Course Website

The class site is at

SC6/SM9 Graphical Models http://www.stats.ox.ac.uk/~evans/gmns/
Michaelmas Term, 2020
You'll find
® |ecture notes;
Robin Evans ® slides;

problem sheets;

evans@stats.ox.ac.uk
Department of Statistics
University of Oxford

data sets.

There will be four problem sheets and four associated classes.

Details will be available on the website.
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Main lIssues

There are two main problems with large data sets that we will consider
in this course:

® statistical;
we need to predict outcomes from scenarios that have never been

observed (i.e., we need a model).

® computational:
® we can't store probabilities for all combinations of variables;
® even if we could, we can’t sum/integrate them to find a marginal or

conditional probability:

P(X=1)=> P(X=zY =y).

Our solution will be to impose nonparametric structure, in the form of
conditional independences.

Mental Health

Conditional Independence



Simpson's Paradox Simpson's Paradox

L, Defendant’s Race
Defendant’s Race Victim's Race Death Penalty? White Black
Death Penalty? )
White Black . Yes 53 11
Yes 53 15 White No 414 37
No 430 176 Black Yes 0 4
ac No 16 139
9

10

Morals

Let:

Contingency Tables: Some Notation

We will consider multivariate systems of vectors Xy = (X, : v € V) for

- . someset V ={1,...,p}.
® D be an indicator that the death penalty was imposed; { P}

® 1/ be an indicator for the race of the victim;

® R be an indicator for the race of the defendant. Write X4 = (X, :v € A) forany ACV.
By changing the numbers only very slightly, it is easy to obtain either: We assume that each X, € {1,...,d,} (usually d, = 2).
DLR and DLR|V,

If we have n i.i.d. observations write

or DAR and D1LR|V. XS)E(Xfi),...,X(i))T, i=1,...,n.

11 12



Contingency Tables: Some Notation Marginal Table

We typically summarize categorical data by counts:

aspirin | heart attack Victim's Race  Death Penalty? Defendant’s Race
Y N heart attack | White Black
Y Y Y N White Yes 53 11
N N no aspirin | 28 656 \'>|O 434 347
N N aspirin 18 658 es
Y N 2 Black No 16 139
Write If we sum out the Victim’s race...
_ - (@) _ () — Defendant's Race
n(ezy) =Y HXy =z1,..., X}/ =xp} ?
i_zl 1 p P Death Penalty? White Black
Yes 53 15
A marginal table only counts some of the variables. No 430 176
n
n(xa) = Z XY =z,:ae A} = Z n(wa, Ty 4)-
i=1 Ty A 13 14

Contingency Tables Contingency Tables
The death penalty data is on the class website. We can fit models on it in R:
> getwd() > summary(glm(freq ~ Victim*Defendant + Victim*DeathPen,
+ family=poisson, data=deathpen))

[1] "/Users/evans/Dropbox/Teaching/Graphical Models"

> deathpen <- read.table("deathpen.txt", header=TRUE) Coefficients:
> deathpen Estimate Std. Error
(Intercept) 4.93737 0.08459

DeathPen Defendant Victim freq VictimWhite -1.19886 0.16812

1 Yes White White 53 DefendantWhite -2.19026  0.26362

2 No White White 414 DeathPenYes -3.65713 0.50641

3 Yes Black White 11 VictimWhite:DefendantWhite 4.46538 0.30408

4 No Black White 37 VictimWhite:DeathPenYes 1.70455 0.52373

5 Yes White Black 0

6 No White Black 16 Residual deviance: 5.394 on 2 degrees of freedom

7 Yes Black Black 4

8 No Black Black 139

(So p =~ 0.07 in hypothesis test of model fit.)

15 16



Contingency Tables Contingency Tables

We can also check that the subsets of S = {Victim} are given by the

If we fit the marginal table over the races of Victim and Defendant, the other condition we had:

arameters involving ‘Defendant’ are the same. AS BS S

> summary(glm(freq ~ Victim*Defendant, outl <- glm(freq ~ Victim*Defendant, family=poisson,

>

+ family=poisson, data=deathpen)) i data=deathpen) $coef [1:2]
> out2 <- glm(freq ~ Victim*DeathPen, family=poisson,
+ data=deathpen) $coef [1:2]

Coefficients: > out <- glm(freq ~ Victim, family=poisson,

Estimate Std. Error + data=deathpen)$coef [1:2]

(Intercept) 4.26970 0.08362 >

VictimWhite -1.09164 0.16681 > outl + out2 - out

DefendantWhite -2.19026 0.26360

VictimWhite:DefendantWhite 4.46538  0.30407 (Intercept) VictimWhite

4.937366 -1.198864

Indeed these match the coefficients from the larger model.
17 18

Poisson-Multinomial Equivalence Poisson-Multinomial Equivalence

We can see this by comparing the likelihoods.

