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Administration

The course webpage is at

http://www.stats.ox.ac.uk/~evans/gms/

Here you will find problem sheets, slides and links to any other materials (including videos
of the lectures).

Problem Sheets and Classes

There will be four problem sheets, and four associated classes.

Part C and OMMS students should sign-up for classes via the online system.

Resources

Books are useful, though not required. Here are the main ones this course is based on.

1. S.L. Lauritzen, Graphical Models, Oxford University Press, 1996.

The ‘bible’ of graphical models, and much of the first half of this course is based on
this. One complication is that the book makes a distinction between two different types
of vertex, which can make some ideas look more complicated.

2. M.J. Wainwright and M.I. Jordan, Graphical Models, Exponential Families, and Vari-
ational Inference, Foundations and Trends in Machine Learning, 2008.

Relevant for the later part of the course, and for understanding much of the compu-
tational advantages of graphical models. Available for free at https://people.eecs.
berkeley.edu/~wainwrig/Papers/WaiJor08_FTML.pdf.

3. J. Pearl, Causality, third edition, Cambridge, 2013.

Book dealing with the causal interpretation of directed models, which we will touch
upon.
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4. D. Koller and N. Friedman, Probabilistic Graphical Models: Principles and Techniques,
MIT Press, 2009.

A complementary book, written from a machine learning perspective.

5. A. Agresti Categorical Data Analysis, 3rd Edition, John Wiley & Sons, 2013.

As the name suggests, covers most of the material we will use for discussing contin-
gency tables and log-linear models, as well as some data examples. Available for free at
https://mybiostats.files.wordpress.com/2015/03/3rd-ed-alan_agresti_categorical_

data_analysis.pdf.

Recommended Prerequisites

Knowledge of Part A Probability and Statistics is assumed. Part B Applied Statistics
(especially GLMs) and Foundations of Statistical Inference would be useful, but are not
essential.

Aims and Objectives

This course will give an overview of the use of graphical models as a tool for statistical
inference. Graphical models relate the structure of a graph to the structure of a multivari-
ate probability distribution, usually via conditional independence constraints. This has
two broad uses: first, conditional independence can provide vast savings in computational
effort, both in terms of the representation of large multivariate models and in perform-
ing inference with them; this makes graphical models very popular for dealing with big
data problems. Second, conditional independence can be used as a tool to discover hid-
den structure in data, such as that relating to the direction of causality or to unobserved
processes. As such, graphical models are widely used in genetics, medicine, epidemiology,
statistical physics, economics, the social sciences and elsewhere.

Students will develop an understanding of the use of conditional independence and graph-
ical structures for dealing with multivariate statistical models. They will appreciate how
this is applied to causal modelling, and to computation in large-scale statistical problems.
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1 Introduction

The modern world is replete with sources of massively multivariate data, sometimes called
‘big data’. In many cases, the number of variables being measured (p) exceeds the number
of samples available (n), and in almost all cases the number of possible ways of classifying
individuals is greater than n.

Examples:

� There are around 25,000 human genes, which gives more possible human genomes
than humans who have ever existed. Even if a gene is present, whether or not it is
expressed depends upon other genes and also environmental factors. Good genetic
data sets might have a few hundred thousand individuals in, the best ones perhaps
a million. How do we study what effect these genes have on diseases, or on each
other’s expression?

� A doctor has to diagnose one (or more) of hundreds of different possible diseases
in a patient with a handful out of thousands of possible symptoms, and with a few
pieces of information about his medical history. She can perhaps order some tests
to provide evidence in favour of one condition or another. How should she decide
whether the evidence is behind a particular condition?

� Photographs are typically made up of millions of pixels, each of which can take one
of 2563 ≈ 17 million colours. How do we train a computer to recognize the object in
an image?

The nature of these data sets leads to two related challenges: the first is statistical, and
the second computational. Both are features of the so-called curse of dimensionality. The
statistical problems are easy to see: suppose I ask 1,000 people 10 questions each with
two answers. This gives 210 = 1024 possible response patterns, so that it is impossible
to observe all the response patterns, and in practice we won’t observe most of them even
once. How can we sensibly estimate the probability of those missing response patterns in
future?

The computational problem is related. Suppose now that I know the distribution of
outcomes, so I have P (XV = xV ) for every xV ∈ XV . How can I compute the marginal
probability of a particular variable? Well:

P (Xi = xi) =
∑
xV \{i}

P (XV = xV ).

But notice that, if p = |V | is large, say 1,000 variables, then this sum could easily involve
21000 ≈ 10301 terms! Even for a very fast computer this is completely infeasible, and of
course we would not be able to store all the probabilities in the first place.

Each of these examples—although theoretically massive—has a lot of underlying structure
that makes the problem potentially tractable. Particular medical symptoms are closely
tied to particular diseases, with probabilities that we understand. Adjacent pixels in
photographs are often almost the same; if every pixel were completely different we would
never discern an image.

Graphical models provide a convenient way of modelling this structure, and make it com-
putationally feasible to perform calculations with the networks.
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2 Conditional Independence

The primary tool we will use to provide statistical and computationally feasible models
is conditional independence. This ensures that distributions factorize into smaller pieces
that can be evaluated separately and quickly.

2.1 Independence

Recall that two discrete variables X and Y are independent if

P (X = x, Y = y) = P (X = x) · P (Y = y) ∀x ∈ X , y ∈ Y.

Note that this is equivalent to

P (X = x |Y = y) = P (X = x) whenever P (Y = y) > 0, ∀x ∈ X .

In other words, knowing the value of Y gives us no information about the distribution of
X; we say that Y is irrelevant for X. Similarly, two variables with joint density fXY are
independent if

fXY (x, y) = fX(x) · fY (y) ∀x ∈ X , y ∈ Y.

The qualification that these expressions hold for all (x, y) ∈ X × Y, a product space, is
very important1, and sometimes forgotten.

Example 2.1. Suppose that X,W are independent Exponential(λ) random variables.
Define Y = X +W . Then the joint density of X and Y is

fXY (x, y) =

{
λ2e−λy if y > x > 0,
0 otherwise

.

Note that the expression within the valid range for x, y factorizes, so when performing the
usual change of variables one may mistakenly conclude that X and Y are independent.

2.2 Conditional Independence

Given random variables X,Y we denote the joint density p(x, y), and call

p(y) =

∫
X
p(x, y) dx.

the marginal density (of Y ). The conditional density of X given Y is defined as any
function p(x | y) such that

p(x, y) = p(y) · p(x | y).

Note that if p(y) > 0 then the solution is unique and given by the familiar expression

p(x | y) = p(x, y)

p(y)
.

1Of course, for continuous random variables densities are only defined up to a set of measure zero, so
the condition should really read ‘almost everywhere’. We will ignore such measure theoretic niceties in
this course.
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Definition 2.2. Let X,Y be random variables defined on a product space X × Y; let Z
be a third random variable, and let the joint density be p(x, y, z). We say that X and Y
are conditionally independent given Z if

p(x | y, z) = p(x | z), ∀x ∈ X , y ∈ Y, z ∈ Z such that p(y, z) > 0.

When this holds we write X ⊥⊥ Y | Z [p], possibly omitting the p for brevity.

In other words, once Z = z is known, the value of Y provides no additional information
that would allow us to predict or model X. If Z is degenerate—that is, there is some z
such that P (Z = z) = 1, then the definition above is the same as saying that X and Y
are independent. This is called marginal independence, and denoted X ⊥⊥ Y .

Example 2.3. LetX1, . . . , Xk be a Markov chain. ThenXk is independent ofX1, . . . , Xk−2

conditional upon Xk−1:

P (Xk = x | Xk−1 = xk−1, · · · , X1 = x1) = P (Xk = x | Xk−1 = xk−1)

for all x, xk−1, . . . , x1. That is, Xk ⊥⊥ X1, . . . , Xk−2 | Xk−1. This is known as the Markov
property, or memoryless property.

Although the definition of conditional independence appears to be asymmetric in X and
Y , in fact it is not: if X gives no additional information about Y then the reverse is also
true, as the following theorem shows.

Theorem 2.4. Let X,Y, Z be random variables on a Cartesian product space. The fol-
lowing are equivalent.

(i) p(x | y, z) = p(x | z) for all x, y, z such that p(y, z) > 0;

(ii) p(x, y | z) = p(x | z) · p(y | z) for all x, y, z such that p(z) > 0;

(iii) p(x, y, z) = p(y, z) · p(x | z) for all x, y, z;

(iv) p(z) · p(x, y, z) = p(x, z) · p(y, z) for all x, y, z;

(v) p(x, y, z) = f(x, z) · g(y, z) for some functions f, g and all x, y, z.

Proof. Note that p(y, z) > 0 implies p(z) > 0, so (i) =⇒ (ii) follows from multiplying by
p(y | z), and (ii) =⇒ (iii) by multiplying by p(z). (iii) =⇒ (i) directly.

The equivalence of (iii) and (iv) is also clear (note that if p(z) = 0 then both sides of (iii)
are 0), and (iii) implies (v). It remains to prove that (v) implies the others. Suppose that
(v) holds. Then

p(y, z) =

∫
p(x, y, z) dx = g(y, z)

∫
f(x, z) dx = g(y, z) · f̃(z).

If f̃(z) > 0 (which happens whenever p(z) > 0) we have

p(x, y, z) =
f(x, z)

f̃(z)
p(y, z).

But by definition f(x, z)/f̃(z) is p(x | y, z), and it does not depend upon y, so we obtain
(iii).
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Conditional independence is a complicated and often unintuitive notion, as the next ex-
ample illustrates.

Example 2.5 (Simpson’s Paradox). Below is a famous data set that records the races of
the victim and defendants in various murder cases in Florida between 1976 and 1987, and
whether or not the death penalty was imposed upon the killer. The data are presented as
counts, though we can turn this into an empirical probability distribution by dividing by
the total, 674.

Victim White Victim Black
Defendant White Black Defendant White Black

Yes 53 11 Yes 0 4
No 414 37 No 16 139

The marginal table has

Defendant White Black

Yes 53 15
No 430 176

Here we see that the chance of receiving a death sentence is approximately independent
of the defendant’s race. P (Death | White) = 53/(53 + 430) = 0.11, P (Death | Black) =
15/(15 + 176) = 0.08. (One could fiddle the numbers to obtain exact independence.)

However, restricting only to cases where the victim is white we see that black defendants
have nearly a 1/3 chance of receiving the death penalty, compared to about 1/8 for whites.
And for black victims the story is the same, a handful of blacks were were sentenced to
death while no white defendants were. (In fact we will see in Chapter 3.4 that this
conditional dependence is not statistically significant either, but for the purposes of this
discussion this doesn’t matter: we could multiply all the numbers by 10 and get a data
set in which the correlations are significant. For more on this data set, take a look at
Example 2.3.2 in the book Categorical Data Analysis by Agresti).

The previous example teaches us the valuable lesson that marginal independence does
not imply conditional independence (nor vice versa). More generally, conditioning on
additional things may result in dependence being induced. However, there are properties
that relate conditional independences, the most important of which are given in the next
theorem.

Theorem 2.6 (Graphoid Axioms). Conditional independence satisfies the following prop-
erties, sometimes called the graphoid axioms.

1. X ⊥⊥ Y | Z =⇒ Y ⊥⊥ X | Z;

2. X ⊥⊥ Y,W | Z =⇒ X ⊥⊥ Y | Z;

3. X ⊥⊥ Y,W | Z =⇒ X ⊥⊥W | Y,Z;

4. X ⊥⊥W | Y,Z and X ⊥⊥ Y | Z =⇒ X ⊥⊥ Y,W | Z;

5. if p(x, y, z, w) > 0, then X ⊥⊥W | Y,Z and X ⊥⊥ Y |W,Z =⇒ X ⊥⊥ Y,W | Z.
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These properties are sometimes referred to respectively as symmetry, decomposition, weak
union, contraction and intersection.

Proof. 1. Symmetry follows from Theorem 2.4

2. Starting from p(x, y, w | z) = p(x | z)p(y, w | z) and integrating out w gives p(x, y | z) =
p(x | z)p(y | z).

3. and 4: see Examples sheet.

5. By Theorem 2.4 we have p(x, y, w, z) = f(x, y, z)g(y, w, z) and p(x, y, w, z) = f̃(x,w, z)g̃(y, w, z).
By positivity, taking ratios shows that

f(x, y, z) =
f̃(x,w, z)g̃(y, w, z)

g(y, w, z)

=
f̃(x,w0, z)g̃(y, w0, z)

g(y, w0, z)

for any w0, since the LHS does not depend upon w; now we see that the right hand
side is a function of x, z times a function of y, z, so

f(x, y, z) = a(x, z) · b(y, z).

Plugging into the first expression gives the result.

Remark 2.7. Properties 2–4 can be combined into a single ‘chain rule’:

X ⊥⊥W | Y,Z and X ⊥⊥ Y | Z ⇐⇒ X ⊥⊥ Y,W | Z.

The fifth property is often extremely useful (as we shall see), but doesn’t generally hold if
the distribution is not positive: see the Examples Sheet.

Remark 2.8. Since the events {Y = y} and {Y = y, h(Y ) = h(y)} are equal for any
(measurable) function h, it follows that

p(x | y, z) = p(x | y, h(y), z).

This can be used to prove that

X ⊥⊥ Y | Z =⇒ X ⊥⊥ h(Y ) | Z and X ⊥⊥ Y | h(Y ), Z,

both of which are very useful facts.

2.3 Statistical Inference

Conditional independence crops up in various areas of statistics; here is an example that
should be familiar.

Example 2.9. Suppose that X ∼ fθ for some parameter θ ∈ Θ. We say that T ≡ t(X)
is a sufficient statistic for θ if the likelihood can be written as

L(θ | X = x) = fθ(x) = g(t(x), θ) · h(x).

Note that under a Bayesian interpretation of θ, this is equivalent to saying that X ⊥⊥ θ | T .
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Conditional independence can also give huge computational advantages for dealing with
complex distributions and large datasets. Take random variables X,Y, Z on a product
space with joint density

pθ(x, y, z) = gη(x, y) · hζ(y, z), ∀x, y, z, θ,

for some functions g, h, where θ = (η, ζ) is a Cartesian product.

Then suppose we wish to find the maximum likelihood estimate of θ; well this is just
θ̂ = (η̂, ζ̂) where

η̂ = argmax
η

n∏
i=1

gη(xi, yi), ζ̂ = argmax
ζ

n∏
i=1

hζ(yi, zi).

So we can maximize these two pieces separately. Notice in particular that we don’t need
all the data in either case!

If in a Bayesian mood, we might impose a prior π(η, ζ) = π(η)π(ζ). Then

π(η, ζ | x,y, z) ∝ π(η) · π(ζ) ·
∏
i

gη(xi, yi) · hζ(yi, zi)

=

{
π(η)

∏
i

gη(xi, yi)

}
·

{
π(ζ)

∏
i

hζ(yi, zi)

}
∝ π(η | x,y) · π(ζ | y, z).

Applying Theorem 2.4(ii) we see that η ⊥⊥ ζ | X,Y ,Z, and so we can perform inference
about this distribution for the two pieces separately (e.g. by running an MCMC procedure
or finding the posterior mode).

Indeed, each piece only requires part of the data, and for large problems this can be a
tremendous computational saving.
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3 Exponential Families and Contingency Tables

For much of the rest of the course we will be dealing with collections of random variables
XV ≡ (Xv : v ∈ V ), indexed by a set V = {1, . . . , p}. Each Xv takes values in the set Xv.
For a subset of the variables A ⊆ V , we write XA to denote (Xv : v ∈ A).

3.1 Exponential Families

Let p(·; θ) be a collection of probability densities over X indexed by θ ∈ Θ. We say that
p is an exponential family if it can be written as

p(x; θ) = exp

{∑
i

θiϕi(x)−A(θ)− C(x)

}
.

If Θ is a non-empty open set then the family is said to be regular. The functions ϕi are
the sufficient statistics, and the components θi are called the canonical parameters (or
natural parameters). We can replace the sum with an inner product of vectors θ = (θi)
and ϕ = (ϕi(x)):

p(x; θ) = exp {⟨θ, ϕ(x)⟩ −A(θ)− C(x)} .

