
constraints between the factors:

p(x1234) = p(x1 | T2, 24) - p(T3 | T2, T4),

but how to ensure that Xs 1 X4 | X3, X37?

32 33

function IPF(collection of margins ¢(z¢,))
set p(zy) to uniform distribution;
while max; max, [p(zc,) — q(zc,)| > tol do

foriinl,..., k do Yoo .
update p(zv) to p(zy\¢, | 7¢;) - q(zc,); X 2_ ) 02 ;

end for =
end while X, =0 X3 = (2 2 Z 2 2
return distribution p with margins p(xz¢;) =~ q(zc;). 5 - ——
end function X, =1 X : eI

If any distribution satisfying p(z¢c;) = q(z¢,) foreach i =1,...,k
exists, then the algorithm converges to the unique distribution with
those margins and which is Markov with respect to the graph with
cliques C1,...,Cy.

34 35



Margins Start with a Uniform Table

Suppose we want to fit the 4-cycle model:

Xy = Xo=1

G e Xi1=0 110 1

_ X3=0 6 6|6 6

e e X4=0 1 6 6|6 6

0 6 6|6 6

Xe=1 1 6 6|6 6

The relevant margins are:
n(l‘lg) X2 =0 1 n 3323) X3 =0 1
X:1=0 42 16 Xo=0 40 18
1 16 22 1 16 22
n .%’34) X4 =0 1 n(:r14) X4 =0 1
X3=0 26 30 X1=0 19 39
1 17 23 1 24 14
36 37

Set Margin X, X, to Correct Value Set Margin X5, X3 to Correct Value

Xo=0 | Xy=1 X5 =0 Xy =1

X;=0 1/0 1 X;=0 1 0 1
X0 X;=0| 105 4|4 55 X —0 X;=0| 1448 552|337 463
4= 1| 105 4|4 55 47 1| 652 248|463 6.37
1 0| 105 4[4 55 1 0| 1448 552|337 463
4= 1| 105 4|4 55 4= 1| 652 248|463 637

Replace Replace

n(xg, x3)
p(i) (362, 963)

n(xy,x2)

(7;)7 p(i+1)($15$27$3a$4) = p(i)($1a$27x37$4) .
(21, 22)

p(i+1) (:Ela x2,T3, $4) = p(l) (xla x2,X3, ‘I4) .

38 39



Set Margin X3, X, to Correct Value

Replace

Set Margin X, X, to Correct Value

Xo=0 Xo=1
X1=0 1 0 1
X, =0 X3=0 1345 512 ] 3.13 4.3
1 5.54 2.11 | 3.94 541
X, =1 0 1552 591 | 3.61 4.96
1 7.49 2.86 | 5.33 7.32
n(xs, xy4)

P (21, w9, 23, 24) = p' (21, 29, 73, 74) -

Xo=0 Xo=1

X1=0 1 0 1

X, =0 X3=0 9.82 7.27 | 228 6.1
1 4.02 297|286 7.63
X =1 0| 1887 392|439 329
1 9.18 191 | 6.52 4.89

p(l) (.Tg, 1'4)

40

42

Set Margin X, X, to Correct Value

Replace

Xo=0 Xo=1
X1=0 1 0 1
X, =0 X3=0 9.81 7.26 | 2.28 6.09
1 4.04 299 | 2.87 7.67
X, =1 0 1894 393|441 33
1 9.15 1.9 6.5 4.87
n(xy,xy)

P (21, w9, 23, 24) = p (21, 29, 73, 74) -

Notice that sum of first column is now 41.94.