The following distributions are equivalent. The Poisson likelihood is

L(,Ufla"wuk;xlw"vxk)
k

k
H T —HT T T
X; ~ Poisson(p;) fori=1,... k. :He M —He M
i=1 i=1

1. Independent Poisson random variables:

k
D 7 *MZ-MH x;
= M k2 6 K2 7"'1/

2. One Poisson random variable N ~ Poisson(p) where p =", ;; ey

and a multinomial k

— e m T r%i
(X1, X)T|{N = n} ~ Multinom(n, (1, ..., m,)7), e I

where m; = p; /. = L(p;n) - L(m1, ..., Tg3 21, -, T | 1),

Hence the distributions are equivalent.
19 20



Undirected Graphs

Undirected Graphical Models .@‘

V ={1,2,3,4,5}
E={{1,2},{1,3},{2,3},{3,4},{3,5},{4,5}}.

21 22

Induced Subgraph

L @
L ®
(3 '0
2 O
@ O
Paths:

m:1—-2—-3-5
72 1 3 The induced subgraph Gy, 54 53 drops any edges that involve {3}.

Note that paths may consist of one vertex and no edges.

23 24



Q@ A'
(3)
(6)
(5)

Cliques:

(1,2} (2,3,4) (2,4,5) (4,6}

Separator sets:

All paths between {1,2} and {5} pass through {3}.

Hence {1,2} and {5} are separated by {3}. 0 {2} {2,4} {4}.

25 26

Given a decomposition of the graph, we have an associated conditional

. independence: e.g. ({1,3},{2,4},{5,6}) suggests

X1, X3 L X5, X6 | X2, X4

P(x123456) - P(@24) = P(x1234) - P(T2456)-

A different ordering of the cliques: .'

{2,3,4} {2,4,5} {4,6} {1,2}.
Separator sets: e
0 {2,4} {4} {2}.
Any ordering works in this case as long {1,2} and {4,6} aren't the first
two entries.

27 28



Given a decomposition of the graph, we have an associated conditional
independence: e.g. ({1,3},{2,4},{5,6}) suggests '
X17X3J|—X57X6 |X2aX4 .

P(CL’123456) 'p(3724) = ,’.0(961234) 'p(ﬂf2456)-

L
. Repeating this process on each subgraph we obtain:
O—® (&)

(6)

p($123456) 'P(9024) 'P(CUZ) 'p($4) = P(ﬂclz) ‘,’.0(96234) ‘P(96245) ‘?(9646)-

p(z12) - p(x234) - p(T245) - P(246)
p(w24) - p(22) - p(24) '

And p(z1234) and p(x2456) are Markov with respect to Gi234 and Goase P(123456) =
respectively.

28 29

Non-Decomposable Graphs Non-Decomposable Graphs

But can’'t we do this for any factorization?

No! Although

If we ‘decompose’ without a complete separator set then we introduce

T = T12) - To3) - T34) - T
P(1234) = Y12(w12) - 3(23) - V3a(230) - Pra(na), constraints between the factors:

the s are constrained by the requirement that

Z p(x1234) = 1.

T1234 but how to ensure that Xo 1L X, | X1, X357

p(r1234) = p(1 | 22, 24) - (23 | T2, 24),

There is no nice representation of the ¥¢s in terms of p.
30 31



The lIterative Proportional Fitting Algorithm

function IPF(collection of margins ¢(z¢;))
set p(zy) to uniform distribution;
while max; max, . |p(zc;) — ¢(z¢,)| > tol do
for 7 in 1,...,I<szo
. . - update p(zv) to p(zy ¢, | zc,) - a(zc,);
lterative Proportional Fitting end for
end while
return distribution p with margins p(xz¢;,) ~ q(z¢;).
end function

If any distribution satisfying p(zc;,) = q(z¢,) foreachi=1,....k
exists, then the algorithm converges to the unique distribution with
those margins and which is Markov with respect to the graph with
cliques C1,...,Cy.