The function A(θ) is the cumulant function, and must be chosen so that the distribution
normalizes, i.e.

A(θ) = log

∫
exp {⟨θ, ϕ(x)⟩ − C(x)} dx.

Z(θ) ≡ eA(θ) is also called the partition function.

Lemma 3.1. We have

∇A(θ) = Eθϕ(X), ∇∇TA(θ) = Covθ ϕ(X).

Consequently A(θ) (and − log p(x; θ)) are convex in θ. In addition, the map µ(θ) : θ 7→
∇A(θ) is bijective, and called the mean function.

Proof. For the first part,

eA(θ)
∂

∂θi
A(θ) =

∂

∂θi
eA(θ)

=
∂

∂θi

∫
exp {⟨θ, ϕ(x)⟩ − C(x)} dx

=

∫
∂

∂θi
exp {⟨θ, ϕ(x)⟩ − C(x)} dx

=

∫
ϕi(x) exp {⟨θ, ϕ(x)⟩ − C(x)} dx

= eA(θ)
∫
ϕi(x) exp {⟨θ, ϕ(x)⟩ −A(θ)− C(x)} dx

= eA(θ)Eθϕi(X).

The result for the Hessian follows similarly. The convexity of − log p(x; θ) = A(θ) −
⟨θ, ϕ(x)⟩ is now immediate from the fact that its Hessian is a non-negative definite matrix.
That µ(θ) is bijective requires strict convexity; i.e. that the Hessian is positive definite.
This follows from a slight extension to the above (see the book by Wainwright and Jordan,
Proposition 3.1).
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The property of convexity plays an important role in the computational advantages of
exponential families. Convex functions are easy to work with for the purposes of opti-
mization: in particular, they do not contain multiple local minima.

Example 3.2. Let X ∼ Poisson(λ). We have

pλ(x) = e−λ
λx

x!
=

1

x!
exp {x log λ− λ} .

Clearly the canonical parameter is θ = log λ, so we can rewrite as

pθ(x) =
1

x!
exp

{
θx− eθ

}
,

giving A(θ) = eθ (which is convex, as expected). Note that A′(θ) = A′′(θ) = eθ = λ, which
is indeed the mean and variance of a Poisson distribution.

3.2 Empirical Moment Matching

To find the maximum likelihood estimate in an exponential family, we maximize the log-
likelihood (ignoring C, since it is constant in θ)

l(θ;X(1), . . . , X(n)) =

〈
n∑
i=1

ϕ(X(i)), θ

〉
− nA(θ)

n−1l(θ;X(1), . . . , X(n)) = ⟨ϕ(X), θ⟩ −A(θ)

where ϕ(X) = n−1
∑

i ϕ(X
(i)) is the sample mean of the sufficient statistics. To maximize

this, we can differentiate and set to zero, obtaining

ϕ(X)−∇A(θ) = 0,

so in other words when we choose θ so that Eθϕ(X) = ϕ(X): the mean of the sufficient
statistics matches the empirical mean from the data.

Note also that if we differentiate just with respect to θi, we obtain the same result for
each sufficient statistic separately; hence if we update the parameters to match the mo-
ment ϕi(X) = Eθϕi(X), then we increase the log-likelihood. If we iterate this over i, we
will converge to the global maximum likelihood estimate, because the log-likelihood is a
(strictly) concave and differentiable function.

3.3 Multivariate Gaussian Distribution

Let XV = (X1, . . . , Xp)
T ∈ Rp be a random vector. Let µ ∈ Rp and Σ ∈ Rp×p be a positive

definite symmetric matrix. We say that XV has a multivariate Gaussian distribution
with parameters µ and Σ if the joint density is

f(xV ) =
1

(2π)p/2|Σ|1/2
exp

{
−1

2
(xV − µ)TΣ−1(xV − µ)

}
, xV ∈ Rp.

This is also called the multivariate normal distribution. The concentration matrix is
K ≡ Σ−1.
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We can rewrite this as

f(xV ) =
1

(2π)p/2
exp

{
−1

2
xTVKxV + µTKxV −

1

2
µTKµ+

1

2
log |K|

}
, xV ∈ Rp.

Noting that xTVKxV =
∑

i,j kijxixj we see that this is an exponential family with canonical

parameters K and η ≡ −Kµ, and sufficient statistics ϕ(xV ) = (xV ,−1
2xV x

T
V ).

We then obtain that 2A(θ) = 2A(K, η) = ηTK−1η − log |K|, which by differentiating2,
gives

∇ηA(θ) = K−1η = µ

2∇KA(θ) = −K−1 −K−1ηηTK−1 = −Σ− µµT ,

and these are indeed the expectations of the sufficient statistics. By the previous observa-
tion that maximum likelihood estimation corresponds to moment matching for exponential

families, this means that the MLEs are µ̂ = XV and Σ̂ = XVX ′
V −XVX

T
V .

Proposition 3.3. Let XV have a multivariate Gaussian distribution with concentration
matrix K = Σ−1. Then Xi ⊥⊥ Xj | XV \{i,j} if and only if kij = 0, where kij is the
corresponding entry in the concentration matrix.

Proof. The log-density is

log f(xV ) = −
1

2
(xV − µ)TK(xV − µ) + const

where the constant term does not depend upon xV . It is clear that the only term involving
both xi and xj is −kij(xi − µi)(xj − µj). Hence, kij = 0 if and only if the log-density has
separate terms for each of xi and xj .

We will return to the multivariate Gaussian distribution in Chapter 5.

3.4 Contingency Tables

In this section we will assume that our variables Xv are discrete with a finite set of
levels Xv ≡ {1, . . . , dv}. Though we use integers as labels, they can represent something
completely arbitrary and unordered such as religion, social preference, or a car model.

Given a vector of these categories X
(i)
V = (X

(i)
1 , . . . , X

(i)
p ) sampled over individuals i =

1, . . . , n, it is helpful to cross-tabulate their responses. Define:

n(xV ) ≡
n∑
i=1

1{X(i)
1 = x1, . . . , X

(i)
p = xp},

i.e. the number of individuals who have the response pattern xV . These counts are the
sufficient statistics for a multinomial model, whose log-likelihood is

l(p;n) =
∑
xV

n(xV ) log p(xV ), p(xV ) ≥ 0,
∑
xV

p(xV ) = 1

2Here I use matrix calculus, see for example, “The Matrix Cookbook”, available here (though note this
is not examinable!): https://www.math.uwaterloo.ca/~hwolkowi/matrixcookbook.pdf
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Letting 0V mean the vector of zeros, we can rewrite this as

l(p;n) =
∑

xV ̸=0V

n(xV ) log p(xV )/p(0V ) + n log p(0V ),

We immediately obtain that the multinomial distribution is an exponential family with
sufficient statistics given by the counts n(xV ), and canonical parameters given by the
ratios of log-probabilities. The cumulant function is − log p(0V ), but it should be written
as a function of the canonical parameters; you can check that this gives

− log p(0V ) = log

1 +
∑

xV ̸=0V

eθ(xV )


for θ(xV ) = log p(xV )/p(0V ), which is convex. Note that canonical parameters are only
unique up to linear transformations; in particular, we could have used a different reference
value. We will use an alternative parameterization below.

Each possibility xV is called a cell of the table. Given a subset of the responses A ⊆ V
we may be interested in the marginal table:

n(xA) ≡
∑
xB

n(xA, xB),

where B = V \A.

Example 3.4. Consider the death penalty data again:

Victim White Victim Black
Defendant White Black Defendant White Black

Yes 53 11 Yes 0 4
No 414 37 No 16 139

The marginal table has

Defendant White Black

Yes 53 15
No 430 176

3.5 Computation

As noted in the introduction, even a moderately sized contingency table will cause statisti-
cal problems in practice due to the curse of dimensionality. If we have k binary variables,
then the contingency table will have 2k cells. Even for k = 10 we will have over a thousand
possibilities, and for k = 50 there are too many to cells to store in a computer’s memory.

Conditional independence can help, however; suppose that XA ⊥⊥ XB | XS for some
A ∪B ∪ S = V , so that we have

p(xV ) = p(xS) · p(xA | xS) · p(xB | xS).

Now we can store each of these factors in computer memory separately, which means
2s + 2a+s + 2b+s = 2s(1 + 2a + 2b) cells instead of 2s+a+b. This is a considerable saving
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if s is small and the minimum of a and b is not too small. With respect to calculations,
if we want to find P (Xv = 1) and v ∈ A, then we need only sum over the 2s+a entries in
p(xS) · p(xA | xS) rather than the 2a+b+s entries in p(xV ).

Of course, if there are other conditional independences present then one might imagine
that further computational savings become possible: indeed this is correct, and is one of
the main ideas behind graphical models.

3.6 Log-linear models

The log-linear parameters for p(xV ) > 0 are defined by the relation

log p(xV ) =
∑
A⊆V

λA(xA)

= λ∅ + λ1(x1) + · · ·+ λV (xV ),

and the identifiability constraint λA(xA) = 0 whenever xa = 1 for some a ∈ A. (Other
identifiability constraints can also be used.)

In the case of binary variables (that is, each variable takes only two states, dv = 2,
Xv = {1, 2}), there is only one possibly non-zero level for each log-linear parameter λA(xA),
which is when xA = (2, . . . , 2). In this case we will simply write λA = λA(2, . . . , 2). We
will proceed under this assumption from now on.

Example 3.5. Consider a 2 × 2 table with probabilities πij = P (X = i, Y = j). The
log-linear parametrization has

log π11 = λ∅ log π21 = λ∅ + λX

log π12 = λ∅ + λY log π22 = λ∅ + λX + λY + λXY .

From this we can deduce that

λXY = log
π11π22
π21π12

.

The quantity expλXY is called the odds ratio between X and Y , and is a fundamental
quantity in statistical inference.

Multinomial models can be fitted as Poisson GLMs using the following fact:

Proposition 3.6. Let Xi ∼ Poisson(µi) independently, and let N =
∑k

i=1Xi. Then,

N ∼ Poisson (
∑

iµi)

(X1, . . . , Xk)
T | N = n ∼ Multinom(n, (π1, . . . , πk)

T ),

where πi = µi/
∑

j µj.

3.7 Conditional Independence

Log-linear parameters provide a convenient way of expressing conditional independence
constraints, since factorization of a density is equivalent to an additive separation of the
log-density.
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Theorem 3.7. Let p > 0 be a discrete distribution on XV with associated log-linear
parameters λC , C ⊆ V . The conditional independence Xa ⊥⊥ Xb | XV \{a,b} holds if and
only if λC = 0 for all {a, b} ⊆ C ⊆ V .

Proof. See examples sheet.

If there is a conditional independence, then the log-linear parameters can be calculated by
just looking at the distribution of each ‘piece’ of the conditional independence separately.
For example, suppose that XA ⊥⊥ XB | XC , where A∪B ∪C = V . Then by Theorem 2.4,
we have

p(xC) · p(xA, xB, xC) = p(xA, xC) · p(xB, xC),

and hence

log p(xA, xB, xC) = log p(xA, xC) + log p(xB, xC)− log p(xC).

Then applying the log-linear expansions to each term, we get∑
W⊆V

λW (xW ) =
∑

W⊆A∪C
λACW (xW ) +

∑
W⊆B∪C

λBCW (xW )−
∑
W⊆C

λCW (xW ),

where λBC By equating terms we can see that

λW (xW ) = λACW (xW ) for any W ⊆ A ∪ C with W ∩A ̸= ∅
λW (xW ) = λBCW (xW ) for any W ⊆ B ∪ C with W ∩B ̸= ∅
λW (xW ) = λACW (xW ) + λBCW (xW )− λCW (xW ) for any W ⊆ C.

So under this conditional independence, the log-linear parameters for p(xV ) are easily
obtainable from those for p(xA, xC) and p(xB, xC).

Example 3.8. Let us now try applying this to our death penalty dataset using R. The
file deathpen.txt is available on the class website.

> df <- read.table("deathpen.txt", header=TRUE)

> df

DeathPen Defendant Victim freq

1 Yes White White 53

2 No White White 414

3 Yes Black White 11

4 No Black White 37

5 Yes White Black 0

6 No White Black 16

7 Yes Black Black 4

8 No Black Black 139

We can fit log-linear models using the glm() command with a Poisson response. This
gives the model DeathPen ⊥⊥ Defendant | Victim.
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> mod1 <- glm(freq ~ DeathPen*Victim + Defendant*Victim,

+ family=poisson, data=df)

> summary(mod1)$coefficients

The output (edited for brevity) is:

Coefficients:

Estimate Std. Error z value Pr(>|z|)

(Intercept) 4.0610 0.1258 32.283 < 2e-16 ***

DeathPenNo 1.9526 0.1336 14.618 < 2e-16 ***

VictimBlack -4.9711 0.5675 -8.760 < 2e-16 ***

DefendantBlack -2.2751 0.1516 -15.010 < 2e-16 ***

DeathPenNo:VictimBlack 1.7045 0.5237 3.255 0.00114 **

VictimBlack:DefendantBlack 4.4654 0.3041 14.685 < 2e-16 ***

We can verify that the coefficient of Victim-Defendant is the same as the marginal log
odds-ratio between those two variables by fitting a model that ignores whether or not the
death penalty was administered:

> mod2 <- glm(freq ~ Defendant*Victim,

+ family=poisson, data=df)

> summary(mod2)$coefficients

Estimate Std. Error z value Pr(>|z|)

(Intercept) 5.45318 0.04627 117.84 <2e-16 ***

DefendantBlack -2.27513 0.15157 -15.01 <2e-16 ***

VictimBlack -3.37374 0.25423 -13.27 <2e-16 ***

DefendantBlack:VictimBlack 4.46538 0.30407 14.69 <2e-16 ***

Note that the parameter estimates relating to the Defendant’s race (and their standard
errors) are the same as in the larger model.

It is perhaps easier just to recover the predicted counts under the model:

> count1 <- predict(mod1, type="response")

> count1

1 2 3 4 5 6 7 8

58.035 408.965 5.965 42.035 0.403 15.597 3.597 139.403

Compare these to the actual counts: a goodness of fit test can be performed by using
Pearson’s χ2 test or (almost equivalently) by looking at the residual deviance of the model.
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4 Undirected Graphical Models

Conditional independence is, in general, a rather complicated object. In fact, one can
derive a countably infinite number of properties like those in Theorem 2.6 to try to describe
it. Graphical models are a class of conditional independence models with particularly nice
properties. In this section we introduce undirected graphical models.

4.1 Undirected Graphs

Definition 4.1. Let V be a finite set. An undirected graph G is a pair (V,E) where:

� V are the vertices;

� E ⊆ {{i, j} : i, j ∈ V, i ̸= j} is a set of unordered distinct pairs of V , called edges.

We represent graphs by drawing the vertices (also called nodes) and then joining pairs of
vertices by a line if there is an edge between them.

Example 4.2. The graph in Figure 4.1(a) has five vertices and six edges:

V = {1, 2, 3, 4, 5};
E = {{1, 2}, {1, 3}, {2, 3}, {3, 4}, {3, 5}, {4, 5}}.

We write i ∼ j if {i, j} ∈ E, and say that i and j are adjacent in the graph. The vertices
adjacent to i are called the neighbours of i, and the set of neighbours is often called the
boundary of i and denoted bdG(i).

A path in a graph is a sequence of adjacent vertices, without repetition. For example,
1 − 2 − 3 − 5 is a path in the graph in Figure 4.1(a). However 3 − 1 − 2 − 3 − 4 is not a
path, since the vertex 3 appears twice. The length of a path is the number of edges in it.
There is trivially a path of length zero from each vertex to itself.

Definition 4.3 (Separation). Let A,B, S ⊆ V . We say that A and B are separated by S
in G (and write A ⊥s B | S [G]) if every path from any a ∈ A to any b ∈ B contains at
least one vertex in S.

For example, {1, 2} is separated from {5} by {3} in Figure 4.1(a).

Note that there is no need for A,B, S to be disjoint for the definition to make sense,
though in practice this is usually assumed.