Eventually:

Wiaiting for this process to converge leads to the MLE:

Xo=0 Xo=1

X1 =0 1 0 1
X, =0 X3=0| 10.07 7.41|229 6.23
1 3.87 2.85 | 277 751
X, =1 0 18.7 3.83 | 426 3.22
1 9.36 191 | 6.68 5.04

p@(z1, x4)

41
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Multivariate Data

> library(ggm)
> data(marks)
> dim(marks)

[1] 88 5
Gaussian Graphical Models > head(narks,

mechanics vectors algebra analysis statistics
1 7 82 67 67 81
2 63 78 80 70 81
3 75 73 71 66 81
4 55 72 63 70 68
5 63 63 65 70 63
6 53 61 72 64 73
7 51 67 65 65 68
8 59 70 68 62 56

44 45

Multivariate Data Multivariate Data

> sapply(marks, mean)

> conc <- solve(cov(marks)) # concentration matrix

mechanics vectors algebra analysis statistics
*
39.0 50.6 50.6 46.7 42.3 > a0t eems, 2
S i) mechanics vectors algebra analysis statistics
mechanics 5.24 -2.44 -2.74 0.01 -0.14
mechanics vectors algebra analysis statistics vectors -2.44 10.43 -4.71 -0.79 -0.17
mechanics 1.000 0.553 0.547 0.409 0.389 algebra -2.74 -4.71 26.95 -7.05 -4.70
vectors 8'223 3'228 (1"2(1)8 8'3?? 8'2‘22 analysis 0.01 -0.79 -7.05 9.88 ~2.02
algebra . . . . . S
analysis 0.409 0.485 0.711  1.000 0.607 statistics T R 202 oo
statistics 0.389 0.436 0.665 0.607 1.000

46 47



Undirected Graphs The Multivariate Gaussian Distribution

Let Xy ~ N,(0,%), where ¥ € RP*P is a symmetric positive definite

statistics

vectors

matrix.
lgeb 1 1
logp(xy; X) = —3 log |X| — ix‘T/E_lmv + const.
mechanics analysis
mech  vecs alg anlys stats The log-likelihood for X3 is
mechanics 5.24 -2.43 -2.72 0.01 -0.15 n n
vectors -2.43 10.42 -4.72 -0.79 -0.16 (X)) = 5 log|X| — Etr(SZ_l)
algebra -2.72 -4.72 26.94 -7.05 -4.70
analysis 0.01 -0.79 -7.05 9.88 -2.02 where S is the sample covariance matrix, and this is maximized by
statistics | -0.15 -0.16 -4.70 -2.02 6.45 choosing ¥ = §S.
48 49

Gaussian Graphical Models Likelihood

We have X, 1L Xy | Xyn\(q,0) if and only if kg = 0. From Lemma 4.23, we have

log p(zy) +logp(zs) = logp(xa, zs) + logp(rp, vs).
This becomes

analysis vectors

2L ey +al(Ses) trs — 24 g(Sas.as) ' was —2Lg(Ssp.sp) tass =0

But can rewrite each term in the form x‘T/Mxv, e.g.:

statistics mechanics

0
[ (Zasas)™? 0

mechanics vectors algebra analysis statistics hs(Xas.a5) " was =2y, v
mechanics k11 k1o k13 0 0 0 0 0
vectors koo kog 0 0 Equating terms gives:
algebr.a k‘33 k34 k35 . 0 0 0 0 0 0 0
an?Iy.sls k4a ka5 w1 (Xas,45) o] + 1o =10 (Ess)fl 0
statistics kss 0 0 0 0 (XsB,sB) 0 0 0
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Iterating this process with a decomposable graph shows that: > true_inv # true concentration matrix
k k (.11 [,2]1 [,3] [,4]
yl= S )L _ Ye o)1 ‘ [1,] 1.0 0.3 0.2 0.0
;{( o) e, ;{( sos) s [2,] 0.3 1.0 -0.1 0.0
- - [3,] 0.2 -0.1 1.0 0.3
[4,] 0.0 0.0 0.3 1.0

For maximum likelihood estimation, using Theorem 4.24 we have

> solve(true_inv) # Sigma

k k
57 =3 { S} =D {Sss) L1 2] 3] [,4]
ZZ_; Ci,Ci ZZ_; Sixi [1,] 1.17 -0.382 -0.30 0.090
& [2,] -0.38 1.136 0.21 -0.063

k
= Wer )~ _ We o)1 [3,] -0.30 0.209 1.19 -0.356
;{( ) e ;{( 58 s, [4,] 0.09 -0.063 -0.36 1.107