32 33

Suppose we want to fit the 4-cycle model:

Xo=0 Xo=1
X;=0 1|0 1 e e
X3=0 9 910 8
Xy4=0
1 0 4)4 3 The relevant margins are:
X, =1 0 22 0] 2 ©6
1 5 3 10 5 n(xlg) X2 =0 1 n $23) X3 =0 1
X1=0 42 16 Xo=0 40 18
1 16 22 1 16 22
n {E34) X4 =0 1 n(x14) X4 =0 1
X3=0 26 30 X1=0 19 39
1 17 23 1 24 14

34 35



Start with a Uniform Table

o |l

X1=0

Xy=1

= Ol O
S OO O

S OO O

Set Margin X, X, to Correct Value

Xo=0 Xo=1
X1=0 1|0 1
|
R T
Replace
n(xy,x2)

P (21, w9, 23, 24) = p (21, 29, 73, 74) - I OTAY
p(z1, x2)

36 37

Set Margin X5, X3 to Correct Value

Set Margin X3, X, to Correct Value

Replace

Xy =0 Xy =1
X;=0 1 0 1
. _o Xs=0] 1448 552[337 463
4= 1| 652 248|463 6.37
0| 1448 552|337 463

X, =1
1| 652 248|463 637
n(xg, x3)

p(i+1) (:Ela x2,T3, $4) = p(l) (xla x2,X3, ‘I4) .

p(i) ($2, 963)

Xo=0 Xo=1

X1=0 1 0 1
¥ 0 X3=0 13.45 512 | 3.13 4.3
47 1| 554 211|394 541
0 15.52 5.91 | 3.61 4.96

Xs=1
1 7.49 2.86 | 5.33 7.32
Replace
n(xs, xy4)

p(i+1)($lax27$3a$4) = p(i)($1a$27x37$4) . (1)7
b (.’L’3,$4)

38 39



Set Margin X, X, to Correct Value Set Margin X, X, to Correct Value

Xo=0 Xo=1
X1=0 1 0 1

X, =0 X3=0 0.81 7.26 | 2.28 6.09
4= 1| 404 299|287 7.67 N X2 =0 . 6X2 = 11
1 pr—
Xg=1 0| 1894 393441 33 X3=0] 982 727]228 6.1
1 9.15 1.9 6.5 4.87 X4s=0 i 4.00 207 | 986 7.63
0 18.87 3.92 | 439 3.29
Xy4=1
1 9.18 191 | 6.52 4.89
Replace
. . n(xy,x
P (21, w9, 23, 24) = p' (21, 29, 73, 74) - %
Pl (21, z4)
Notice that sum of first column is now 41.94.
40 41
Eventually:
Waiting for this process to converge leads to the MLE:
Xo=0 Xo=1 . .
N Gaussian Graphical Models
X, =0 X3=0 10.07 741 | 229 6.23
47 1| 387 285|277 751
1 0| 187 383|426 322
47 1| 936 191|668 5.04
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Multivariate Data Multivariate Data

> library(ggm)
> data(marks)

> dim(marks) > sapply(marks, mean)

[1] 88 5 mechanics vectors algebra  analysis statistics
39.0 50.6 50.6 46.7 42.3

> head(marks, 8) > cor(marks)

mechanics vectors algebra analysis statistics

1 77 89 67 67 81 mechanics vectors algebra analysis statistics
9 63 78 80 70 81 mechanics 1.000 0.553 0.547 0.409 0.389
3 75 73 71 66 81 vectors 0.553 1.000 0.610 0.485 0.436
4 55 79 63 70 68 algebra 0.547 0.610 1.000 0.711 0.665
5 63 63 65 70 63 analysis 0.409 0.485 0.711 1.000 0.607
6 53 61 79 64 73 statistics 0.389 0.436 0.665 0.607 1.000
7 51 67 65 65 68

8 59 70 68 62 56

44 45

vectors

statistics

> conc <- solve(cov(marks)) # concentration matrix
> round(1000*conc, 2)

mechanics vectors algebra analysis statistics

mechanics analysis

mechanics 5.24 -2.44 -2.74 0.01 -0.14

vectors -2.44 10.43 -4.71 -0.79 -0.17

algebra -2.74 -4.71 26.95 -7.05 -4.70 mech  vecs alg anlys stats

analysis 0.01 -0.79 -7.05 9.88 -2.02 mechanics 5.24 -2.43 -2.72 0.01 -0.15

statistics -0.14 -0.17 -4.70 -2.02 6.45 vectors -2.43 10.42 -4.72 -0.79 -0.16
algebra -2.72 -4.72 26.94 -7.05 -4.70
analysis 0.01 -0.79 -7.05 9.88 -2.02

statistics | -0.15 -0.16 -4.70 -2.02 6.45
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The Multivariate Gaussian Distribution Gaussian Graphical Models

We have Xa A1 Xb ‘ XV\{a,b} if and onIy if kab = 0.