Given a subset of verticesW ⊆ V , we define the induced subgraph GW of G to be the graph
with vertices W , and all edges from G whose endpoints are contained in W . For example,
the induced subgraph of Figure 4.1(a) over {2, 3, 5} is the graph 2− 3− 5.

We remark that A and B are separated by S (where S ∩A = S ∩B = ∅) if and only if A
and B are separated by ∅ in GV \S .

4.2 Markov Properties

A graphical model is a statistical model based on the structure of a graph. We associate
each vertex v with a random variable Xv, and infer structure (a model) on the joint
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Figure 4.1: Two undirected graphs.
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Figure 4.2: An undirected graph.

distribution of the random variables from the structure of the graph. In all the examples
we consider, the model will be defined by conditional independences arising from missing
edges in the graph.

Definition 4.4. Let G be a graph with vertices V , and let p be a probability distribution
over the random variables XV . We say that p satisfies the pairwise Markov property for
G if

i ̸∼ j in G =⇒ Xi ⊥⊥ Xj | XV \{i,j} [p].

In other words, whenever an edge is missing in G there is a corresponding conditional
independence in p.

Example 4.5. Looking at the graph in Figure 4.2, we see that there are two missing
edges, {1, 4} and {2, 4}. Therefore a distribution obeys the pairwise Markov property for
this graph if and only if X1 ⊥⊥ X4 | X2, X3 and X2 ⊥⊥ X4 | X1, X3.

Note that, if the distribution is positive then we can apply Property 5 of Theorem 2.6 to
obtain that X1, X2 ⊥⊥ X4 | X3.

The word ‘Markov’ is used by analogy with Markov chains, in which a similar independence
structure is observed. In fact, undirected graph models are often called Markov random
fields or Markov networks in the machine learning literature.

Definition 4.6. We say that p satisfies the global Markov property for G if for any disjoint
sets A,B, S

A ⊥s B | S in G =⇒ XA ⊥⊥ XB | XS [p].

In other words, whenever a separation is present in G there is a corresponding conditional
independence in p.
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Proposition 4.7. The global Markov property implies the pairwise Markov property.

Proof. If i ̸∼ j then clearly any path from i to j first visits a vertex in V \ {i, j}. Hence
V \ {i, j} separates i and j.

We will shortly see that the pairwise property ‘almost’ implies the global property.

It is common, though a pet peeve of your lecturer, to confuse a ‘graph’ with a ‘graphical
model’. A graph is—as should now be clear from the definitions above—a purely mathe-
matical (as opposed to statistical) object; a graphical model is a statistical model that is
based on the structure of a graph.

4.3 Cliques and Factorization

The pairwise Markov property implies a conditional independence involving all the vari-
ables represented in a graph for each edge that is missing from the graph; from Theorem 2.4
it is therefore a factorization on the joint distribution. A natural question is whether these
separate factorizations can be combined into a single constraint on the joint distribution;
in this section we show that they can, at least for positive distributions.

Definition 4.8. Let G be a graph with vertices V . We say C is complete if i ∼ j for every
i, j ∈ C. A maximal complete set is called a clique. We will denote the set of cliques in a
graph by C(G).

The cliques of Figure 4.1(a) are {1, 2, 3} and {3, 4, 5}, and the complete sets are any subsets
of these vertices. Note that {v} is trivially complete in any graph.

The graph in Figure 4.1(b) has cliques {1, 2}, {2, 3}, {3, 4} and {1, 4}.

Definition 4.9. Let G be a graph with vertices V . We say a distribution with density p
factorizes according to G if

p(xV ) =
∏

C∈C(G)

ψC(xC) (1)

for some functions ψC . The functions ψC are called potentials.

Recalling Theorem 2.4, it is clear that this factorization implies conditional independence
constraints. In fact, it implies those conditional independence statements given by the
global Markov property.

Theorem 4.10. If p(xV ) factorizes according to G, then p obeys the global Markov property
with respect to G.

Proof. Suppose that S separates A and B in G. Let Ã be the set of vertices that are
connected to A by paths in GV \S ; in particular, B ∩ Ã = ∅. Let B̃ = V \ (Ã ∪ S), so that

Ã and B̃ are separated by S, V = Ã ∪ B̃ ∪ S, and A ⊆ Ã, B ⊆ B̃.

Every clique in G must be a subset of either Ã ∪ S or B̃ ∪ S, since there are no edges
between Ã and B̃. Hence we can write∏

C∈C
ψC(xC) =

∏
C∈CA

ψC(xC) ·
∏
C∈CB

ψC(xC)

= f(xÃ, xS) · f(xB̃, xS).
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and hence XÃ ⊥⊥ XB̃ | XS . Then applying property 2 of Theorem 2.6 gives XA ⊥⊥ XB |
XS .

Theorem 4.11 (Hammersley-Clifford Theorem). If p(xV ) > 0 obeys the pairwise Markov
property with respect to G, then p factorizes according to G.

The proof of this is omitted, but if of interest it can be found in Lauritzen’s book.

We can now summarize our Markov properties as follows:

factorization =⇒ global Markov property =⇒ pairwise Markov property,

and if p is positive, then we also have

pairwise Markov property =⇒ factorization,

so all three are equivalent. The result is not true in general if p is not strictly positive.

Example 4.12. Let X3 and X4 be independent Bernoulli variables with P (X3 = 1) =
P (X4 = 1) = 1

2 , and P (X1 = X2 = X4) = 1. Then X4 ⊥⊥ X1 | X2, X3 and X4 ⊥⊥ X2 |
X1, X3, but X4 ̸⊥⊥ X1, X2 | X3.

Hence, P satisfies the pairwise Markov property with respect to Figure 4.2, but not the
global Markov property.

It is important to note that one can define models of the form (1) that are not graphical,
if the sets C do not correspond to the cliques of a graph. See the Examples Sheet.

4.4 Decomposability

Given the discussion in Section 2.3 we might wonder whether we can always perform
inference on cliques separately in graphical models? The answer turns out to be that, in
general, we can’t—at least not without being more careful. However, for a particularly
important subclass known as decomposable models, we can.

Definition 4.13. Let G be an undirected graph with vertices V = A ∪ S ∪ B, where
A,B, S are disjoint sets. We say that (A,S,B) constitutes a decomposition of G if:

� GS is complete;

� A and B are separated by S in G.

If A and B are both non-empty we say the decomposition is proper.

Example 4.14. Consider the graph in Figure 4.1(a). Here {1, 2} is separated from {4, 5}
by {3}, and {3} is trivially complete so ({1, 2}, {3}, {4, 5}) is a decomposition. Note that
({2}, {1, 3}, {4, 5}) is also a decomposition, for example. We say that a decomposition is
minimal if there is no subset of S that can be used to separate (some supersets of) A and
B.

The graph in Figure 4.1(b) cannot be decomposed, since the only possible separating
sets are {1, 3} and {2, 4}, which are not complete. A graph which cannot be (properly)
decomposed is called prime.
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Figure 4.3: Left: a decomposable graph. Right: the results of a possible decomposition of
the graph, ({1, 2}, {3, 4}, {5, 6}).

Definition 4.15. Let G be a graph. We say that G is decomposable if it is complete, or
there is a proper decomposition (A,S,B) and both GA∪S and GB∪S are also decomposable.

The graph in Figure 4.1(a) is decomposable, because using the decomposition ({1, 2}, {3}, {4, 5})
we can see that G{1,2,3} and G{3,4,5} are complete (and therefore decomposable by defini-
tion).

The graph in Figure 4.3 can be decomposed as shown, into G{1,2,3,4} and G{3,4,5,6}, both
of which are themselves decomposable.

Definition 4.16. Let C be a collection of subsets of V . We say that the sets C satisfy
the running intersection property if there is an ordering C1, . . . , Ck, such that for every
j = 2, . . . , k there exists σ(j) < j with

Cj ∩
j−1⋃
i=1

Ci = Cj ∩ Cσ(j).

In other words, the intersection of each set with all the previously seen objects is contained
in a single set.

Example 4.17. The sets {1, 2, 3}, {3, 4}, {2, 3, 5}, {3, 5, 6} satisfy the running intersection
property, under that ordering.

The sets {1, 2}, {2, 3}, {3, 4}, {1, 4} cannot be ordered in such a way.

Proposition 4.18. If C1, . . . , Ck satisfy the running intersection property, then there is
a graph whose cliques are precisely (the inclusion maximal elements of) C = {C1, . . . , Ck}.

Proof. This is left as an exercise for the interested reader.

Definition 4.19. Let G be an undirected graph. A cycle is a sequence of vertices
⟨v1, . . . , vk⟩ for k ≥ 3, such that there is a path v1 − · · · − vk and an edge vk − v1.

A chord on a cycle is any edge between two vertices not adjacent on the cycle. We say that
a graph is chordal or triangulated if whenever there is a cycle of length ≥ 4, it contains a
chord.

Beware of taking the word ‘triangulated’ at face value: the graph in Figure 4.4(b) is not
triangulated because of the cycle 1− 2− 5− 4, which contains no chords.
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Figure 4.4: Two undirected graphs: (a) is chordal, (b) is not.

Theorem 4.20. Let G be an undirected graph. The following are equivalent:

(i) G is decomposable;

(ii) G is triangulated;

(iii) every minimal a, b-separator is complete;

(iv) the cliques of G satisfy the running intersection property, starting with C.

Proof. (i) =⇒ (ii). We proceed by induction on p, the number of vertices in the graph.
Let G be decomposable; if it is complete then it is clearly triangulated, so the result holds
for p = 1. Otherwise, let (A,S,B) be a proper decomposition, so that GA∪S and GB∪S
are both have strictly fewer vertices and are decomposable. By the induction hypothesis,
there are no chordless cycles entirely contained in A∪ S or B ∪ S, so any such cycle must
contain a vertex a ∈ A and b ∈ B. Then the cycle must pass through S twice, and since
S is complete this means there is a chord on the cycle.

(ii) =⇒ (iii). Suppose there is a minimal a, b-separator, say S, which is not complete;
let s1, s2 ∈ S be non-adjacent. Since the separator is minimal there is a path π1 from a
to b via s1 ∈ S, and another path π2 from a to b via s2 ∈ S, and neither of these paths
intersects any other element of S. By concatenating the paths we obtain a closed walk;
by shrinking the end of the paths to any vertices which are common to both we obtain
a cycle. Make the cycle of minimal length by traversing chords, and we end up with a
chordless cycle of length ≥ 4.

(iii) =⇒ (iv). If the graph is complete there is nothing to prove, otherwise pick a, b not
adjacent and let S be a minimal separator. As in Theorem 4.10, let Ã be the connected
component of a in GV \S , and B̃ the rest. Then apply the result by induction to the strictly
smaller graphs GÃ∪S and GB̃∪S . Then claim that this gives a series of cliques that satisfies
the RIP. [See Examples Sheet 2.]

(iv) =⇒ (i). We proceed by induction, on the number of cliques. If k = 1 there is nothing
to prove. Let Hk−1 = C1 ∪ · · · ∪ Ck−1, Sk = Ck ∩Hk−1, and Rk = Ck \ Sk; we claim that
(Hk−1 \Sk, Sk, Rk) is a proper decomposition, and that the graph GHk−1

has k− 1 cliques
that also satisfy the running intersection property.

Corollary 4.21. Let G be decomposable and (A,S,B) be a proper decomposition. Then
GA∪S and GB∪S are also decomposable.

Proof. If G is triangulated then so are any induced subgraphs of G.
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This corollary reassures us that to check if a graph is decomposable we can just go ahead
and start decomposing, and we will never have to ‘back track’.

Definition 4.22. A forest is a graph that contains no cycles. If a forest is connected we
call it a tree.

All forests (and hence trees) are decomposable, since they are clearly triangulated. In fact,
the relationship between trees and connected decomposable graphs is more fundamental
than this. Decomposable graphs are ‘tree-like’, in a sense we will make precise later in the
course (Section 7). This turns out to be extremely useful for computational reasons.

4.5 Separator Sets

Let G be a decomposable graph, and let C1, . . . , Ck be an ordering of the cliques which
satisfies running intersection. Define the jth separator set for j ≥ 2 as

Sj ≡ Cj ∩
j−1⋃
i=1

Ci = Cj ∩ Cσ(j).

By convention S1 = ∅.
Lemma 4.23. Let G be a graph with decomposition (A,S,B), and let p be a distribu-
tion; then p factorizes with respect to G if and only if its marginals p(xA∪S) and p(xB∪S)
factorize according to GA∪S and GB∪S respectively, and

p(xV ) · p(xS) = p(xA∪S) · p(xB∪S). (2)

Proof. Note that, as observed in the proof of Theorem 4.10, every clique in GA∪S is a
(subset of a) clique in G. Hence if (2) and the factorizations with respect to those subgraphs
hold, then we can see that p factorizes with respect to G.

Now suppose that p factorizes with respect to G, and note that this implies that p obeys the
global Markov property with respect to G. From the decomposition, we have A ⊥s B | S
in G, and so by the global Markov property applied to G we obtain the independence XA ⊥⊥
XB | XS [p]; this gives us the equation (2) by Theorem 2.4. Since this is a decomposition,
all cliques of G are contained either within A∪S or B ∪S (or both). Let A be the cliques
contained in A ∪ S, and B the rest.

Then p(xV ) =
∏
C∈A ψC(xC) ·

∏
C∈B ψC(xC) = h(xA, xS) · k(xB, xS). Substituting p(xV )

into (2) and integrating both sides with respect to xA gives

p(xS) · k(xB, xS)
∫
h(xA, xS) dxA = p(xS) · p(xB, xS)

p(xS) · k(xB, xS) · h̃(xS) = p(xS) · p(xB, xS),

which shows that p(xB, xS) = ψ′
S(xS)

∏
C∈B ψC as required.

Theorem 4.24. Let G be a decomposable graph with cliques C1, . . . , Ck. Then p factorizes
with respect to G if and only if

p(xV ) =

k∏
i=1

p(xCi\Si
| xSi) =

k∏
i=1

p(xCi)

p(xSi)
.

Further, the quantities p(xCi\Si
| xSi) are variation independent (i.e. they may jointly take

any set of values that would be valid individually), so inference for p(xV ) can be based on
separate inferences for each p(xCi).
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Proof. If p factorizes in the manner suggested then it satisfies the factorization property
for G.

For the converse we proceed by induction on k. If k = 1 the result is trivial. Otherwise,
let Hk−1 ≡

⋃
i<k Ci, and note that Ck \ Sk is separated from Hk−1 \ Sk by Sk, so we have

a decomposition (Hk−1 \ Sk, Sk, Ck \ Sk), and hence applying Lemma 4.23,

p(xSk
) · p(xV ) = p(xCk

) · p(xHk−1
)

where p(xHk−1
) factorizes according to GHk−1

. This is the graph with cliques C1, . . . , Ck−1,
which trivially also satisfy running intersection. Hence, by the induction hypothesis

p(xSk
) · p(xV ) = p(xCk

) ·
k−1∏
i=1

p(xCi)

p(xSi)
,

giving the required result.

The variation independence follows from the fact that p(xCk\Sk
| xSk

) can take the form
of any valid probability distribution.

This result is extremely useful for statistical inference, since we only need to consider the
margins of variables corresponding to cliques. Suppose we have a contingency table with
counts n(xV ). The likelihood for a decomposable graph is

l(p;n) =
∑
xV

n(xV ) log p(xV )

=
∑
xV

n(xV )
k∑
i=1

log p(xCi\Si
| xSi)

=
k∑
i=1

∑
xCi

n(xCi) log p(xCi\Si
| xSi),

so inference about p(xCi\Si
| xSi) should be based entirely upon n(xCi). Using Lagrange

multipliers (see also Sheet 0, Question 4) we can see that the likelihood is maximized by
choosing

p̂(xCi\Si
| xSi) =

n(xCi)

n(xSi)
, i.e. p̂(xCi) =

n(xCi)

n
,

using the empirical distribution for each clique.