> # rmvnorm is in the mvtnorm package
> dat <- rmvnorm(1000, mean=rep(0,4), sigma = solve(true_inv))
: )T . . . .
where Wee = 137, Xg)X(CZ) is the sample covariance matrix. > W <- cov(dat)  # sample covariance

52 53

> momel(, &) i SEUPLE COTE AN Fit the model with decomposition 0 e e
[,11  [,21 [,3]1 [,4] ({1, 2}, {3}, {4}): .
[1,] 1.158 -0.374 -0.242 0.036

[2,] -0.374 1.099 0.227 -0.065

> K_hat = matrix(0, 4, 4)
[3,] -0.242 0.227 1.169 -0.378 > K_hat[1:3, 1:3] = solve(W[1:3, 1:3])
[4,] 0.036 -0.065 -0.378 1.085 > K_hat[3:4, 3:4] = K_hat[3:4, 3:4] + solve(W[3:4, 3:41)
> = —

> round(solve(W), 3) # sample concentration 5 E'EZE[B’ 3] = K_hat[3, 3] /W3, 3l

[,1] [,2] [,31 [,4] [.1] [.2] [.3] [.4]
[1,] 0.995 0.308 0.160 0.040 1] o 593 0 éos o i46 o 600
[2,] 0.308 1.044 -0.138 0.004 [2’] 0‘308 1'044 _0‘139 0'000
[3,] 0.160 -0.138 1.026 0.344 [3’] 0'146 _0'139 1‘021 0‘336
[4,] 0.040 0.004 0.344 1.040 ’ ) ’ ) )

[4,] 0.000 0.000 0.336 1.038

N hat th fairly cl h lues. . . .
ote that these are fairly close to the true values Note this is close to the true concentration matrix.
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Directed Graphical Models

56

Directed Graphs

The graphs considered so far are all undirected. Directed graphs give
each edge an orientation.

A directed graph G is a pair (V, D), where

® |/ is a set of vertices;
® D is a set of ordered pairs (i,j) with 4,7 € V and i # j.

If (i,§) € D we write i — j.

VvV ={1,2,3,4,5} c e

D =1{(1,3),(2,3),(2,4),(3,5), (4,5)}.

If i — j or ¢ + j we say ¢ and e e
j are adjacent and write

©

57

Happy Families

Acyclicity

Paths are sequences of adjacent vertices, without repetition:

1=-3+2—=-4-=5 1—=3—=5.
The path is directed if all the arrows point away from the start.
(A path of length 0 is just a single vertex.)

A directed cycle is a directed path from i to j # 4, together with j — i.

Graphs that contain no directed cycles are called acyclic. or more
specifically, directed acyclic graphs (DAGs).

All the directed graphs we consider are acyclic.
58

_ , i € pag(j) i is a parent of j
i—
J ) jis a child of ¢

a—---—b a € ang(b) a is an ancestor of b
b € deg(a) bis a descendant of a

If w ¢ deg(v) then w is a non-descendant of v:

ndg(v) =V \ deg(v).

(Notice that no v is a non-descendant of itself).

59



ang(4) = {2, 4}
deg(1) ={1,3,5}

ndg(1) = {2,4}.

60

Topological Orderings

If the graph is acyclic, we can find a topological ordering: i.e. one in
which no vertex comes before any of its parents. (Proof: induction)

Topological orderings:

1,2,3,4,5
1,2,4,3,5

OO
2,1,3,4,5 e e
2,1,4,3,5
2,4,1,3,5 6

61

Parameter Estimation

Parameter Estimation

: group assigned to patient;

S S S0

. patient’s age in years;
. whether patient received flu vaccine;

. patient hospitalized with respiratory problems;

62

We can model the data (G;, A;, Vi, H;) as

group : G; ~ Bernoulli(p);
age : A; ~ N(v,02);
vaccine : V; | A;, G; ~ Bernoulli(u;) where

logit f1; = Bo + P14 + B2Gi.
hospital : H; | V; ~ Bernoulli(expit(6y + 61V;)).