Let Xy ~ N,(0,%), where X € RP*P is a symmetric positive definite
matrix.

analysis vectors

1 1
logp(xy; X) = —3 log |X| — §x‘T/E_1:ﬂV + const.

statistics mechanics

The log-likelihood for ¥ is

mechanics vectors algebra analysis statistics

() = —g log |X] — gtr(SZ_l) mechanics k11 k12 ki3 0 0
vectors koo kog 0 0
where S is the sample covariance matrix, and this is maximized by algebra k33 ks34 k35
choosing L =49. analysis kaa k45
statistics kss

48 49

Maximum Likelihood Estimation

Likelihood

From Lemma 4.23, we have Iterating this process with a decomposable graph shows that:
logp(zy) +logp(rs) = logp(wa, xs) + logp(zp, Ts). k K
. -1 _ -1 ~1
This becomes Y= Z {(Ecnci) }Ci,Ci - Z {(Esi’si) }Si,Si )
i=1 i=1

2L ey +al(Ses) tas — 24 g(Sas.as) ' was —2Lg(Ssp.sp) tass =0

For maximum likelihood estimation, using Theorem 4.24 we have

2 = i {(2014,01')_1}01_701_ B il {(25’1',5’1')_1}5“51_

But can rewrite each term in the form x‘T/M:L’V, e.g.:

[ (Zasas)™?

vhs(Eas,45) was = i 0fav i=1 i=
0 0 0 k k
= We..c,) ™ - Ws, s.)" "
Equating terms gives: ZZ_;{( CiCs) }Ci,Ci Zz_;{( 5:.5:) }Sz-,Si
0 0 0 0 0 0 0
b)) —1
st = | (Basas)™ o)y (g epsn) ] {0 (Zgs)™! 0 -
0 0 0 0 7 0 0 0 where Woeo = %ZZ Xg)Xg)T is the sample covariance matrix.
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> true_inv # true concentration matrix

> round(W, 3) # sample covariance

(.11 [,2]1 [,3]1 [,4]

[1,] 1.0 0.3 0.2 0.0 [,1] [,2] [,3] [,4]
[2,] 0.3 1.0 -0.1 0.0 [1,] 1.158 -0.374 -0.242 0.036
[3,] 0.2 -0.1 1.0 0.3 [2,] -0.374 1.099 0.227 -0.065
[4,] 0.0 0.0 0.3 1.0 [3,] -0.242 0.227 1.169 -0.378

[4,] 0.036 -0.065 -0.378 1.085
> solve(true_inv) # Sigma

> round(solve(W), 3) # sample concentration

(.11 [,21 [,31 [,4]

[1,] 1.17 -0.382 -0.30 0.090 [,1] [,2] [,31 [,4]
[2,] -0.38 1.136 0.21 -0.063 [1,] 0.995 0.308 0.160 0.040
[3,] -0.30 0.209 1.19 -0.356 [2,] 0.308 1.044 -0.138 0.004
[4,] 0.09 -0.063 -0.36 1.107 [3,] 0.160 -0.138 1.026 0.344

[4,] 0.040 0.004 0.344 1.040
> # rmvnorm is in the mvtnorm package

> dat <- rmvnorm(1000, mean=rep(0,4), sigma = solve(true_inv))

Note that these are fairly close to the true values.
> W <- cov(dat) # sample covariance

52 53

Fit the model with decomposition 0.9 e
({1, 2}, {3}, {4}): e

> K_hat = matrix(0, 4, 4)

> K_hat[1:3, 1:3] = solve(W[1:3, 1:31) ' I

> K_hat[3:4, 3:4] = K_hat[3:4, 3:4] + solve(W[3:4, 3:4]) DIreCted Graphlcal MOdels
> K_hat[3, 3] = K_hat[3, 3] - 1/W[3, 3]

> K_hat

(.11 [,21  [,3] [,4]
[1,] 0.993 0.308 0.146 0.000
[2,] 0.308 1.044 -0.139 0.000
[3,] 0.146 -0.139 1.021 0.336
[4,] 0.000 0.000 0.336 1.038

Note this is close to the true concentration matrix.
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Directed Graphs Acyclicity

The graphs considered so far are all undirected. Directed graphs give Paths are sequences of adjacent vertices, without repetition:

each edge an orientation. 1-3+2—-4-5 1—-3—=5.