4.6 Non-Decomposable Models

It would be natural to ask at this point whether the closed-form results for decomposable
models also hold for general undirected graph models; unfortunately they do not. However,
from our discussion about exponential families we can say the following:

Theorem 4.25. Let G be an undirected graph, and suppose we have counts n(xV ). Then
the maximum likelihood estimate p̂ under the set of distributions that are Markov to G is
the unique element in which

n · p̂(xC) = n(xC).
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Figure 4.5: (a) A non-decomposable graph and (b) one possible triangulation of it.

The iterative proportional fitting (IPF) algorithm, also sometimes called the iterative pro-
portional scaling (IPS) algorithm, starts with a discrete distribution that satisfies the
Markov property for the graph G (usually we pick the uniform distribution, so that every-
thing is independent), and then iteratively fixes each margin p(xC) to match the required
distribution using the update step:

p(t+1)(xV ) = p(t)(xV ) ·
p(xC)

p(t)(xC)
(3)

= p(t)(xV \C | xC) · p(xC).

Note that this is closely related to the message passing algorithm in Section 7.

Algorithm 1 Iterative Proportional Fitting (IPF) algorithm.

function IPF(collection of consistent margins q(xCi) for sets C1, . . . , Ck)
set p(xV ) to uniform distribution;
while maximaxxCi

|p(xCi)− q(xCi)| > tol do
for i in 1, . . . , k do

update p(xV ) to p(xV \Ci
| xCi) · q(xCi);

end for
end while
return distribution p with margins p(xCi) = q(xCi).

end function

The sequence of distributions in IPF converges to the MLE p̂(xV ). To see this, first
note that the update (3) ensures that the moments for the sufficient statistics involving
the clique C are matched. Second, after each update step the joint distribution remains
Markov with respect to G: this can be seen easily by considering the factorization. Per-
forming each step increases the likelihood, and since the log-likelihood is strictly concave,
this sort of co-ordinate based iterative updating scheme will converge to the global maxi-
mum.

Example 4.26. Consider the 4-cycle in Figure 4.5(a), with cliques {1, 2}, {2, 3}, {3, 4}, {1, 4}.

Suppose we have data from n = 96 observations as shown in the table below (the column
‘count’).
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X1 X2 X3 X4 count step 0 step 1 step 2 step 3 step 4 n̂
0 0 0 0 5 6 7.5 13 13 12.59 12.6
1 0 0 0 10 6 3.75 6.5 6.5 6.97 6.95
0 1 0 0 20 6 9.25 11.97 11.97 11.59 11.58
1 1 0 0 1 6 3.5 4.53 4.53 4.86 4.87
0 0 1 0 0 6 7.5 2 1.17 1.13 1.13
1 0 1 0 3 6 3.75 1 0.58 0.63 0.63
0 1 1 0 4 6 9.25 6.53 3.81 3.69 3.69
1 1 1 0 0 6 3.5 2.47 1.44 1.55 1.55
0 0 0 1 24 6 7.5 13 13 13.33 13.35
1 0 0 1 0 6 3.75 6.5 6.5 6.11 6.1
0 1 0 1 9 6 9.25 11.97 11.97 12.28 12.27
1 1 0 1 3 6 3.5 4.53 4.53 4.26 4.28
0 0 1 1 1 6 7.5 2 2.83 2.91 2.91
1 0 1 1 2 6 3.75 1 1.42 1.33 1.33
0 1 1 1 4 6 9.25 6.53 9.25 9.49 9.46
1 1 1 1 10 6 3.5 2.47 3.5 3.29 3.3

The marginals over the cliques are:

n(x12) X2 = 0 1

X1 = 0 30 37
1 15 14

n(x23) X3 = 0 1

X2 = 0 39 6
1 33 18

n(x34) X4 = 0 1

X3 = 0 36 36
1 7 17

n(x14) X4 = 0 1

X1 = 0 29 38
1 14 15

To implement IPF, we start with a uniform table, given in the column ‘step 0’. We then
scale the entries so as to match the X1, X2 margin above. For instance, the four entries
corresponding to X1 = X2 = 0 are scaled to add up to 30; this gives the column ‘step
1’. This is repeated for each of the other cliques, giving steps 2–4. By the fourth step
the distribution of all cliques has been updated, but note that the margin over X1, X2 is
now 29.96, 15.04, 37.04, 13.96. We keep cycling until the process converges to the final
column, which matches all four margins.
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5 Gaussian Graphical Models

Recall that XV has a multivariate Gaussian distribution with parameters µ and Σ if
the joint density is

f(xV ) =
1

(2π)p/2|Σ|1/2
exp

{
−1

2
(xV − µ)TΣ−1(xV − µ)

}
, xV ∈ Rp.

Proposition 5.1. Let XV ∼ Np(µ,Σ), and let A be a q × p matrix of full rank q. Then

AXV ∼ Nq(Aµ,AΣA
T ).

In particular, for any U ⊆ V we have XU ∼ Nq(µU ,ΣUU ).

Proof sketch (you should fill in the gaps). For q = p this just follows from applying the
transformation Z = AXV to the density of XV . If q < p then since Σ is positive definite
we can write Σ = LLT for a non-singular lower triangular matrix L; then construct a
non-singular p× p matrix

Ã =

(
A
B

)
whose first q rows are A, and such that ÃL has its first q rows orthogonal to its last p− q
rows. Then

ÃΣÃT =

(
AΣAT 0

0 BΣBT

)
and the first q components have the desired marginal distribution.

For simplicity of notation, we will assume throughout that µ = 0. Note that the depen-
dence structure is entirely determined by Σ, and µ is an orthogonal parameter to Σ.

5.1 Gaussian Graphical Models

We only consider cases in which Σ is positive definite, so all our density functions are
strictly positive. Hence, by the Hammersley-Clifford Theorem, the pairwise and global
Markov properties, and the factorization criterion all lead to the same conditional inde-
pendence restrictions. If any of these hold, we will say that Σ ‘is Markov with respect to’
a graph, without ambiguity.

Recall that XA ⊥⊥ XB if and only if ΣAB = 0, and note that a corollary of this is that
X ⊥⊥ Y and X ⊥⊥ Z does imply X ⊥⊥ Y, Z for jointly Gaussian random variables.

Theorem 5.2. Let XV ∼ Np(µ,Σ) for positive definite Σ, with K = Σ−1. Then the
distribution of XV is Markov with respect to G if and only if kab = 0 whenever a ̸∼ b in G.

Proof. This follows immediately from Proposition 3.3.

We introduce some notation for convenience. If M is a matrix whose rows and columns
are indexed by A ⊆ V , we write {M}A,A to indicate the matrix indexed by V (i.e. it has
|V | rows and columns) whose A,A-entries are M and with zeroes elsewhere.
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For example, if |V | = 3 then

M =

(
a b
b c

)
{M}12,12 =

a b 0
b c 0
0 0 0

 ,

where 12 is used as an abbreviation for {1, 2} in the subscript.

Lemma 5.3. Let G be a graph with decomposition (A,S,B), and XV ∼ Np(0,Σ). Then
p(xV ) is Markov with respect to G if and only if

Σ−1 =
{
(ΣA∪S,A∪S)

−1
}
A∪S,A∪S +

{
(ΣB∪S,B∪S)

−1
}
B∪S,B∪S −

{
(ΣS,S)

−1
}
S,S

,

and ΣA∪S,A∪S and ΣB∪S,B∪S are Markov with respect to GA∪S and GB∪S respectively.

Proof. We know from Lemma 4.23 that

p(xV ) · p(xS) = p(xA, xS) · p(xB, xS).

where p(xA, xS) and p(xB, xS) are Markov with respect to GA∪S and GB∪S respectively.
Since margins of multivariate Gaussians are also multivariate Gaussian, we can insert the
appropriate density for each term, take logs and rearrange to see that:

xTV Σ
−1xV + xTS (ΣSS)

−1xS = xTA∪S(ΣA∪S,A∪S)
−1xA∪S + xTB∪S(ΣB∪S,B∪S)

−1xB∪S + const.

which is a quadratic polynomial in the variables xv. By, comparing coefficients for each
term we obtain that

Σ−1 =
{
(ΣA∪S,A∪S)

−1
}
A∪S,A∪S +

{
(ΣB∪S,B∪S)

−1
}
B∪S,B∪S −

{
(ΣS,S)

−1
}
S,S

.

This gives the result.

Applying the previous result to a decomposable graph repeatedly we see thatXV is Markov
with respect to G if and only if

Σ−1 =
k∑
i=1

{
(ΣCi,Ci)

−1
}
Ci,Ci

−
k∑
i=2

{
(ΣSi,Si)

−1
}
Si,Si

.

5.2 Maximum Likelihood Estimation

Let X
(1)
V , . . . , X

(n)
V be i.i.d. Np(0,Σ); then from Section 3 the sufficient statistic for Σ is

the sample covariance matrix:

W ≡ 1

n

n∑
i=1

X
(i)
V X

(i)T
V .

In addition, Σ̂ = W is also the MLE for Σ under the unrestricted model (i.e. when all
edges are present in the graph). Let Σ̂G denote the MLE for Σ under the restriction that
the distribution satisfies the Markov property for G, and K̂G its inverse.

Recall that if i ̸∼ j then kij = 0, so the sufficient statistics for a graph G reduce to the
entries in W that correspond to edges in the graph. The MLE involves picking K̂ such
that:

k̂ij = 0 whenever i ̸∼ j
σ̂ij =Wij i ∼ j;
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analysis

algebra

statistics mechanics

vectors

Figure 5.1: A graph for the maths test data.

(here σ̂ij is the (i, j) entry of the inverse of K̂).

For a decomposable graph G with cliques C1, . . . , Ck this means that the MLE can be
written in the form(

Σ̂G
)−1

=

k∑
i=1

{
(WCi,Ci)

−1
}
Ci,Ci

−
k∑
i=2

{
(WSi,Si)

−1
}
Si,Si

.

This matches the sufficient statistics so that ΣCi,Ci =WCi,Ci for each i.

5.3 Data Examples

Example 5.4. Whittaker (1990) analyses data on five maths test results administered
to 88 students, in analysis, algebra, vectors, mechanics and statistics. The empirical
concentration matrix (i.e. S−1) is given by the following table (entries multiplied by 103)

mechanics vectors algebra analysis statistics

mechanics 5.24 −2.43 −2.72 0.01 −0.15
vectors −2.43 10.42 −4.72 −0.79 −0.16
algebra −2.72 −4.72 26.94 −7.05 −4.70
analysis 0.01 −0.79 −7.05 9.88 −2.02
statistics −0.15 −0.16 −4.70 −2.02 6.45

Notice that some of the entries in the concentration matrix are quite small, suggesting
that conditional independence holds. Indeed, fitting the graphical model in Figure 5.1
gives an excellent fit (see Examples Sheet 2). The model suggests that abilities in analysis
and statistics are independent of that in mechanics and vector calculus, conditional on
one’s fundamental skill at algebra.
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6 Directed Graphical Models

Undirected graphs represent symmetrical relationships between random variables: the
vertices in an undirected graph are not typically ordered. However, in many realistic
situations the relationships we wish to model are not symmetric: for example, in regression
we have a outcome that is modelled as a function of covariates, and implicitly this suggests
that the covariates are ‘prior’ to the outcome (in a temporal sense or otherwise).

A further limitation of undirected graphs is that they are only able to represent conditional
independences; they can only represent marginal independences if the relevant variables
are in disconnected components. In practice, marginal independences arise very naturally
if we have independent inputs to a system, and an output that is a (random) function of
the inputs.

An example is given in Figure 6.1. Suppose that within the general population acamdeic
and sporting abilities are uncorrelated, but that either may be sufficient to gain admission
to the elite Yarvard University. Then—as we will see—conditional upon admission to
Yarvard we would expect academic and sporting abilities to be negatively associated.

Such situations are naturally represented by a directed graph.

Definition 6.1. A directed graph G is a pair (V,D), where

� V is a finite set of vertices; and

� D ⊆ V × V is a collection of edges, which are ordered pairs of vertices. Loops (i.e.
edges of the form (v, v)) are not allowed.

If (v, w) ∈ D we write v → w, and say that v is a parent of w, and conversely w a child of
v. Examples are given in Figures 6.1 and 6.2(a).

We still say that v and w are adjacent if v → w or w → v. A path in G is a sequence of
distinct vertices such that each adjacent pair in the sequence is adjacent in G. The path
is directed if all the edges point away from the beginning of the path.

For example, in the graph in Figure 6.2(a), 1 and 2 are parents of 3. There is a path
1→ 3← 2→ 5, and there is a directed path 1→ 3→ 5 from 1 to 5.

The set of parents of w is paG(w), and the set of children of v is chG(v).

Definition 6.2. A graph contains a directed cycle if there is a directed path from v to w
together with an edge w → v. A directed graph is acyclic if it contains no directed cycles.
We call such graphs directed acyclic graphs (DAGs).

academics sports

admission

Figure 6.1: A directed graph with vertices representing abilities in academic disciplines
and sports, and an indicator of admission to Yarvard, an elite US university.
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All the directed graphs considered in this course are acyclic.

A topological ordering of the vertices of the graph is an ordering 1, . . . , k such that i ∈
paG(j) implies that i < j. That is, vertices at the ‘top’ of the graph come earlier in the
ordering. Acyclicity ensures that a topological ordering always exists.

We say that a is an ancestor of v if either a = v, or there is a directed path a→ · · · → v.
The set of ancestors of v is denoted by anG(v). The ancestors of 4 in the DAG in Figure
6.2(a) are anG(4) = {2, 4}. The descendants of v are defined analogously and denoted
deG(v); the non-descendants of v are ndG(v) ≡ V \ deG(v). The non-descendants of 4 in
Figure 6.2(a) are {1, 2, 3}.

6.1 Markov Properties

As with undirected graphs, we will associate a model with each DAG via various Markov
properties. The most natural way to describe the model associated with a DAG is via a
factorization criterion, so this is where we begin.

For any multivariate probability distribution p(xV ), given an arbitrary ordering of the
variables x1, . . . , xk, we can iteratively use the definition of conditional distributions to
see that

p(xV ) =

k∏
i=1

p(xi | x1, . . . , xi−1).

A directed acyclic graph model uses this form with a topological ordering of the graph,
and states that the right-hand side of each factor only depends upon the parents of i.

Definition 6.3 (Factorization Property). Let G be a directed acyclic graph with vertices
V . We say that a probability distribution p(xV ) factorizes with respect to G if

p(xV ) =
∏
v∈V

p(xv | xpaG(v)), xV ∈ XV .

This is clearly a conditional independence model; given a total ordering on the vertices V ,
let pre<(v) = {w | w < v} denote all the vertices that precede v according to the ordering.
It is not hard to see that we are requiring

p(xv | xpre<(v)) = p(xv | xpaG(v)), v ∈ V

for an arbitrary topological ordering of the vertices <. That is,

Xv ⊥⊥ Xpre<(v)\paG(v) | XpaG(v)
[p]. (4)

Since the ordering is arbitrary provided that it is topological, we can pick < so that as
many vertices come before v as possible; then we see that (4) implies

Xv ⊥⊥ XndG(v)\paG(v) | XpaG(v)
[p]. (5)

Distributions are said to obey the local Markov property with respect to G if they satisfy
(5) for every v ∈ V .

For example, the local Markov property applied to each vertex in Figure 6.2(a) would
require that

X1 ⊥⊥ X2, X4 X2 ⊥⊥ X1 X3 ⊥⊥ X4 | X1, X2

X4 ⊥⊥ X1, X3 | X2 X5 ⊥⊥ X1, X2 | X3, X4
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Figure 6.2: (a) A directed graph and (b) its moral graph.

There is some redundancy here, but not all independences that hold are given directly.
For example, using Theorem 2.6 we can deduce that X4, X5 ⊥⊥ X1 | X2, X3, but we might
wonder if there is a way to tell this immediately from the graph. For such a ‘global Markov
property’ we need to do a bit more work.

6.2 Ancestrality

We say that a set of vertices A is ancestral if it contains all its own ancestors. So, for
example, the set {1, 2, 4} is ancestral in Figure 6.2(a); however {1, 3} is not, because {2}
is an ancestor of {3} but it not included.

Ancestral sets play an important role in directed graphs because of the following proposi-
tion.