Assuming independent priors:

>

H

63



Bayesian Inference

From our argument, we have

W(B | G7A’V7H) :71'(/6 ‘ G7A7V)
O(p(V ’ A’G’ﬂ)'ﬂ(ﬁ)'

Looking at the moral graph we see

64

Markov Equivalence

p(x) pz|z) ply|2) p(z) -plz | 2)-ply|2)
X1lY|Z X1Y|Z

p(y) p(z|y) plx]2)
X1lY|Z

p(z) - p(y) -p(z | 2,y) VYxz(w,2) Yyz(y, 2)
X1y X1Y|Z
66

Markov Equivalence

All undirected graphs induce distinct models.

v b w — Xy L Xy | X\ o0} implied

The same is not true for directed graphs:

p(x) ply|z) pz|z,y) Yxyz(v,y,2)

p(z) -px|2) ply|z,2)

65

Expert Systems

67



(1)
D) (1 (B
ORERC

A has the patient recently visited southern Asia?

lung cancer
cancer or tub.

S does the patient smoke?

dyspnoea T,L,B tuberculosis, lung cancer, bronchitis.

E logical: tuberculosis OR lung cancer.
The ‘Chest Clinic’ network, a fictitious diagnostic model. X shadow on chest X-ray?
D does the patient have dyspnoea?

68
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Conditional Probability Tables Probabilities

Q e (a) __yes no (S) __ves no
p 0.01 099 p 05 05
e e e A yes no S yes no
p(t ’ a) = yes 0.05 0.95 p(f ‘ 8) = yes 0.1 0.9
e @ no || 0.01  0.99 no || 0.01 0.9

S yes no E yes no

p(b ‘ S) = yes 06 04 p(m ’ 6) = yes 0.98 0.02

We have our factorization: no || 0.3 07 no || 0.05 0.95
pla, s, t,6,b,e,x,d) = p(a) - p(s) - p(t | a) - p(¢ | ) - p(b] s): B E || yes 1o
-p(e ’ t7€) 'p({E ‘ 6) p(d | €,b)- p(d | b 6) yes yes 82 8;

s = no . .

Assume that we are given each of these factors. How could we calculate ves || 0.7 0.3
p(l| z,d,a,s)? " e |01 09
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Factorizations

p(l,z,d | a,s)
¢ d =
p( | x,a,a, S) Z@/p(gl,l‘,d ’ a, 8)

From the graph p(¢,z,d | a,s) is

> p(tla)-p]s)-pd]s)-ple]t,e) p(x|e) p(d]eb).

t,e,b

By this method there are up to 5 x 256 multiplications and
256 — 32 = 224 additions.

This amounts to a complexity of around 1504 arithmetic operations.

72

Junction Trees

74

Factorizations

But this is the same as:

p(t]5)Y pa | ) (Zpa» ) p(d| e,b)) (Zpa ) (e t,w) .
e b

t

Each large bracket requires 16 multiplications and 8 additions, and gives
a vector of length 8.

Then the outer sum has 64 entries, so at most 128 multiplications and
32 additions.

This totals 208 arithmetic operations.

73

Junction Trees

A junction tree:

® is a (connected) undirected graph without cycles (a tree);

® has vertices C; that consist of subsets of a set V;

® satisfies the property that if C; N C; = S then every vertex on the
(unique) path from C; to C; contains S.

Example.

75



Junction Trees Junction Trees

Junction trees can be constructed directly from sets of cliques satisfying

running intersection.
@ \Clj 02 @

The following graphs are not junction trees:

CinlJCj=CinCyp).

Jj<t

Example: Junction Trees and RIP Example: Junction Trees and RIP

Given sets {1,2}, {2,3,4}, {2,4,5}, {4,6}, {6,7,8}, we can build this Equally, we could use a different ordering:
tree: {6,7,8},{4,6},{2,4,5},{1,2}, {2,3,4}.



Updating / Message Passing

Suppose we have two vertices and one separator set.