A directed graph G is a pair (V, D), where The path is directed if all the arrows point away from the start.
e V is a set of vertices: (A path of length 0 is just a single vertex.)

® D is a set of ordered pairs (i,7) with 4,7 € V and i # j. A directed cycle is a directed path from i to j # 4, together with j — i.

If (i,§) € D we write i — j.

vV ={1,2,3,4,5} c e |
D ={(1,3),(2,3),(2,4),(3,5), (4,5)}. e e
If i — j or ¢ + j we say ¢ and e e

j are adjacent and write
in~7.

Graphs that contain no directed cycles are called acyclic. or more
e specifically, directed acyclic graphs (DAGs).

All the directed graphs we consider are acyclic.
56 57

OO
1 is a parent of j
J is a child of ¢ e e

- b a € ang(b) a is an ancestor of b
b€ deg(a) bis a descendant of a e

1 € pag(g
isj { 1€pl
J € chg(i

~ —

If w & deg(v) then w is a non-descendant of v:

ndg(v) = V \ deg(v). pag(3) = {1,2} ang(4) = {2, 4}
chg(5) =0 deg(1) = {1,3,5}
(Notice that no v is a non-descendant of itself). ndg(1) = {2, 4}.
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Topological Orderings

If the graph is acyclic, we can find a topological ordering: i.e. one in
which no vertex comes before any of its parents. (Proof: induction)

Topological orderings:
L2345 Q2

1,2,4,3,5
2,1,3,4,5 e e
2,1,4,3,5

2,4,1,3,5 e

60

Parameter Estimation

We can model the data (G;, A;, Vi, H;) as

group : G; ~ Bernoulli(p);
age : A; ~ N(v,0?);
vaccine : V; | A;, G; ~ Bernoulli(u;) where

logit p1; = Bo + P14 + B2Gi.
hospital : H; | V; ~ Bernoulli(expit(6y + 61V;)).

Assuming independent priors:

>

62

Parameter Estimation

: group assigned to patient;
. patient’s age in years;

: whether patient received flu vaccine;

o< e Q

. patient hospitalized with respiratory problems;

O—O—®

61

Bayesian Inference

From our argument, we have

m(B1G AV.H)=7(B]G AV)
xp(V|AG,B) 7(B)

Looking at the moral graph we see
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Markov Equivalence Markov Equivalence

All undirected graphs induce distinct models.
v b w — Xy L Xy | Xy o0} implied @
The same is not true for directed graphs:

p(x) p(z|z) py|=2) p(z) -plz|2)-ply|z)
X1lY|Z X1lY|Z

p(y) p(z|y) plx]2)

p(x)-ply | ) -p(z | z,y) Uxyz(2,y,2) X1Y|Zz

p(z)-ply) - plz | z,y) Vxz(x,2) - Yyz(y, 2)
X1y X1Y|Z
64 65

p(z) -plx]2) ply|z,2)

Expert Systems
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(1)
D) (1 (B
ORERC

A has the patient recently visited southern Asia?

lung cancer
cancer or tub.

S does the patient smoke?

dyspnoea T,L,B tuberculosis, lung cancer, bronchitis.

E logical: tuberculosis OR lung cancer.
The ‘Chest Clinic’ network, a fictitious diagnostic model. X shadow on chest X-ray?
D does the patient have dyspnoea?

67

68
Conditional Probability Tables Probabilities

Q e (a) __yes no (S) __ves no
p 0.01 099 p 05 05
e e e A yes no S yes no
p(t ’ a) = yes 0.05 0.95 p(f ‘ 8) = yes 0.1 0.9
e @ no || 0.01  0.99 no || 0.01 0.9

S yes no E yes no

p(b ‘ S) = yes 06 04 p(m ’ 6) = yes 0.98 0.02

We have our factorization: no || 0.3 07 no || 0.05 0.95
pla, s, t,6,b,e,x,d) = p(a) - p(s) - p(t | a) - p(¢ | ) - p(b] s): B E || yes 1o
-p(e ’ t7€) 'p({E ‘ 6) p(d | €,b)- p(d | b 6) yes yes 82 8;

s = no . .

Assume that we are given each of these factors. How could we calculate ves || 0.7 0.3
p(l| z,d,a,s)? " e |01 09
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Factorizations

p(l,z,d | a,s)
¢ d =
p( | x,a,a, S) Z@/p(gl,l‘,d ’ a, 8)

From the graph p(¢,z,d | a,s) is

> p(tla)-p]s)-pd]s)-ple]t,e) p(x|e) p(d]eb).

t,e,b

By this method there are up to 5 x 256 multiplications and
256 — 32 = 224 additions.