Proposition 6.4. Let A be an ancestral set in G. Then p(xV ) factorizes with respect to
G only if p(xA) factorizes with respect to GA.

Proof. See Examples Sheet 3.

Now suppose we wish to interrogate whether a conditional independence XA ⊥⊥ XB | XC

holds under a DAG model. From the previous result, we can restrict ourselves to asking
if this independence holds in the induced subgraph over the ancestral set anG(A∪B ∪C).

Definition 6.5. A v-structure is a triple i→ k ← j such that i ̸∼ j.

Let G be a directed acyclic graph; the moral graph Gm is formed from G by joining any
non-adjacent parents and dropping the direction of edges.

In other words, the moral graph removes any ‘v-structures’ by filling in the missing edge,
and then drops the direction of edges. An example is given in Figure 6.2.

Proposition 6.6. If pV factorizes with respect to a DAG G, then it also factorizes with
respect to the undirected graph Gm.

Proof. This follows from an inspection of the factorization and checking the cliques from
Gm.
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Using this proposition, we see that the DAG in Figure 6.2(a) impliesX1 ⊥⊥ X4, X5 | X2, X3,
by using the global Markov property applied to the moral graph in Figure 6.2(b). In fact,
moral graphs are used to define the global Markov property for DAGs.

Definition 6.7. We say that p(xV ) satisfies the global Markov property with respect to G
if whenever A and B are separated by C in (Gan(A∪B∪C))

m we have XA ⊥⊥ XB | XC [p].

The global Markov property is complete in the sense that any independence not exhibited
by a separation will not generally hold in distributions Markov to G. We state the result
formally here, but the proof is not given in this course.

Theorem 6.8 (Completeness of global Markov property.). Let G be a DAG. There exists
a probability distribution p such that XA ⊥⊥ XB | XC [p] if and only if A ⊥s B | C in
(Gan(A∪B∪C)

m.

In other words, the global Markov property gives all conditional independences that are
implied by the DAG model.

We now give the main result concerning equivalence of these three definitions, which says
that each of our properties give precisely equivalent models.

Theorem 6.9. Let G be a DAG and p a probability density. Then the following are
equivalent:

(i) p factorizes according to G;

(ii) p is globally Markov with respect to G;

(iii) p is locally Markov with respect to G.

Notice that, unlike for undirected graphs, there is no requirement of positivity on p: it
is true even for degenerate distributions. There is also a ‘pairwise’ Markov property for
directed graphs, which we will not cover; see Lauritzen’s book for interest.

Proof. (i) =⇒ (ii). Let W = anG(A ∪ B ∪ C), and suppose that there is a separation
between A and B given C in (GW )m. The distribution p(xW ) can be written as

p(xW ) =
∏
v∈W

p(xv | xpa(v)),

so in other words it is Markov w.r.t. GW and hence to (GW )m (see Propositions 6.6 and 6.4).
But if p factorizes according to the undirected graph (GW )m then it is also globally Markov
with respect to it by Theorem 4.10, and hence the separation implies XA ⊥⊥ XB | XC [p].

(ii) =⇒ (iii). Note that moralizing only adds edges adjacent to vertices that have a child
in the graph, and also that {v} ∪ ndG(v) is an ancestral set. It follows that in the moral
graph (G{v}∪ndG(v))

m, there is a separation between v and ndG(v) \ paG(v) given paG(v).

(iii) =⇒ (i). Let < be a topological ordering of the vertices in G. The local Markov
property implies that Xv is independent of Xnd(v)\pa(v) given Xpa(v), so in particular it is
independent of Xpre<(v)\pa(v) given Xpa(v). Hence

p(xV ) =
∏
v

p(xv | xpre<(v)) =
∏
v

p(xv | xpa(v))

as required.
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6.3 Statistical Inference

The factorization of distributions that are Markov with respect to a DAG is particularly
attractive statistically because, as with the decomposable models in Theorem 4.24, the
conditional distributions can all be dealt with entirely separately.

Consider again the example of a contingency table with counts n(xV ). The likelihood for
a DAG model is

l(p;n) =
∑
xV

n(xV ) log p(xV )

=
∑
xV

n(xV )
∑
v∈V

log p(xv | xpa(v))

=
∑
v∈V

∑
xv ,xpa(v)

n(xv, xpa(v)) log p(xv | xpa(v))

=
∑
v∈V

∑
xpa(v)

∑
xv

n(xv, xpa(v)) log p(xv | xpa(v)),

where each of the conditional distributions p(xv | xpa(v)) can be dealt with entirely sep-
arately. That is, we can separately maximize each inner sum

∑
xv
n(xv, xpa(v)) log p(xv |

xpa(v)) subject to the restriction that
∑

xv
p(xv | xpa(v)) = 1, and hence obtain the MLE

p̂(xv | xpa(v)) =
n(xv, xpa(v))

n(xpa(v))
;

hence p̂(xV ) =
∏
v∈V

p̂(xv | xpa(v)) =
∏
v∈V

n(xv, xpa(v))

n(xpa(v))
.

This looks rather like the result we obtained for decomposable models, and indeed we will
see that there is an important connection.

A slightly more general result is to say that if we have a separate parametric model
defined by some parameter θv for each conditional distribution p(xv | xpa(v); θv), then we
can perform our inference on each θv separately.

Formally: the MLE for θ satisfies

p(xV ; θ̂) =
∏
v∈V

p(xv | xpa(v); θ̂v), xV ∈ XV .

In addition, if we have independent priors π(θ) =
∏
v π(θv), then

π(θ | xV ) ∝ π(θ) · p(xV | θ)

=
∏
v

π(θv) · p(xv | xpa(v), θv),

which factorizes into separate functions for each θv, showing that the θv are independent
conditional on XV . Hence

π(θv | xV ) ∝ π(θv) · p(xv | xpa(v), θv),

so π(θv | xV ) = π(θv | xv, xpa(v)), and θv only depends upon Xv and Xpa(v).

In other words, the data from Xv, Xpa(v) are sufficient for each θv. This means that if
no vertex has many parents, even very large graphs represent manageable models. For
a Gaussian distribution we can use our results about conditional distributions to obtain
closed form expressions for the covariance matrices that are Markov with respect to a
graph (see Examples Sheet 3).
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Figure 6.3: (a)-(c) Three directed graphs, and (e) an undirected graph to which they are
all Markov equivalent; (d) a graph which is not Markov equivalent to the others.

6.4 Markov Equivalence

For undirected graphs, the independence Xa ⊥⊥ Xb | XV \{a,b} is implied by the graphical
model if and only if the edge a − b is not present in the graph. This shows that (under
any choice of Markov property) each undirected graphical model is distinct.

For directed graphs this is not the case. The graphs in Figures 6.3 (a), (b) and (c) are all
different, but all imply precisely the independence X1 ⊥⊥ X2 | X3.

Definition 6.10. We say that two graphs G and G′ are Markov equivalent if any p which
is Markov with respect to G is also Markov with respect to G′, and vice-versa. This is
an equivalence relation, so we can partition graphs into sets we call Markov equivalence
classes.

In model selection problems we are not trying to learn the graph itself, but rather the
Markov equivalence class of indistinguishable models. The presence or absence of edges
induces all conditional independences, so unsurprisingly the graph of adjacencies is very
important.

Definition 6.11. Given a DAG G = (V,D), define the skeleton of G as the undirected
graph skel(G) = (V,E), where {i, j} ∈ E if and only if either (i, j) ∈ D or (j, i) ∈ D. In
other words, we drop the orientations of edges in G.

For example, the skeleton of the graphs in Figures 6.3(a)–(d) is the graph in Figure 6.3(e).

Lemma 6.12. Let G and G′ be graphs with different skeletons. Then G and G′ are not
Markov equivalent.

Proof. Suppose without loss of generality that i → j in G but that i ̸∼ j in G′. Then let
p be any distribution in which Xv ⊥⊥ XV \{v} for each v ∈ V \ {i, j}, but that Xi and Xj

are dependent.

The local Markov property for G is clearly satisfied, since each variable is independent of
its non-descendants given its parents. For G′, however, we claim that the global Markov
property is not satisfied. By Sheet 2 Question 5, there is some set C such that the GMP
requires Xi ⊥⊥ Xj | XC .
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Let c ∈ C; under p we have Xc ⊥⊥ XV \{c}, so by applying property 2 of the graphoid
axioms, Xc ⊥⊥ Xj , XC\{c}. Then using properties 3 and 4 we see that Xi ⊥⊥ Xj | XC

is equivalent to Xi ⊥⊥ Xj | XC\{c}. Repeating this we end up with a requirement that
Xi ⊥⊥ Xj , which does not hold by construction. Hence p is not Markov with respect to G′,
and the graphs are not Markov equivalent.

Theorem 6.13. Directed graphs G and G′ are Markov equivalent if and only if they have
the same skeletons and v-structures.

Proof. We will prove the ‘only if’ direction for now: the converse is harder.

If G and G′ have different skeletons then the induced models are different by the previous
Lemma. Otherwise, suppose that a→ c← b is a v-structure in G but not in G′.

Let p be a distribution in which all variables other than Xa, Xb, Xc are independent of all
other variables. By the factorization property, we can then pick an arbitrary

p(xV ) = p(xc | xa, xb)
∏

v∈V \{c}

p(xv)

and obtain a distribution that is Markov with respect to G.

In G′ there is no v-structure, so either a→ c→ b, a← c→ b, or a← c← b. In particular,
either a or b is a child of c. Now let A = anG({a, b, c}); we claim that there is no d ∈ A
such that a→ d← b. To see this, note that if this is true, then d is a descendant of each
of a, b and c, and if d ∈ A it is also an ancestor of one a, b and c, so the graph is cyclic.

Now, it follows that in the moral graph (G′A)m, there is no edge between a and b, so
a ⊥s b | A \ {a, b} in (G′A)m. But by a similar argument to the previous Lemma, the
corresponding independence does not hold in p, and therefore p is not Markov with respect
to G′ if p(xc | xa, xb) is chosen not to factorize.

6.5 Directed Graphs, Undirected Graphs, and Decomposability

Closely related to the previous point is whether an undirected graph can represent the
same conditional independences as a directed one. The undirected graph in Figure 6.3(e)
represents the same model as each of the directed graphs in Figures 6.3(a)–(c), so clearly
in some cases this occurs.

However the graph in Figure 6.3(d) does not induce the same model as any undirected
graph. Indeed, it is again this ‘v-structure’ that is the important factor in determining
whether the models are the same.

Theorem 6.14. A DAG G is Markov equivalent to an undirected graph if and only if it
contains no v-structures. In this case the equivalent undirected graph is the skeleton of G.

Proof. We proceed by induction on the number of vertices; the result is clearly true for
graphs of size |V | ≤ 1, since there are no constraints on any such graphs.

First, if G has a v-structure i → k ← j, note that there is an independence between Xi

and Xj by the local Markov property; hence if we add the edge i ∼ j then the graph will
not be Markov equivalent to G. However, since i ∼ j in Gm, we also know that there is
a distribution, Markov with respect to G, for which Xi ̸⊥⊥ Xj | XV \{i,j} by Theorem 6.8.
Thus, if we fail to add this edge then we also will not obtain a Markov equivalent graph.
Hence no undirected graph can be Markov equivalent to G.
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undirected directed

decomposable

Figure 6.4: Venn diagram of model classes introduced by directed and undirected graphs.

Otherwise, suppose that G has no v-structures, so that Gm = skel(G). We have already
established in Proposition 6.6 that if G is a DAG, then p being Markov with respect to G
implies that it is also Markov with respect to Gm.

Now suppose that p is Markov with respect to Gm, and let v be a vertex in G without
children. We will show that p(xV \{v}) is Markov with respect to GV \{v} and that Xv ⊥⊥
XV \(pa(v)∪{v}) | Xpa(v) under p, and hence that p satisfies the local Markov property with
respect to G.

The neighbours of v in Gm are its parents in G, and in the moral graph Gm these are all
adjacent, so there is a decomposition ({v}, paG(v),W ) in Gm, whereW = V \({v}∪paG(v)).
By Lemma 4.23, we have Xv ⊥⊥ XW | Xpa(v), and that p(xV \{v}) is Markov with respect
to (Gm)V \{v}. Now, since G has no v-structures neither does GV \{v}, and so (Gm)V \{v} =
(GV \{v})

m; since this graph also has |V |−1 vertices, by the induction hypothesis, p(xV \{v})
is Markov with respect to GV \{v}. Hence, the result holds.

Corollary 6.15. A undirected graph is Markov equivalent to a directed graph if and only
if it is decomposable.

Proof. This can be seen by the same decomposition and induction as in the proof of the
Theorem above.

This shows that decomposable models represent the intersection of undirected and directed
graphical models.
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Figure 7.1: The ‘Chest Clinic’ network, a fictitious diagnostic model.

7 Junction Trees and Message Passing

In this chapter we answer some of the problems mentioned in the introduction: given
a large network of variables, how can we efficiently evaluate conditional and marginal
probabilities? And how should we update our beliefs given new information?

Consider the graph in Figure 7.1, which is a simplified diagnostic model, containing patient
background, diseases, and symptoms. The variables represent the following indicators:

� Asia (A): the patient recently visited parts of Asia with endemic tuberculosis;

� smokes (S): the patient smokes;

� tuberculosis (T ), lung cancer (L), bronchitis (B): the patient has each of these
respective diseases;

� either (E): logical indicator of having either lung cancer or tuberculosis;

� x-ray (X): there is a shadow on the patient’s chest x-ray;

� dyspnoea (D): the patient suffers from the sleeping disorder dyspnoea.

In practice, we observe the background and symptoms and with to infer the probability of
disease given this ‘evidence’. Of course, to calculate the updated probability we just need
to use Bayes’ formula, but for large networks this is computationally infeasible. Instead
we will develop an algorithm that exploits the structure of the graph to simplify the
calculations.

A

T L

S

B

E

X
D
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For this discussion we will abuse notation mildly and use capital letters A,S,X, . . . to
represent both the random variables and the vertices, and lower case letters for states of
the random variables. From the DAG factorization, we have

p(a, s, t, ℓ, b, e, x, d) = p(a) · p(s) · p(t | a) · p(ℓ | s) · p(b | s) · p(e | t, ℓ) · p(x | e) · p(d | e, b).

Suppose we wish to know the probability of lung cancer give a patient’s smoking status,
whether or not he or she has visited Asia (tuberculosis is endemic in some South Asian
countries), their x-ray, and whether they have dyspnoea. To work out the probability of
lung cancer:

p(ℓ | x, d, a, s) = p(ℓ, x, d | a, s)∑
l′ p(ℓ

′, x, d | a, s)
(6)

The quantity we need can be obtained from the factorization of the directed graph as

p(ℓ, x, d | a, s) =
∑
t,e,b

p(t | a) · p(ℓ | s) · p(b | s) · p(e | t, ℓ) · p(x | e) · p(d | e, b). (7)

There is more than one way to evaluate this quantity, because some of the summations
can be ‘pushed in’ past terms that do not depend upon them. So, for example,

p(ℓ, x, d | a, s)

= p(ℓ | s)
∑
e

p(x | e)

(∑
b

p(b | s) · p(d | e, b)

)(∑
t

p(t | a) · p(e | t, ℓ)

)
.

How computationally difficult is this to calculate? A common metric is just to total the
number of additions, subtractions, multiplications and divisions required. In our case,
start with the expression in the sum

∑
t p(t | a) · p(e | t, ℓ). This has to be calculated

for each of the 16 values of t, a, e, ℓ, and involves a single multiplication. The summation
involves adding pairs of these expressions, so this gives 8 separate additions, and leaves an
expression depending on a, e, ℓ. The other expression in brackets is calculated in exactly
the same way, so there are another 24 operations and expression depending on s, d, e.

Now, the outer sum is over expressions depending on a, e, ℓ, s, d, x, and involves two mul-
tiplications; this gives a total of 2× 26 = 128. The sum itself is over 32 pairs of numbers,
and each of the 32 results must be multiplied by one number. So, in total we have
24 + 24 + 128 + 32 + 32 = 240 operations.