XY [v] Y, Z
Message Passing ey o), el
0| 03 09 Y=
Y1 o7

y=0 1 0] 03 01
0.1 1 1] 02 04

Initialize with

Yxy(r,y) =plxly)  Yvz(y2) =plzly) ply)  Yv(y) =1

80

81
Updating / Message Passing

Suppose we have two vertices and one separator set.

Updating / Message Passing

Suppose we have two vertices and one separator set.

1 D
X,Y [v] Y, Z X,V [v] Y, Z
Yxy(,9y) Yy z(y, 2) Vxy (2, y) , Yy 2 (Y, 2)
[y=0 1 Yy (y) | z=0 1 ly=0 1 ¥y (y) [2=0 1
0| 03 09 y=0 1 0| 03 01 L 0 03 09 y=0 1 0| 03 01
T 1] 07 01 1 Y 11 02 04 1| 07 o1 1 Y 11 02 04

Pass message from X,Y to Y, Z. We set

Pass message from Y, Z to X, Y. We set

V(W) =) vyz(y,2) = (0.4,0.6);
) Yy (y) . ; ¢
Yy 7(y,2) = ¢Y(y)¢yz(ya ) =vUyz(y,2).

, () 012 054
1ZJXY(xay) - wg/(y)wXY(‘rvy) ~ 028 0.06 °
So in this case nothing changes. And now we note that ¥ (z,y) = p(z,y) as intended.
82

83



function COoLLECT(rooted tree T, potentials 1)

let 1 < ... < k be a topological ordering of T
fortink,....2do

@ @ @ send message from v to ¥, (y);

end for
return updated potentials ¢

@ @ end function

Given a tree, we can pick any vertex as a ‘root’, and direct all edges
away from it.
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Collection and Distribution

function DISTRIBUTE(rooted tree 7T, potentials 1)
let 1 < ... < k be a topological ordering of T
fortin2,...,k do

send message from 1, ;) to
end for
return updated potentials
end function

Steps to Forming a Junction Tree:
Moralize

Drop directions
Triangulate (add edges to get a decomposable graph)
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Forming A Junction Tree Initialization

yes no yes no
) = —(/—Fr—F <~ S) =m————
Finally, form the tree of cliques. p(a) 0.01 0.99 p(s) 05 05
A yes no S yes no
@ @ p(t|a) = yes || 0.05 095  p(f|s)= yes | 01 09
no || 0.01 0.99 no || 0.01 0.99
@ @ S yes no E yes no
p(b|s)= yes| 06 0.4 p(z|e)= vyes || 0.98 0.02
no || 0.3 0.7 no || 0.05 0.95
&) o8> BE | m
ves || 0.9 0.1
p(d|be)= " 1o || 08 02
ves || 0.7 0.3
" ho |01 09
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Now, suppose we want to calculate p(x | z = 0).

7|
X,Y [v] Y, Z
Yxy(z,y) Yy z(y, 2)
[y=0 1 Yy (y) [ 2=0 1
0012 05 y=0 1 0| 06 0
1] 028 006 04 06 Y 1] 04 o0

Replace 9y z(y, z) with p(y | z = 0).
Pass message from Y, Z to X, Y. We set

Can set, for example: Yy (y) = Z¢Yz(y, z) = (0.6,0.4);
1/}AT(a7t) = p(a) -p(t | a’) "/JLBS(& b, S) = p(S) -p([ | S) -p(b | S) , rg’/(y) 0.18 036
YreL(t e t) = ple|t,0) YpLp(e 6b) =1 iy (@y) = w;(y)wx‘“("”’y) | 042 004
vex(e,x) =plz]e) Yepp(e,d,b) =p(d]|e,b). And now calculate Zy Yxy(z,y) = (0.54,0.46).
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From the Chest Clinic Network

Marginal Probability Tables:

E\X H yes no A\T H yes no

0.06 0.01
0.05 089 0.01 0.98
B yes no FE yes no
L \ S yes no yes no L \ B yes no yes no
0.03 O 0.02 0 yes || 0.03 0.02 0 0
0.27 0.15|0.18 0.35 o || O 001|041 0.52
E yes no E yes no
T\L yes no yes no B\D yes no yes no
yes 0 0 | 0.01 0 yes || 0.03 O 0.02 0.01
o || 0.05 0| 0 094 no || 0.33 0.08 | 0.05 0.47
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Causal Inference
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From the Chest Clinic Network

Suppose now that we have a shadow on the chest X-ray:

E\X H yes no

A\T H yes no

0.58 - 0.01
0.42 - 0.09 0.9
B yes no E yes no
L \ S yes no yes no L \ B yes no yes no
0.27r 0.01 | 0.18 0.03 yes || 0.28 0.21 0 0
0.15 0.08| 0.1 0.19 no || 0.04 0.05 019 0.24
E yes no E yes no
T\L yes no yes no B\D yes no yes no
ves | 0.01 0 | 0.09 O yes || 0.29 0.03 | 0.18 0.08
o || 048 0| 0 042 no || 0.15 0.04 | 0.02 0.21
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Correlation

7§

B

T USED T0 THINK, THEN I TOCK A | | SOUNDS LKE THE
CORRELATION HPUED STATISTICS CLASs. CLHSS HELPED.
CAUSATION. Now I DON'T, WELL, F‘Tﬁ"fBE

§i
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Controlling for Covariates

Causation

Example. Smoking is strongly predictive of lung cancer. So maybe
smoking causes lung cancer to develop.

BUT: how do we know that this is a causal relationship? And what do
we mean by that?

The central question is: “if we stop people from smoking, will they be
less likely to get lung cancer?”

That is: does this ‘intervention’ on one variable change the distribution
of another variable?

98

Controlling for Covariates

Alternative Explanations

Reverse Causation. Lung cancer causes smoking: people with
(undiagnosed) lung cancer smoke to soothe irritation in the lungs.

Confounding / Common Cause. There is a gene that makes people
likely to smoke, and also more likely to get lung cancer.
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Causal Models do-Calculus

A DAG model can also encode causal information:

F—0O

(7) %

Note that (generally) p(y | do(z)) # p(y | =) and p(y | do(z)) # p(y).

It is neither a conditional nor an ordinary marginal distribution.

If we intervene to experiment on X, just delete incoming edges.
In distribution, just delete factor corresponding to X:

p(t, z,w,z,y) = p(t) - p(2) - p(w | 2) - p(z|t, 2) - ply | w, x).
p(t,z,w,y| do(x)) = p(t) - p(z) - p(w] 2) X p(y|w,x).

N

All other factors are preserved.
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Causal Discovery is hard!

Determining which of the three explanations is correct is generally very

hard, though methods do exist for distinguishing between such models. women men
not smoke smoke not smoke smoke
no damage 21 6 6 6
Consider the following causal model, which we will assume is correct: damage 3 2 2 18

Suppose we take 32 men and 32 women, ask them whether they smoke
and check for lung damage.

Marginally, there is clearly a strong relationship between smoking and

damage
not smoke smoke
no damage 27 12
damage 5 20
Here GG is gender, S is smoking, and D is an indicator of lung damage.

5 5
P(D=1|S=1)=- P(D=1|5=0)=—.
(D=1]8=1)= (D=1]5=0)=
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This might suggest that if we had prevented them all from smoking,
only 3—52 x 64 = 10 would have had damage, whereas if we had made
them all smoke, % x 64 = 40 would have damage. In this example there is a difference between predicting damage when

. . . we ‘observe’ that someone smokes . ..
But: both smoking and damage are also correlated with gender, so this

estimate may be inaccurate. If we repeat this separately for men and 5

women: P(D:HS:l):ga

no-one smoking:

2
21 +3 x 32+ 6+ 2 X 32 =12 ...and prediciting damage when we intervene to make someone smoke:
i 32
everyone smoking P(D=1]do(S = 1)) = =z
2
— x 32 x 32 = 32.
642 + 1846

Compare these to 10 and 40.
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