This amounts to a complexity of around 1504 arithmetic operations.

71

Junction Trees

73

Factorizations

But this is the same as:

p(t]5)Y pa | ) (Zpa» ) p(d| e,b)) (Zpa ) (e t,w) .
e b

t

Each large bracket requires 16 multiplications and 8 additions, and gives
a vector of length 8.

Then the outer sum has 64 entries, so at most 128 multiplications and
32 additions.

This totals 208 arithmetic operations.

72

Junction Trees

A junction tree:

® is a (connected) undirected graph without cycles (a tree);

® has vertices C; that consist of subsets of a set V;

® satisfies the property that if C; N C; = S then every vertex on the
(unique) path from C; to C; contains S.

Example.
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Junction Trees Junction Trees

Junction trees can be constructed directly from sets of cliques satisfying

running intersection.
@ \Clj 02 @

The following graphs are not junction trees:

CinlJCj=CinCyp).

Jj<t

Example: Junction Trees and RIP Example: Junction Trees and RIP

Given sets {1,2}, {2,3,4}, {2,4,5}, {4,6}, {6,7,8}, we can build this Equally, we could use a different ordering:
tree: {6,7,8},{4,6},{2,4,5},{1,2}, {2,3,4}.



Updating / Message Passing

Suppose we have two vertices and one separator set.

XY [v] Y, Z
Message Passing ey o), el
0| 03 09 Y=
Y1 o7

y=0 1 0] 03 01
0.1 1 1] 02 04

Initialize with

Yxy(r,y) =plxly)  Yvz(y2) =plzly) ply)  Yv(y) =1
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Updating / Message Passing

Suppose we have two vertices and one separator set.

Updating / Message Passing

Suppose we have two vertices and one separator set.

1 D
X,Y [v] Y, Z X,V [v] Y, Z
Yxy(,9y) Yy z(y, 2) Vxy (2, y) , Yy 2 (Y, 2)
[y=0 1 Yy (y) | z=0 1 ly=0 1 ¥y (y) [2=0 1
0| 03 09 y=0 1 0| 03 01 L 0 03 09 y=0 1 0| 03 01
T 1] 07 01 1 Y 11 02 04 1| 07 o1 1 Y 11 02 04

Pass message from X,Y to Y, Z. We set

Pass message from Y, Z to X, Y. We set

V(W) =) vyz(y,2) = (0.4,0.6);
) Yy (y) . ; ¢
Yy 7(y,2) = ¢Y(y)¢yz(ya ) =vUyz(y,2).

, () 012 054
1ZJXY(xay) - wg/(y)wXY(‘rvy) ~ 028 0.06 °
So in this case nothing changes. And now we note that ¥ (z,y) = p(z,y) as intended.
81
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function COoLLECT(rooted tree T, potentials 1)

let 1 < ... < k be a topological ordering of T
fortink,....2do

@ @ @ send message from v to ¥, (y);

end for
return updated potentials ¢

@ @ end function

Given a tree, we can pick any vertex as a ‘root’, and direct all edges
away from it.

83
Collection and Distribution

function DISTRIBUTE(rooted tree 7T, potentials 1)
let 1 < ... < k be a topological ordering of T
fortin2,...,k do

send message from 1, ;) to
end for
return updated potentials
end function

Steps to Forming a Junction Tree:
Moralize

Drop directions
Triangulate (add edges to get a decomposable graph)
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Forming A Junction Tree Initialization

yes no yes no
) = —(/—Fr—F <~ S) =m————
Finally, form the tree of cliques. p(a) 0.01 0.99 p(s) 05 05
A yes no S yes no
@ @ p(t|a) = yes || 0.05 095  p(f|s)= yes | 01 09
no || 0.01 0.99 no || 0.01 0.99
@ @ S yes no E yes no
p(b|s)= yes| 06 0.4 p(z|e)= vyes || 0.98 0.02
no || 0.3 0.7 no || 0.05 0.95
&) o8> BE | m
ves || 0.9 0.1
p(d|be)= " 1o || 08 02
ves || 0.7 0.3
" ho |01 09
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Now, suppose we want to calculate p(x | z = 0).