The näıve way implied by (6) and (7) requires rather more effort: each term in the
summand of (7) involves five multiplications, and there are 28 = 256 different terms. Each
of the 25 sums is then over 8 terms (i.e. requires 7 additions). Hence we get 5×28+7×25 =
1,504 operations; a factor of over six times as many as our more careful approach. Over
larger networks with dozens or hundreds of variables these differences are very substantial.

This section provides a method for systematically arranging calculations of this sort in an
efficient way, using the structure of a graph.

7.1 Junction Trees

We have already seen that we can write distributions that are Markov with respect to an
undirected graph as a product of ‘potentials’, which are functions only of a few variables.
A junction tree is a way of arranging these potentials that is computationally convenient.
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Figure 7.2: (a) A decomposable graph and (b) a possible junction tree of its cliques. (c)
The same junction tree with separator sets explicitly marked.

1, 2 2, 3 1, 3

Figure 7.3: A tree of sets that is not a junction tree.

Let T be a tree (i.e. a connected, undirected graph without any cycles) with vertices V
contained in the power set of V ; that is, each vertex of T is a subset of V . We say that
T is a junction tree if whenever we have Ci, Cj ∈ V with Ci ∩ Cj ̸= ∅, there is a (unique)
path π in T from Ci to Cj such that for every vertex C on the path, Ci ∩ Cj ⊆ C.

Example 7.1. The graph in Figure 7.2(b) is a junction tree. Note that, for example,
{2, 4, 5} and {4, 6} have a non-zero intersection {4}, and that indeed 4 is contained on the
intermediate vertex {2, 3, 4}.

The graph in Figure 7.3 is not a junction tree, because the sets {1, 2} and {1, 3} have
the non-empty intersection {1}, but the intermediate sets in the tree (i.e. {2, 3}) do not
contain {1}; this more general object is sometimes called a clique tree. The fact that these
sets cannot be arranged in a junction tree is a consequence of them not satisfying the
running intersection property (under any ordering), as the next result shows.

Proposition 7.2. If T is a junction tree then its vertices V can be ordered to satisfy
the running intersection property. Conversely, if a collection of sets satisfies the running
intersection property they can be arranged into a junction tree.

Proof. We proceed by induction on k = |V|. If k ≤ 2 then both the junction tree and
running intersection conditions are always satisfied. Otherwise, since T is a tree it contains
a leaf (i.e. a vertex joined to exactly one other), say Ck which is adjacent to Cσ(k).
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Consider T −k, the graph obtained by removing Ck from T . The set of paths between Ci
and Cj vertices in T −k is the same as the set of such paths in T : we cannot have paths
via Ck because it would require repetition of Cσ(k). Hence T −k is still a junction tree, and
by induction its elements C1, . . . , Ck−1 satisfy the RIP.

But then by the definition of a junction tree, Ck ∩
⋃
i<k Ci = Ck ∩ Cσ(k), so C1, . . . , Ck

satisfies the RIP.

For the converse result, again by induction just join the final set Ck to Cσ(k) and it is clear
that we obtain a junction tree by definition of running intersection.

In other words, this result shows that junction trees are available for the cliques of de-
composable graphs. The graph in Figure 7.2(a) for example has cliques {1, 2}, {2, 3, 4},
{2, 4, 5}, {4, 6} and {6, 7, 8}. Since it is a decomposable graph, these satisfy the running
intersection property, and can be arranged in a junction tree such as the one in Figure
7.2(b). Notice that this is not unique, since we could join either (or both) of {1, 2} or
{4, 6} to {2, 4, 5} instead of {2, 3, 4}.

We can explicitly add in the separator sets as nodes in our tree, so that each edge contains
an additional node, as shown in Figure 7.2(c).

Definition 7.3. We will associate each node C in our junction tree with a potential
ψC(xC) ≥ 0, which is a function over the variables in the corresponding set. We say that
two potentials ψC , ψD are consistent if∑

xC\D

ψC(xC) = f(xC∩D) =
∑
xD\C

ψD(xD).

That is, the margins of ψC and ψD over C ∩D are the same.

Of course, the standard example of when we would have consistent margins comes when
each potential is the margin of a probability distribution. Indeed, this relationship turns
out to be quite fundamental.

Proposition 7.4. Let C1, . . . , Ck satisfy the running intersection property with separator
sets S2, . . . , Sk, and let

p(xV ) =

k∏
i=1

ψCi(xCi)

ψSi(xSi)

(where S1 = ∅ and ψ∅ = 1 by convention). Then each ψCi(xCi) = p(xCi) and ψSi(xSi) =
p(xSi) if (and only if) each pair of potentials is consistent.

Proof. The only if is clear, since margins of a distribution are indeed consistent in this
way.

For the converse we proceed by induction on k; for k = 1 there is nothing to prove.
Otherwise, let Rk = Ck \ Sk

(
= Ck \

⋃
i<k Ci

)
, so

p(xV \Rk
) =

∑
xRk

p(xV ) =

k−1∏
i=1

ψCi(xCi)

ψSi(xSi)
× 1

ψSk
(xSk

)

∑
xRk

ψCk
(xCk

)

Since the cliques are consistent, we have∑
xRk

ψCk
(xCk

)

ψSk
(xSk

)
=
ψSk

(xSk
)

ψSk
(xSk

)
= 1,
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so

p(xV \Rk
) =

k−1∏
i=1

ψCi(xCi)

ψSi(xSi)
. (8)

By the induction hypothesis, we have that ψCi(xCi) = p(xCi) for i ≤ k − 1. In addition,
by the RIP Sk = Ck ∩ Cj for some j < k, and hence by consistency

ψSk
(xSk

) =
∑

xCj\Sk

ψCj (xCj ) =
∑

xCj\Sk

p(xCj ) = p(xSk
).

Finally, substituting (8) into our original expression, we have

p(xV ) = p(xV \Rk
)
ψCk

(xCk
)

ψSk
(xSk

)
= p(xV \Rk

)
ψCk

(xCk
)

p(xSk
)
,

and so p(xRk
| xV \Rk

) =
ψCk

(xCk
)

p(xSk
) by definition of conditional probabilities. Since this only

depends upon xCk
, this is also p(xRk

| xSk
). Hence,

ψCk
(xCk

) = p(xRk
| xSk

) · p(xSk
) = p(xCk

)

as required.

If a graph is not decomposable then we can triangulate it by adding edges. We discuss
will this further later on.

7.2 Message Passing and the Junction Tree Algorithm

We have seen that having locally consistent potentials is enough to deduce that we have
correctly calculated marginal probabilities. The obvious question now is how we arrive at
consistent margins in the first place. In fact we shall do this with ‘local’ update steps,
that alter potentials to become consistent without altering the overall distribution. We
will show that this leads to consistency in a finite number of steps.

Suppose that two cliques C and D are adjacent in the junction tree, with a separator set
S = C ∩D. An update from C to D consists of replacing ψS and ψD with the following:

ψ′
S(xS) =

∑
xC\S

ψC(xC), ψ′
D(xD) =

ψ′
S(xS)

ψS(xS)
ψD(xD).

This operation is also known as message passing, with the ‘message’ ψ′
S(xS) being passed

from C to D. We note three important points about this updating step:

� after updating, ψC and ψ′
S are consistent;

� if ψD and ψS are consistent, then so are ψ′
D and ψ′

S : to see this, note that∑
xD\S

ψ′
D(xD) =

∑
xD\S

ψ′
S(xS)

ψS(xS)
ψD(xD)

=
ψ′
S(xS)

ψS(xS)

∑
xD\S

ψD(xD),

so if ψS and ψD are consistent then ψS(xS) =
∑

xD\S
ψD(xD) and we are left with

ψ′
S .
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� the product over all clique potentials∏
C∈C ψC(xC)∏
S∈S ψS(xS)

is unchanged: the only altered terms are ψD and ψS , and by definition of ψ′
D we

have

ψ′
D(xD)

ψ′
S(xS)

=
ψD(xD)

ψS(xS)
.

Hence, updating preserves the joint distribution and does not upset margins that are
already consistent. The junction tree algorithm is a way of updating all the margins such
that, when it is complete, they are all consistent.

Let T be a tree. Given any node t ∈ T , we can ‘root’ the tree at t, and replace it with
a directed graph in which all the edges point away from t.3 The junction tree algorithm
involves messages being passed from the edge of the junction tree (the leaves) towards a
chosen root (the collection phase), and then being sent away from that root back down to
the leaves (the distribution phase). Once these steps are completed, the potentials will all
be consistent. This process is also called belief propagation.

Algorithm 2 Collect and distribute steps of the junction tree algorithm.

function Collect(rooted tree T , potentials ψt)
let 1 < . . . < k be a topological ordering of T
for t in k, . . . , 2 do

send message from ψt to ψσ(t);
end for
return updated potentials ψt

end function

function Distribute(rooted tree T , potentials ψt)
let 1 < . . . < k be a topological ordering of T
for t in 2, . . . , k do

send message from ψσ(t) to ψt;
end for
return updated potentials ψt

end function

The junction tree algorithm consists of running Collect(T , ψt) and Distribute(T , ψ′
t),

as given in Algorithm 2.

Theorem 7.5. Let T be a junction tree with potentials ψCi(xCi). After running the
junction tree algorithm, all pairs of potentials will be consistent.

Proof. We have already seen that each message passing step will make the separator node
consistent with the child node. It follows that each pair ψCi and ψSi are consistent after the
collection step. We also know that this consistency will be preserved after future updates
from ψCσ(i)

. Hence, after the distribution step, each ψCi and ψSi remain consistent, and
ψCσ(i)

and ψSi become consistent for each i. Hence, every adjacent pair of cliques is now
consistent.

3This process always gives a Markov equivalent graph although, of course, we are not really applying
the Markov property to our junction tree. The directions are just for convenience.

44



1, 2 2, 3, 4

2, 4, 5

4, 6

6, 7, 8

1

1

2

1

(a)

1, 2 2, 3, 4

2, 4, 5

4, 6

6, 7, 8

1

1

1

2

(b)

Figure 7.4: Illustration of the junction tree algorithm with {2, 3, 4} chosen as the root.
(a) Collect steps towards the root: note that the {4, 6} to {2, 3, 4} step must happen after
the {6, 7, 8} to {4, 6} update. (b) Distribute steps away from the root and towards the
leaves: this time the constraint on the ordering is reversed.

But whenever Ci∩Cj ̸= ∅ there is a path in the junction tree such that every intermediate
clique also contains Ci ∩ Cj , so this local consistency implies global consistency of the
tree.

Remark 7.6. In practice, message passing is often done in parallel, and it is not hard to
prove that if all potentials update simultaneously then the potentials will converge to a
consistent solution in at most d steps, where d is the width (i.e. the length of the longest
path) of the tree.

Example 7.7. Suppose we have just two tables, ψXY and ψY Z arranged in the junction
tree:

X,Y Y Y,Z

representing a distribution in which X ⊥⊥ Z | Y . We can initialize by setting

ψXY (x, y) = p(x | y) ψY Z(y, z) = p(y, z) ψY (y) = 1,

so that p(x, y, z) = p(y, z) · p(x | y) = ψY ZψXY /ψY .

Now, we could pick Y Z as the root node of our tree, so the collection step consists of
replacing

ψ′
Y (y) =

∑
x

ψXY (x, y) =
∑
x

p(x | y) = 1;

so ψ′
Y and ψY are the same; hence the collection step leaves ψY and ψY Z unchanged.

The distribution step consists of

ψ′′
Y (y) =

∑
z

ψY Z(y, z) =
∑
z

p(y, z) = p(y);

ψ′
XY (x, y) =

ψ′′
Y (y)

ψY (y)
ψXY (x, y) =

p(y)

1
p(x | y) = p(x, y);

hence, after performing both steps, each potential is the marginal distribution correspond-
ing to those variables.

In junction graphs that are not trees it is still possible to perform message passing, but
convergence is not guaranteed. This is known as ‘loopy belief propagation, and is a topic
of current research.
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Figure 7.5: The moral graph of the Chest Clinic network, and a possible triangulation.

LEBTEL

LBS

EDBEX

AT

LEBLETEL

LB

LBS

EB

EDB

E

EX

T

AT

Figure 7.6: A possible junction tree for the Chest Clinic network, and (right) with sepa-
rator sets drawn on.

7.3 Directed Graphs and Triangulation

How does any of this relate to directed graphs? And what should we do if our model is not
decomposable? In this case we cannot immediately form a junction tree. However, all is
not lost, since we can always embed our model in a larger model which is decomposable.

For a directed graph, we start by taking the moral graph, so that we obtain an undirected
model. If the directed model is decomposable then so is the moral graph. If the moral
graph is still not decomposable, then we can triangulate it by adding edges to obtain a
decomposable graph. Figure 7.5(b) contains a triangulation of the moral graph of Figure
7.1. We can arrange the cliques as

{L,E,B}, {T,E,L}, {L,B, S}, {E,D,B}, {A, T}, {E,X},

giving rise to the junction tree in Figure 7.6

Taking the 4-cycle in Figure 4.5(a) as an example, we can add chords to the cycle until
we obtain a graph that is triangulated; a resulting graph is called a triangulation. This
process is not unique, as is obvious from this example. Given the new graph we can form
a junction tree for the larger model.

Naturally, to keep our computations efficient we want the cliques in the model to remain
small when we triangulate: after all, we could always embed our graph in the complete
model! Finding a triangulation that is ‘optimal’—in the sense of giving the smallest
cliques—is a very hard problem in general. Some approximate and heuristic methods
exist. A simple method, Tarjan elimination, is given on Examples Sheet 3.
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Suppose we have a directed graphical model embedded within a decomposable model
C1, . . . , Ck. For each vertex v, the set {v} ∪ paG(v) is contained within at least one of
these cliques. Assigning each vertex arbitrarily to one such clique, let v(C) be the vertices
assigned to C. Then we can set ψC(xC) =

∏
v∈v(C) p(xv | xpa(v)) and ψS(xS) = 1, and we

have

k∏
i=1

ψCi(xCi)

ψSi(xSi)
=
∏
v∈V

p(xv | xpa(v)) = p(xV ).

This is called initialization. Now if we run the junction tree algorithm to obtain consistent
potentials, then these will just be the marginal probabilities for each clique.

7.4 Evidence

The junction tree gives us a mechanism for calculating marginal distributions for quantities
that are contained in the same clique. How should we deal with queries about conditional
distributions for quantities that may not be adjacent? For example, what difference does
it make to our chest clinic network if a patient smokes?

We can answer this by introducing ‘evidence’ into our tables, and then propagating it
through the tree. The new evidence corresponds to replacing an existing marginal table
with one in which the event that occurred has probability 1: for example,

p(s) =
smokes doesn’t smoke

0.25 0.75
becomes p̃(s) =

smokes doesn’t smoke

1 0
.

Let our evidence be the event {Xe = ye} for some relevant node e; we can write the new
joint distribution as

p(xV | Xe = ye) = p(xV , xe)
1{xe=ye}

p(xe)
.

Thus, replacing

ψ′
C(xC)← ψC(xC) ·

1{xe=ye}

p(ye)

for one potential with C ∋ e will alter the joint distribution in the required way (note that
we should not do this in more than one place, even if e appears in multiple cliques). If the
potentials are already consistent then p(ye) can be calculated from ψC directly.

Of course, after replacing ψC the potentials will no longer be consistent, and therefore the
junction tree algorithm needs to be run again. In fact, only a distribution step with ψC
chosen as the root node is needed.

Proposition 7.8. Suppose that potentials Ψ for a junction tree T with root C are all
consistent, except for ψC . Then after running Distribute(T ,Ψ), all potentials are con-
sistent.

Proof. Each separator set potential is already consistent with the clique potential(s) ‘away’
from C in the graph. This consistency is preserved, and distribution will ensure that
each separator set is consistent with the clique potentials ‘towards’ C. Hence, all clique
potentials and separator sets are now consistent.
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If we try to introduce evidence in two different places without propagating in between
then we may not obtain the conditional distribution that we want. To see this, consider
again our very simple example with two cliques:

X,Y Y Y,Z

If the potentials are already consistent, then ψXY = p(x, y) and ψY Z = p(y, z) with
ψY = p(y). Now suppose we want to introduce two pieces of evidence: {X = x∗} and
{Z = z∗}. To introduce the first, we replace ψXY with

ψ′
XY = ψXY

1{x=x∗}

p(x∗)
= p(y | x∗)1{x=x∗}.

This means that the potentials are jointly representing the distribution q in which

q(x, y, z) =
ψ′
XY (x, y)ψY Z(y, z)

ψY (y)
=
p(y | x∗) · p(y, z)

p(y)
1{x=x∗} = p(y, z | x∗)1{x=x∗},

as required.

Now, the second would be introduced by replacing ψY Z with

ψ′
Y Z = p(y | z∗)1{z=z∗}.

But now this gives

r(x, y, z) =
ψ′
XY (x, y)ψ

′
Y Z(y, z)

ψY (y)
=
p(y | x∗) · p(y | z∗)

p(y)
1{x=x∗,z=z∗}

=
p(y, x∗) · p(y, z∗)
p(y)p(x∗)p(y∗)

1{x=x∗,z=z∗}

= p(y | x∗, z∗) p(x
∗, z∗)

p(x∗)p(z∗)
1{x=x∗,z=z∗},

where the last equality holds from applying Theorem 2.4(iv) to X ⊥⊥ Z | Y . Now since
X ̸⊥⊥ Z in general, this final expression is not equal to p(y | x∗, z∗).

This is because we failed to update ψY Z with the new information about X = x∗ before
introducing information about Z. If we first run a distribution step rooted at XY , then
all potentials will be consistent and contain margins of p(z, y | X = x∗). In particular, if
ψZY = p(z, y | X = x∗) then introducing Z = z∗ amounts to

ψ′′
Y Z(y, z) = ψ′

Y Z(y, z)
1{z=z∗}

ψ′
Y Z(z)

= p(z, y | x∗)
1{z=z∗}

p(z∗ | x∗)
= p(y | x∗, z∗) · 1{z=z∗}.
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8 Causal Inference

In most statistical prediction problems we simply use conditional distributions, without
regard to the reason that some varibles are correlated. Causal inference asks why some
variables are correlated, and in particular whether such a correlation would endure if we
were to perform an experiment in the system.

Example 8.1. Taking the Chest Clinic in Figure 7.1 as an example, suppose the proba-
bilities for smoking and lung cancer are:

p(s) =
smokes doesn’t smoke

0.2 0.8
p(ℓ | s) =

smoker cancer no cancer

yes 0.1 0.9
no 0.01 0.99

.

Here we see that the probability of developing lung cancer is about 1% for non-smokers,
and 10% for smokers. Clearly then smoking status is a useful predictor of whether someone
will get lung cancer (though far from a perfect one). Does this mean that smoking is bad for
you? On its own, no—we are often reminded that ‘correlation does not imply causation’:
even though smoking and cancer are correlated, we cannot deduce that smoking is the
cause of the cancer.

To illustrate, consider the relationship in reverse. Using Bayes’ rule, one can check that
a lung cancer sufferer has about a 71% chance of being a smoker, compared to 19% for
a non-sufferer; in this sense lung cancer can be used to ‘predict’ whether or not someone
smokes. But does this mean that having lung cancer causes people to smoke? Manifestly
not!4

To settle the argument we can imagine performing an experiment, in which we stop every-
one smoking and observe what happens to the lung cancer rates. If smoking is the (only)
cause of the difference in the probabilities above, then we would expect that modifying
smoking status would also change the lung cancer rates: in other words the rate of lung
cancer would eventually drop from 2.8% to 1%. On the other hand, if people smoke be-
cause of their lung cancer, then the rate of lung cancer will not change at all by stopping
people from smoking!

The asymmetry in the previous example is an example of a causal relationship. Ordinary
prediction is, in some sense, symmetric: if the smoking predicts cancer, then cancer pre-
dicts smoking. However, causal prediction is not symmetric: if I make someone smoke
then that will make it more likely that they get cancer, but if I give someone cancer by
exposing them to radiation, for example, it will not cause them to start smoking.

The scenarios of preventing someone from smoking, or of giving them cancer, are examples
of interventions or treatments. These affect both the values of variables in the system and
some of the relationships between them. If we intervene in a system in such a way as to
set a variable such as X = x, we denote the resulting distribution of other variables as

P (Y = y | do(T = t)).

Note that, as shown in the example above, this is not generally the same as P (Y = y | T =
t): there is a difference between observing that {T = t} and intervening to set {T = t}. If

4In fact, the idea that lung cancer was a cause of smoking was really posited—likely with his tongue
firmly in his cheek—by Fisher as a possible explanation for the correlation between smoking and cancer.

49



smokes cancer

(a)

smokes cancer

(c)

smokes cancer

(b)

Figure 8.1: (a) A causal DAG on two vertices; (b) after intervening on ‘smokes’ we assume
that the dependence of cancer on smoking status is preserved; (c) after intervening on
‘cancer’, this will no longer depend upon smoking status, so the relationship disappears.

Z T Y

(a)

Z T Y

(b)

Figure 8.2: (a) A causal DAG on three vertices, and (b) after intervening on T .

we assume that smoking does cause cancer but not the other way around, we might then
have:

P ({cancer} | do({smokes})) = P ({cancer} | {smokes})
P ({smokes} | do({cancer})) = P ({smokes}).

Directed graphs provide a convenient framework for representing the structural assump-
tions underlying a causal system, and the asymmetry in interventions. We can think of
each edge t→ y as saying that Xt is a ‘direct cause’ of Xy; i.e. that it affects it in a way
that is not mediated by any of the other variables. In our example, the system could be
represented by the graph in Figure 8.1(a).

8.1 Interventions

Definition 8.2. Let G be a directed acyclic graph representing a causal system, and let
p be a probability distribution over the variables XV . An intervention on a variable Xt

(for t ∈ V ) does two things:

� graphically we represent this by removing edges pointing into t (i.e. of the form
v → t);

� probabilistically, we replace our usual factorization

p(xV ) =
∏
v∈V

p(xv | xpa(v))
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with

p(xV \{t} | do(xt)) =
p(xV )

p(xt | xpa(t))

=
∏

v∈V \{t}

p(xv | xpa(v)).

In words, we are assuming that Xt no longer depends upon its parents, but has been fixed
to xt. We can think of this as replacing the factor p(xt | xpa(t)) with an indicator function
that assigns probability 1 to the event that {Xt = xt}. Other variables will continue to
depend upon their parents according to the same conditionals p(xv | xpa(v)).

When we say a graph and its associated probability distribution is causal, we mean that we
are making the assumption that, if we were to intervene on a variable Xv via some exper-
iment, then the distribution would change in the way described above. This assumption
is something that has to be justified in specific applied examples.

Example 8.3 (Confounding). Consider the graph in Figure 8.2(a); here Z causally affects
both T and Y , so some of the observed correlation between T and Y will be due to this
‘common cause’ Z. We say that T and Y are ‘confounded’ by Z. Suppose we intervene
to fix T = t, so that it is no longer causally affected by Z. Hence, we go from

p(z, t, y) = p(z) · p(t | z) · p(y | z, t)

to

p(z, y | do(t)) = p(z) · p(y | z, t) · 1{T=t}
= p(z) · p(y | z, t).

Note that this last object is not the same as the ordinary conditional distribution

p(z, y | t) = p(z | t) · p(y | z, t)

unless p(z | t) = p(z); in general this would happen if T ⊥⊥ Z, in which case Z is not really
a confounder.

Example 8.4. Suppose we have a group of 64 people, half men and half women. We ask
them whether they smoke, and test them for lung damage. The results are given by the
following table.

women men
not smoke smoke not smoke smoke

no damage 21 6 6 6
damage 3 2 2 18

Given that a person smokes, the probability that they have lung damage is P (D = 1 |
S = 1) = 20

32 = 5
8 . If someone doesn’t smoke the probability is P (D = 1 | S = 0) = 5

32 .

What happens if we had prevented everyone from smoking? Would this mean that only
5
32 × 64 = 10 of our participants showed lung damage? If we assume the following causal
model, then the answer is no.
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gender

smokes damage

We have (taking G = 0 to represent male) that

P (D = 1 | do(S = 0))

=
∑
g

P (D = 1 | S = 0, G = g) · P (G = g)

= P (D = 1 | S = 0, G = 0) · P (G = 0) + P (D = 1 | S = 0, G = 1) · P (G = 1)

=
2

8
· 1
2
+

3

24
· 1
2

=
3

16
>

5

32
.

So in fact, we would expect 3
16 × 64 = 12 people to have damage if no-one was able to

smoke.

The difference can be accounted for by the fact that some of the chance of getting lung
damage is determined by gender. If we ‘observe’ that someone does not smoke then they
are more likely to be female; but forcing someone not to smoke does not make them more
likely to be female!

8.2 Adjustment Sets and Causal Paths

From herein we will consider two special variables: the treatment, T , and the outcome, Y .
They will correspond to vertices labelled t and y respectively. We correspondingly identify
T ≡ Xt and Y ≡ Xy.

For this section we will assume we are interested in the distribution of Y after intervening
on T . The method given above for finding p(y | do(t)) appears to involve summing over
all the other variables in the graph:

p(y | do(t)) =
∑
xW

p(y, t, xW )

p(t |xpa(t))

Here we present some methods for ‘adjusting’ by only a small number of variables.

Lemma 8.5. Let G be a causal DAG. Then

p(y | do(t)) =
∑
xpa(t)

p(y | t, xpa(t)) · p(xpa(t)).

Proof. Let XV := (Y, T,Xpa(t), XW ), where XW contains any other variables (that is, not
Y , T , nor a parent of T ). Then

p(y, xpa(t), xW | do(t)) =
p(y, t, xpa(t), xW )

p(t |xpa(t))
= p(y, xW | t, xpa(t)) · p(xpa(t)).
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X

Z W

T Y

Figure 8.3: A causal directed graph.

Then

p(y | do(t)) =
∑

xW ,xpa(t)

p(y, xW | t, xpa(t)) · p(xpa(t))

=
∑
xpa(t)

p(xpa(t))
∑
xW

p(y, xW | t, xpa(t))

=
∑
xpa(t)

p(xpa(t))p(y | t, xpa(t))

as required.

This result is called an ‘adjustment’ formula. Applied to the graph in Figure 8.3, for
example, it would tell us that p(y | do(x)) =

∑
z,t p(y |x, z, t) · p(z, t), so, for example, we

do not need to consider W . In fact, though, you might notice that Y ⊥⊥ T |X,Z, so we
can write

p(y | do(x)) =
∑
z,t

p(y |x, z) · p(z, t)

=
∑
z

p(y |x, z) · p(z),

and we only need to adjust for Z. Further,

p(y | do(x)) =
∑
z

p(y |x, z) · p(z) =
∑
z,w

p(y, w |x, z) · p(z)

=
∑
z,w

p(y |x,w, z) · p(w |x, z) · p(z)

=
∑
z,w

p(y |x,w) · p(w | z) · p(z)

=
∑
z,w

p(y |x,w) · p(w, z)

=
∑
w

p(y |x,w) · p(w);

the fourth equality here uses the fact that W ⊥⊥ X | Z and Y ⊥⊥ Z | W,X, which can be
seen from the graph.

So, in other words, we could adjust byW instead of Z. This illustrates that there are often
multiple equivalent ways of obtaining the same causal quantity. We will give a criterion
for valid adjustment sets, but we first need an a few definitions and results to be able to
prove this criterion correct.
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8.3 Paths and d-separation

Definition 8.6. Let G be a directed graph and π a path in G. We say that an internal
vertex t on π is a collider if the edges adjacent to t meet as → t ←. Otherwise (i.e. we
have → t→, ← t←, or ← t→) we say t is a non-collider.

Definition 8.7. Let π be a path from a to b. We say that π is open given (or conditional
on) C ⊆ V \ {a, b} if

� all colliders on π are in anG(C);

� all non-colliders are outside C.

(Recall that C ⊆ anG(C).) A path which is not open given C is said to be blocked by C.

Example 8.8. Consider the graph in Figure 8.4. There are three paths from T to W :

T → X ← Z →W, T → X → Y ←W, and T → Y ←W.

Without conditioning on any variable, all three paths are both blocked, since they contain
colliders. Given {Y }, however, all paths are open, because Y is the only collider on the
second and third path, and the only collider on the first is X, which is an ancestor of Y .
Given {Z, Y }, the first path is blocked because Z is a non-collider, but the second and
third are open.

Definition 8.9 (d-separation). Let A,B,C be disjoint sets of vertices in a directed graph
G (C may be empty). We say that A and B are d-separated given C in G (and write
A ⊥d B | C [G]) if every path from a ∈ A to b ∈ B is blocked by C.

We now introduce a theorem that shows d-separation can be used to evaluate the global
Markov property. In other words, instead of being based on paths in moral graphs, we
can use paths in the original DAG.

Theorem 8.10. Let G be a DAG and let A,B,C be disjoint subsets of G. Then A is
d-separated from B by C in G if and only if A is separated from B by C in (Gan(A∪B∪C))

m.

Proof (not examinable). Suppose A is not d-separated from B by C in G, so there is an
open path π in G from some a ∈ A to some b ∈ B. Dividing the path up into sections
of the form ← · · · ←→ · · · →, we see that π must lie within anG(A ∪ B ∪ C), because
every collider must be an ancestor of C, and the extreme vertices are in A and B. Each
of the colliders i → k ← j gives an additional edge i − j in the moral graph and so can
be avoided; all the other vertices are not in C since the path is open. Hence we obtain a
path from a ∈ A to b ∈ B in the moral graph that avoids C.

Conversely, suppose A is not separated from B by C in (Gan(A∪B∪C))
m, so there is a path π

in (Gan(A∪B∪C))
m from some a ∈ A to some b ∈ B that does not traverse any element of C.

Each such path is made up of edges in the original graph and edges added over v-structures.
Suppose an edge corresponds to a v-structure over k; then k is in anG(A ∪ B ∪ C). If k
is an ancestor of C then the path remains open; otherwise, if k is an ancestor of A then
there is a directed path from k to a′ ∈ A, and every vertex on it is a non-collider that is
not contained in C. Hence we can obtain a path with fewer edges over v-structures from
a′ to b. Repeating this process we obtain a path from A to B in which every edge is either
in G or is a v-structure over an ancestor of C. Hence the path is open.
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Figure 8.4: A causal directed graph.

We also obtain the following useful characterization of d-open paths.

Proposition 8.11. If π is a d-open path between a, b given C in G, then every vertex on
π is in anG({a, b} ∪ C).

Proof. Consider a path from a to b, and divide it into treks. That is, segments separated by
a collider vertex. In general, these segments look like a pair of directed paths ← · · · ←→
· · · →. Now, we know that if a path is open, then every collider vertex is an ancestor of
something in C. Hence everything on the path is an ancestor of C, apart from possibly
the extreme directed paths that lead to a and b, which are themselves ancestors of a or
b.

8.4 Adjustment Sets

Given the addition of d-separation to our toolkit, we are now in a position to consider
more general adjustment sets than simply the parents of the variable intervened on.

Definition 8.12. Suppose that we are interested in the total effect of T on Y . We define
the causal nodes as all vertices on a causal path from T to Y , other than T itself. We
write this set as cnG(T → Y ).

We also define the forbidden nodes as consisting of T or any descendants of causal nodes

forbG(T → Y ) = deG(cnG(T → Y )) ∪ {T}.

Note that strict descendants of T are generally not forbidden nodes, as we will see presently.

Example 8.13. Consider the graph in Figure 8.4; we have

cnG(X → Y ) = {Y } cnG(T → Y ) = {X,Y },

and

forbG(X → Y ) = {S,X, Y } forbG(T → Y ) = {R,S, T,X, Y },

Definition 8.14. We say that C is a valid adjustment set for the ordered pair (t, y) if

� no vertex in C is in forbG(t→ y);

� every non-causal path from t to y is blocked by C.
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We can divide a valid adjustment set C into two components, B = C ∩ ndG(v) and
D = C \ ndG(v). We first show the following result.