7|
X,Y [v] Y, Z
Yxy(z,y) Yy z(y, 2)
[y=0 1 Yy (y) [ 2=0 1
0012 05 y=0 1 0| 06 0
1] 028 006 04 06 Y 1] 04 o0

Replace 9y z(y, z) with p(y | z = 0).
Pass message from Y, Z to X, Y. We set

Can set, for example: Yy (y) = Z¢Yz(y, z) = (0.6,0.4);
1/}AT(a7t) = p(a) -p(t | a’) "/JLBS(& b, S) = p(S) -p([ | S) -p(b | S) , rg’/(y) 0.18 036
YreL(t e t) = ple|t,0) YpLp(e 6b) =1 iy (@y) = w;(y)wx‘“("”’y) | 042 004
vex(e,x) =plz]e) Yepp(e,d,b) =p(d]|e,b). And now calculate Zy Yxy(z,y) = (0.54,0.46).
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From the Chest Clinic Network

Marginal Probability Tables:

E\X H yes no A\T H yes no

0.06 0.01
0.05 089 0.01 0.98
B yes no FE yes no
L \ S yes no yes no L \ B yes no yes no
0.03 O 0.02 0 yes || 0.03 0.02 0 0
0.27 0.15|0.18 0.35 o || O 001|041 0.52
E yes no E yes no
T\L yes no yes no B\D yes no yes no
yes 0 0 | 0.01 0 yes || 0.03 O 0.02 0.01
o || 0.05 0| 0 094 no || 0.33 0.08 | 0.05 0.47
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Causal Inference

93

From the Chest Clinic Network

Suppose now that we have a shadow on the chest X-ray:

E\X H yes no

A\T H yes no

0.58 - 0.01
0.42 - 0.09 0.9
B yes no E yes no
L \ S yes no yes no L \ B yes no yes no
0.27r 0.01 | 0.18 0.03 yes || 0.28 0.21 0 0
0.15 0.08| 0.1 0.19 no || 0.04 0.05 019 0.24
E yes no E yes no
T\L yes no yes no B\D yes no yes no
ves | 0.01 0 | 0.09 O yes || 0.29 0.03 | 0.18 0.08
o || 048 0| 0 042 no || 0.15 0.04 | 0.02 0.21

92

Correlation

7§

B

T USED T0 THINK, THEN I TOCK A | | SOUNDS LKE THE
CORRELATION HPUED STATISTICS CLASs. CLHSS HELPED.
CAUSATION. Now I DON'T, WELL, F‘Tﬁ"fBE

§i
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Controlling for Covariates

Causation

Example. Smoking is strongly predictive of lung cancer. So maybe
smoking causes lung cancer to develop.

BUT: how do we know that this is a causal relationship? And what do
we mean by that?

The central question is: “if we stop people from smoking, will they be
less likely to get lung cancer?”

That is: does this ‘intervention’ on one variable change the distribution
of another variable?

97

Controlling for Covariates

Alternative Explanations

Reverse Causation. Lung cancer causes smoking: people with
(undiagnosed) lung cancer smoke to soothe irritation in the lungs.

Confounding / Common Cause. There is a gene that makes people
likely to smoke, and also more likely to get lung cancer.
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Causal Discovery is hard!

Suppose we take 32 men and 32 women, ask them whether they smoke

Determining which of the three explanations is correct is generally very and check for lung damage.
hard, though methods do exist for distinguishing between such models.
women men
We'll see some examples later in the course. not smoke smoke not smoke smoke
no damage 21 6 6 6
Consider the following causal model, which we will assume is correct: damage 3 2 2 18

Marginally, there is clearly a strong relationship between smoking and

damage
not smoke smoke
@ no damage 27 12
damage 5 20
Here GG is gender, S is smoking, and D is an indicator of lung damage. 5 5
P(D:l\S:l):g P(D:HSZO):?Q'
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Example

This might suggest that if we had prevented them all from smoking,
only 3—52 x 64 = 10 would have had damage, whereas if we had made
them all smoke, % x 64 = 40 would have damage.

But: both smoking and damage are also correlated with gender, so this
estimate may be inaccurate. If we repeat this separately for men and
women:

no-one smoking:

2
21+3 x 32+ 642 x 32 =12 ...and prediciting damage when we intervene to make someone smoke:
everyone smoking P(D—11do(S — 1)) — 32 _ 1
2 (D=1]do(S=1)) = 5 = 3.
X 32 X 32 = 32.
642 + 18+6

Compare these to 10 and 40.
101

In this example there is a difference between predicting damage when

we ‘observe’ that someone smokes ...