Proposition 8.15. If C = B∪̇D is a valid adjustment set for (t, y) then so is B.

In addition, for any d ∈ deG(t) either d ⊥d t | C \ deG(d) or d ⊥d y | {t} ∪ C \ deG(d).

Proof. Clearly if C does not contain a vertex in forbG(t→ y) then neither does B ⊆ C.

Consider the possible paths from t to y. Any paths that begin with an edge t→ are either
causal, or will meet a collider that is not conditioned upon in B. Hence this path will be
blocked. Any paths that begin with an edge t← must be blocked by C. If this is blocked
at a collider, then it will also be blocked at that collider by B ⊆ C. If it is blocked at a
non-collider in deG(t), then (by the same reasoning as above) there must also be a collider
on the path within those descendants at which the path is blocked by B. Hence B satisfies
the criteria to be a valid adjustment set as well.

Note that this proof also applies to any superset of B that removes a set closed under
taking descendants.

For the d-separation statements, suppose for contradiction there is a d for which this does
not hold. Note that both the d-separation statements apply to moral graphs over the
sets {d, t, y} ∪ (C \ deG(d)), so we can just consider this moral graph, and therefore there
are undirected paths from t and y to d that do not intersect {d} ∪ (C \ deG(d)). We
can concatenate these (shortening if necessary) to obtain a path from t to y that is open
given C \ deG(d), which contradicts the comment in the previous paragraph. Hence the
d-separation statements also hold.

We refer to a valid adjustment set such as B as a back-door adjustment set, since it blocks
all non-causal paths from t to y, but does not contain descendants of t.

Lemma 8.16. If C = B∪̇D is a valid adjustment set for (t, y) and B = C ∩ ndG(t), then∑
xC

p(xC) · p(y | t, xC) =
∑
xB

p(xB) · p(y | t, xB).

Proof. We proceed by a simple induction. Consider the collection of d-separation state-
ments in Proposition 8.15, and take some d that has no descendants in C \ {d}. Then
either d ⊥d y | {t} ∪ C \ {d}, in which case we have∑

xC

p(xC) · p(y | t, xC) =
∑

xC\{d},xd

p(xC) · p(y | t, xC\{d})

=
∑
xC\{d}

p(xC\{d}) · p(y | t, xC\{d}),

or d ⊥d t | C \ {d}, and so∑
xC

p(xC\{d}) · p(xd |xC\{d}) · p(y | t, xC)

=
∑

xC\{d},xd

p(xC\{d}) · p(xd |xC\{d}, t) · p(y | t, xC)

=
∑
xC\{d}

p(xC\{d})
∑
xd

p(xd, y | t, xC\{d})

=
∑
xC\{d}

p(xC\{d}) · p(y | t, xC\{d}).
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Then, by a clear inductive argument, the result holds.

The main result of this subsection justifies the name ‘valid’ being applied to these adjust-
ment sets.

Theorem 8.17. Let C be a valid adjustment set for (t, y). Then

p(y | do(t)) =
∑
xC

p(xC) · p(y | t, xC).

Proof. By Lemma 8.16 we have that∑
xC

p(xC) · p(y | t, xC) =
∑
xB

p(xB) · p(y | t, xB).

Hence the associated back-door set can be used to adjust for confounding if and only if C
can be used, and hence we assume that C contains no descendants of v.

Now, since no vertex in C is a descendant of t, we have that T ⊥⊥ XC | Xpa(t) using the
local Markov property. We also claim that y is d-separated from paG(t) by C ∪ {t}.

To see this, suppose for contradiction that there is an open path π from y to some s ∈
paG(t) given C ∪ {t}. If this path passes through t then this vertex is clearly a collider,
and we can shorten it to give an open path from t to y that begins t←. This contradicts
C being a back-door adjustment set. If π is also open given C, then we can add the edge
s→ v to find an open path from y to t. If π is not open given C, this can only be because
there is a collider r on π that is an ancestor of t but not of C; hence there is a directed
path from r to t that does not contain any element of C. In this case, simply concatenate
the path from y to r with this directed path (shortening if necessary) to obtain an open
path from t to y. Either way we obtain a path from t to y that is open given C and begins
t←, which contradicts our assumptions.

We conclude that y is d-separated from paG(t) by C ∪ {t}, and hence the global Markov
property implies that Y ⊥⊥ Xpa(t) | T,XC . Then:

p(y | do(t)) =
∑
xpa(t)

p(xpa(t)) · p(y | t, xpa(t))

=
∑
xpa(t)

p(xpa(t))
∑
xC

p(y, xC | t, xpa(t))

=
∑
xpa(t)

p(xpa(t))
∑
xC

p(y |xC , t, xpa(t)) · p(xC | t, xpa(t))

=
∑
xpa(t)

p(xpa(t))
∑
xC

p(y |xC , t) · p(xC |xpa(t))

=
∑
xC

p(y |xC , t)
∑
xpa(t)

p(xpa(t)) · p(xC |xpa(t))

=
∑
xC

p(xC) · p(y | t, xC),

where the fourth equality makes use of the two independences.

We note that the proof above implicitly assumes that paG(t) ∩ C = ∅, which of course
need not be the case. The extension to the case with an intersection is straightforward,
and we leave it as an exercise for the interested reader.
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A L B

Y

Figure 8.5: Causal diagram representing treatment for HIV patients. A is treatment with
AZT (an anti-retroviral drug), L represents infection with pneumonia, B treatment with
antibiotics, and Y survival.

Proposition 8.18. Let G be a causal DAG. The set paG(t) is a valid adjustment set for
(t, y).

Proof. Any non-causal path from t to y either (i) contains a collider or (ii) begins t ←.
Hence, clearly paG(t) blocks all non-causal paths from t to y.

We now give a result to show that our definition of a valid adjustment set is as broad as
it can be.

Proposition 8.19. If v ∈ forbG(T → Y ) then v is not contained in any valid adjustment
set for the total effect of T on Y .

Proof. See Examples Sheet 4.

Example 8.20 (HIV Treatment). Figure 8.5 depicts a situation that arises in HIV treat-
ment, and more generally in the treatment of chronic diseases. A doctor prescribes pa-
tients with AZT (A), which is known to reduce AIDS-related mortality, but also harms
the immune system of the patient, increasing the risk of opportunistic infections such as
pneumonia (L). If pneumonia arises, patients are generally treated with antibiotics (B),
and the outcome of interest is 5 year survival (Y ).

An epidemiologist might ask what the effect on survival would be if we treated all patients
with antibiotics and AZT from the start, without waiting for an infection to present. What
would this do to survival?

Well,

p(y | do(a, b)) =
∑
ℓ

p(y | a, ℓ, b) · p(ℓ | a),

so the answer can be determined directly from observed data without having to perform
an experiment. Note that, in this case, there is no valid adjustment set, because L is a
descendant of A so it is a forbidden node for adjustment, but without including L the
non-causal path B ← L→ Y will induce spurious dependence.

8.5 Gaussian Causal Models

Definition 8.21. Given a multivariate system XV with mean vector zero and covariance
matrix Σ, we denote the regression coefficients for the least squares regression of Xy on XC

(where C ⊆ V \{y}) by βC,y. We furthermore denote each individual regression coefficient
by βt,v·C′ , where C ′ = C \ {t}.
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In practice, if there are only two symbols before the dot, we will omit the comma from
the notation and write, for example, βCy or βty·C′ .

As a simple example, considering the graph in Figure 8.4, the coefficients being estimated
when we regress Y on X and W are

βxw,y = (βxy·w, βwy·x)
T .

The adjustment formula can be thought of as averaging the conditional distribution over
a portion of the population:

E[Y | do(z)] =
∑
xC

p(xC) · E[Y | z, xC ].

If the variables we are dealing with are multivariate Gaussian, then conditional means
such as E[Y | z, xC ] are determined by regressing Y on Z,XC using a simple linear model.
That is,

E[Y | z, xC ] = zβzy·C +
∑
c∈C

xcβcy·zC′

for some βzy·C and vector of regression coefficients βCy·z = (βcy·zC′ : c ∈ C;C ′ = C \ {c}).
Then

E[Y | do(z)] =
∫
XC

p(xC) ·

(
zβzy·C +

∑
c∈C

xcβcy·zC′

)
dxC

= zβzy·C +
∑
c∈C

βcy·zC′EXc

= zβzy·C ,

since we chose the means to be zero:5 EXc = 0. In other words, the causal effect for Z on
Y is obtained by regressing Y on Z and the variables in the adjustment set XC .

Note that regression coefficient between Z and Y in this model is the same for all values
of XC = xC . This means that we can forget the averaging in the adjustment formula
and just look at a suitable regression to obtain the causal effect. Note that this is quite
different to what happened in the discrete case (or what happens in general): recall that
the effects of smoking on lung damage were different for men and women in Example 8.4,
and we had to weight the sexes in the correct proportions to obtain an unbiased estimate
of the average causal effect.

8.6 Structural Equation Models

You showed on Problem Sheet 3 that XV ∼ Np(0,Σ) is Markov with respect to a DAG G
if and only if we can recursively generate the model as

Xi =
∑

j∈paG(i)

bijXj + εi, ∀i ∈ V, (9)

where εi ∼ N(0, dii) are independent Gaussians.

5Note that, if the mean were not zero, it would only affect the intercept of this regression, not the slope.
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Figure 8.6: A directed graph with edge coefficients.

Definition 8.22. If (G, p) is causal and p is a multivariate Gaussian distribution, we call
(G, p) a structural equation model.

In this case, by writing (9) as a matrix equation, we obtain

Σ = VarX = (I −B)−1D(I −B)−T ,

where B is lower triangular and D is diagonal; each entry bij in B is non-zero only if j → i
in G. To work out the covariance between two variables in our graph, we can expand the
matrix (I − B)−1D(I − B)−T using the fact that for a nilpotent6 matrix B of dimension
p,

(I −B)−1 = I +B +B2 + · · ·+Bp−1. (10)

Note that, for example,

(B2)ij =
∑
k

bikbkj

and that bikbkj ̸= 0 only if j → k → i is a directed path in G. Similarly

(B3)ij =
∑
k

∑
l

bikbklblj

and bikbklblj ̸= 0 only if j → l → k → i is a directed path in G. In fact, the (i, j)-term of
Bd consists of a sum over all directed paths from j to i with length exactly d.

Example 8.23. Suppose we have the model in Figure 8.6 generated by the following
structural equations:

X = εx, Y = αX + εy, Z = βX + γY + εz

for (εx, εy, εz)
T ∼ N3(0, I).

This gives XY
Z

 =

0 0 0
α 0 0
β γ 0

XY
Z

+

εxεy
εz


 1 0 0
−α 1 0
−β −γ 1

XY
Z

 =

εxεy
εz

 .

6Recall that a p× p matrix is nilpotent if Bp = B · · ·B = 0.
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Now, you can check that: 1 0 0
−α 1 0
−β −γ 1

−1

=

 1 0 0
α 1 0

β + αγ γ 1

 .

The entry β + αγ corresponds to the sum of the two paths Z ← X and Z ← Y ← X.

It is not too hard to see then that the i, j entry of the right-hand side of (10) will give
all directed paths of any length from i to j. The transpose (I − B)−T will give the same
paths in the other direction, and so multiplying will lead to entries consisting of pairs of
directed paths. This motivates the idea of a trek.

Definition 8.24. A trek from i to j, with source k, is a pair of paths, (πl, πr), where πl
is a directed path from k to i, and πr is a directed path from k to j. The two paths are
known as the left and right side of the trek.

Thus a trek is essentially a path without colliders, except that we do allow repetition of
vertices. Looking at the graph in Figure 8.6 again, we find the following treks from Y to
Z:

Y → Z Y ← X → Z Y ← X → Y → Z.

and from Z to Z:

Z Z ← Y → Z Z ← X → Z

Z ← Y ← X → Z Z ← X → Y → Z Z ← Y ← X → Y → Z. (11)

Note that Y → Z shows that the left side can be empty, and Z shows that both sides can
be empty. Unsurprisingly, it is also possible for the right side to be empty, since Z ← Y
is a trek from Z to Y .

Example 8.25. Continuing Example 8.23, for the graph in Figure 8.6 we have

Σ = (I −B)−1(I −B)−T

=

 1 0 0
α 1 0

β + αγ γ 1

 1 0 0
α 1 0

β + αγ γ 1

T

=

 1 0 0
α 1 0

β + αγ γ 1

1 α β + αγ
0 1 γ
0 0 1


=

 1 α β + αγ
α 1 + α2 αβ + γ + α2γ

β + αγ αβ + γ + α2γ 1 + γ2 + β2 + 2αβγ + α2γ2

 .

Now, notice that

σzz = 1 + γ2 + β2 + 2αβγ + α2γ2.

consists of a sum of the edge coefficents over the six treks in (11).

Definition 8.26. Given a trek τ = (πl, πr) with source k, define the trek covariance as

c(τ) = dkk
∏

i→j∈πl

bji
∏

i→j∈πr

bji.
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Figure 8.7: A directed graph.

Example 8.27. For the trek Z ← X → Y from Z to Y with source X, we obtain
c(τ) = dxxbyxbzx = 1 · α · β. In this model D = I, but in general the dkk factors may not
be equal to 1.

We will show the following general rule.

Theorem 8.28 (Trek Rule). Let Σ = (I −B)−1D(I −B)−T be a covariance matrix that
is Markov with respect to a DAG G. Then

σij =
∑
τ∈Tij

c(τ)

where Tij is the set of treks from i to j.

Proof. We proceed by induction on the number of variables p. The result holds for one
vertex since Cov(X1, X1) = d11 which is the trek covariance for the trivial trek 1. Assume
the result holds for |V | < p, so in particular it holds on any ancestral subgraph. Let Xp be
a random variable associated with a vertex p that has no children in G. By the induction
hypothesis, Cov(Xi, Xj) is of the required form for i, j < p.

We have Xp =
∑

j∈paG(p) bpjXj + εp, where εp is independent of X1, . . . , Xp−1. Hence, for
any i < p:

Cov(Xi, Xp) =
∑

j∈paG(p)

bpj Cov(Xi, Xj).

Now, note that any trek from i to p must consist of the combination of j → p for some
parent j of p, and a trek from i to j. This establishes the result for i ̸= p.

If i = p, we have

Cov(Xp, Xp) =
∑

j∈paG(p)

bpj Cov(Xp, Xj) + Cov(Xp, εp).

Note that, by the part already established, any trek from p to p of length ≥ 1 is included in
the first sum, and the final term is Cov(Xp, εp) = Var εp = dpp. This is the trek covariance
for the trek p of length 0.

Example 8.29. Consider the graph in Figure 8.7.

The set of treks from 3 to 3 is:

3 3← 2→ 3 3← 1→ 3. (12)
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In the trek 3, both the left and right-hand sides have length zero, and again the source is
3 itself. The respective trek covariances are

d33 d22b
2
32 d11b

2
31

(note the trivial trek 3 has trek covariance d33). It follows from Theorem 8.28 that

Var(X3) = σ33 = d33 + d22b
2
32 + d11b

2
31.

The treks from 3 to 4 are:

3→ 4 3← 2→ 4

3← 2→ 3→ 4 3← 1→ 3→ 4. (13)

The associated trek covariances are

d33b43 d22b32b42

d22b
2
32b43 d11b

2
31b43.

It follows from Theorem 8.28 that

Cov(X3, X4) = σ34 = d33b43 + d22b32b42 + d22b
2
32b43 + d11b

2
31b43

= (d33 + d22b
2
32 + d11b

2
31)b43 + d22b32b42

= Var(X3)b43 +Var(X2)b32b42.

Thus, we can decompose the covariance into parts due to the causal path 3 → 4 and the
back-door path 3← 2→ 4.

8.7 Optimal Adjustment Sets

One can show that when all variables are observed, there is an optimal adjustment set ;
that is, one which is minimal, and gives an estimate of the causal parameter that has the
smallest possible variance. We will prove this in the case of linear causal models, but note
that the same result applies to any system of (nonparametric) structural equations with
all the variables observed.

[TO BE CONTINUED...]
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