5

P(D=1]8=1)=g,

100
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Linear Gaussian Causal Models Back-Door Paths

> summary(Im(Y ~ X))$coefficients[,1:2]

Estimate Std. Error

(Intercept) 0.035 0.04
X -1.285 0.02
O 0.8 1 > summary (Im(Y ~ X + Z))$coefficients[,1:2]
T X
\~a/ Estimate Std. Error
(Intercept) 0.043 0.038
> set.seed(513) X -1.024 0.032
> n <- 1e3 Z 0.645 0.062
> 7 <-
rnorm(n) > summary(lm(Y ~ X + W))$coefficients[,1:2]
> T <- rnorm(n)
> W <= Z + rnorm(n) Estimate Std. Error
> X <= 0.8%T - 1.5%Z + rnorm(n) (Intercept)  0.029 0.031
> Y <= 0.7*W - X + rnorm(n) X -1.011 0.019
W 0.668 0.027
103 104

Adding in unnecessary variables to the regression generally increases the
variance

> summary(lm(Y ~ X + Z + T))$coefficients[,1:2]

Estimate Std. Error
(Intercept) 0.044 0.038 @
X -1.009 0.039
Z 0.665 0.070

<- rnorm(n)

<- rnorm(n)

<- Z + rnorm(n)

<- rnorm(n, sd=sd(X)) # set X independently
<- 0.7*#W - X + rnorm(n)

T -0.030 0.048
> summary(Im(Y ~ X + W + Z))$coefficients[,1:2]

Estimate Std. Error

V V. V V V V
< > =+ N

(Intercept)  0.028 0.031 summary (1m(Y ~ X))$coefficients[,1:2]
X -1.026 0.026

W 0.682 0.031 Estimate Std. Error

Z -0.053 0.061 (Intercept) -0.04 0.045

X -1.03 0.023
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(= ()—(»)

A treatment with AZT (an HIV drug); StrUCtU ral Eq Uatlon MOdGlS

L opportunisitic infection;
B treatment with antibiotics;
Y survival at 5 years.

p(a,t,b,y) =p(a)-p(l|a) pb|L) py|a,rlb)

p(l,y | do(a,b)) =p(¢|a)-p(y | a,,b)
ply | do(a,b)) =Y p(l|a)-ply | a,tb).
4
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Let G be a DAG with variables V. Rearranging:
1 0 0 X €z
—-a 1 0 Y| =1¢&]-
a v -5 - 1 Z €,
3 Now, you can check that:
10 0\ " 1 00
I-B)'=|-a 1 0 = a 1 0],
B = 1 B+ay v 1
X =¢; Y =aX+¢g Z =BX +Y +¢,.

so (recalling that D = I)
Y=I-B)Y1-B)"T

X 0 00 X €z 1 o B+ ay
Y| =]la 0 0 Y]+ 1le |- — a 14 a2 aﬁ+’y+a27 .
Z g v 0 Z €z B+ay af+v+a?y 14++%2+5%2+2aby+ a2

109 110



Let G be a DAG with variables V.

A trek from i to j with source k is a pair (m;, 7,) of directed paths. Consider this DAG:

o 7, (the left side) is directed from k to i; @

¢ 7, (the right side) is directed from k to j. The treks from Z to 7 are:

A Z+—Y =7
Z+— X =7 Y+ X—>7
Z+—X—>Y —>Z Z+Y+~X—>Y > Z

;- N \ Note that:
@ ® A vertex may be in both the left and right sides.

® \We may have ¢ = k or j = k or both.
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Trek Covariance Examples

Let X be Markov with respect to a DAG G, so that

>=U-B)'DI-B)T. Consider this DAG: @ 7
B
Let 7 = (m, 7,) be a trek with source k. The trek covariance
associated with 7 is: Trek covariances include:
cZ)=1 c(Z+ X) =
o) =du | T b II o) (Z+X-=Y2Z)=F-a-~ oY = Z) =
(i—j)em (i—j)en,

Note that an empty product is 1 by convention.

113 114



Covariance Matrices The Trek Rule

o v Theorem 8.20 (The Trek Rule)
Let G be a DAG and let Xy be Gaussian and Markov with respect to G.
Then
B
oij = »_ or),
T€Tij

Z Z Y =7 where 7T;; is the set of treks from i to j.

Z+—X—7Z Z+—Y+—X—>7

Z+X—=Y =7 Z+Y+X—->Y > Z
That is, the covariance between each X; and X is the sum of the trek

Recall that covariances over all treks between ¢ and j.

0.y =1 +~% + 82 + 208y + a?42.
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