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Administration

The course webpage is at
http://www.stats.ox.ac.uk/~evans/gms/

Here you will find problem sheets, slides and any other materials.

Problem Sheets and Classes

There will be four problem sheets, each covering roughly four lectures’ material. MSc
students will have classes in LG.01, 2pm—3pm, on Wednesdays in weeks 3, 5, 7, and on
Thursday of week 8.

Part C students should sign-up for classes with the online system.

Resources

Books are useful, though not required. Here are the main ones this course is based on.

1. S.L. Lauritzen, Graphical Models, Oxford University Press, 1996.

The ‘bible’ of graphical models, and much of the first half of this course is based on
this. One complication is that the book makes a distinction between two different types
of vertex, which can make some ideas look more complicated.

2. M.J. Wainwright and M.I. Jordan, Graphical Models, Fxponential Families, and Vari-
ational Inference, Foundations and Trends in Machine Learning, 2008.

Relevant for the later part of the course, and for understanding much of the compu-
tational advantages of graphical models. Available for free at https://people.eecs.
berkeley.edu/~wainwrig/Papers/WaiJorO8_FTML.pdf.
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3. J. Pearl, Causality, third edition, Cambridge, 2013.
Book dealing with the causal interpretation of directed models, which we will touch
upon.

4. D. Koller and N. Friedman, Probabilistic Graphical Models: Principles and Techniques,
MIT Press, 2009.

A complementary book, written from a machine learning perspective.

5. A. Agresti Categorical Data Analysis, 2nd Edition, John Wiley & Sons, 2002.

As the name suggests, covers most of the material we will use for discussing con-
tingency tables and log-linear models, as well as some data examples. Available for
free at https://mathdept.iut.ac.ir/sites/mathdept.iut.ac.ir/files/AGRESTI.
PDF. There is also an updated third edition, but I will be using this second one.
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Recommended Prerequisites

Knowledge of Part A Probability and Statistics is assumed. Part B Applied Statistics and
Foundations of Statistical Inference would be useful, but not essential.

Aims and Objectives

This course will give an overview of the use of graphical models as a tool for statistical
inference. Graphical models relate the structure of a graph to the structure of a multivari-
ate probability distribution, usually via conditional independence constraints. This has
two broad uses: first, conditional independence can provide vast savings in computational
effort, both in terms of the representation of large multivariate models and in perform-
ing inference with them; this makes graphical models very popular for dealing with big
data problems. Second, conditional independence can be used as a tool to discover hid-
den structure in data, such as that relating to the direction of causality or to unobserved
processes. As such, graphical models are widely used in genetics, medicine, epidemiology,
statistical physics, economics, the social sciences and elsewhere.

Students will develop an understanding of the use of conditional independence and graph-
ical structures for dealing with multivariate statistical models. They will appreciate how
this is applied to causal modelling, and to computation in large-scale statistical problems.

Syllabus

Independence, conditional independence, graphoid axioms [1]
Contingency tables, log-linear models. [1]

Undirected graphs, cliques, paths; factorization and global Markov property, Hammersley-
Clifford Theorem (statement only) [1]

Trees, cycles, chords, decomposability, triangulation, Running intersection property. [1]

Maximum likelihood in decomposable models. The multivariate Gaussian distribution and
Gaussian graphical models. The graphical Lasso. [2]

Directed acyclic graphs, factorization. Paths, d-separation. Ancestral sets and sub-models.
Moralization. Decomposable models as intersection of directed and undirected models. [3]

DAGs as causal models, calculus of intervention. Causal faithfulness, constraint-based
learning. [2]

Junction trees; message passing. Computation of marginal and conditional probabilities,
introduction of evidence. [3]

Exponential families, mean and canonical parameterizations. The Ising model, Gibbs
sampling. [2]



1 Introduction

The modern world is replete with sources of massively multivariate data, sometimes called
‘big data’. In many cases, the number of variables being measured (p) exceeds the number
of samples available (n), and in almost all cases the number of possible ways of classifying
individuals is greater than n.

Examples:

e There are around 25,000 human genes, which gives more possible human genomes
than humans who have ever existed. Even if a gene is present, whether or not it is
expressed depends upon other genes and also environmental factors. Good genetic
data sets might have a few thousand individuals in, the best ones have one hundred
thousand. How do we study what effect these genes have on diseases, or on each
other’s expression?

e A doctor has to diagnose one (or more) of hundreds of different possible diseases
in a patient with a handful out of thousands of possible symptoms, and with a few
pieces of information about his medical history. She can perhaps order some tests
to provide evidence in favour of one condition or another. How should she decide
whether the evidence is behind a particular condition?

e Photographs are typically made up of millions of pixels, each of which can take one
of 2563 ~ 17 million colours. How do we train a computer to recognize the object in
an image?

The nature of these data sets leads to two related challenges: a statistical challenge and
a computational one. Both are features of the so-called curse of dimensionality. The
statistical problems are easy to see: suppose I ask 1,000 people 10 questions each with
two answers. This gives 2'0 = 1024 possible response patterns, so that it is impossible
to observe all the response patterns, and in practice we won’t observe most of them even
once. How can we sensibly estimate the probability of those missing response patterns in
future?

The computational problem is related. Suppose now that I know the distribution of
outcomes, so I have P(Xy = xy) for every zy € Xy. How can I compute the marginal
probability of a particular variable? Well:

P(XZ = xz) = Z P(XV = xv).
TvA\{i}

But notice that, if p = |V is large, say 1,000 variables, then this sum could easily involve
21000 ~ 10301 terms! Even for a very fast computer this is totally infeasible, and of course
we wouldn’t be able to store all the probabilities in the first place.

Each of these examples—although theoretically massive—has a lot of underlying structure
that makes the problem potentially tractable. Particular medical symptoms are closely
tied to particular diseases, with probabilities that we understand. Adjacent pixels in
photographs are often almost the same; if every pixel were completely different we would
never discern an image.

Graphical models provide a convenient way of modelling this structure, and make it com-
putationally feasible to perform calculations with the networks.



2 Conditional Independence

The primary tool we will use to provide statistical and computationally feasible models
is conditional independence. This ensures that distributions factorize into smaller pieces
that can be evaluated separately and quickly.

2.1 Independence

Recall that two discrete variables X and Y are independent if
PX=z,Y=y)=PX=2z)-PY =y) Vee X,ye).
Note that this is equivalent to
P(X=2z|Y =y)=P(X =x) whenever P(Y =y) > 0,Vz € X.

In other words, knowing the value of Y gives us no information about the distribution of
X; we say that Y is irrelevant for X. Similarly, two variables with joint density fxy are
independent if

Ixy(z,y) = fx(z) - fy(y) Ve X,ye).

The qualification that these expressions hold for all (z,y) € X x Y, a product space, is
very importantﬂ and sometimes forgotten.

Example 2.1. Suppose that X, W are independent Exponential(A) random variables.
Define Y = X + W. Then the joint density of X and Y is

Ne M ify > 2 >0,
fxv(z,y) = { 0 otherwise

Note that the expression within the valid range for x, y factorizes, so when performing the
usual change of variables one may mistakenly conclude that X and Y are independent.

2.2 Conditional Independence

Given random variables X,Y we denote the joint density p(z,y), and call

p(y) = /X pla, ) de.

the marginal density (of Y). The conditional density of X given Y is defined as any
function p(z|y) such that

p(z,y) = py) - p(z|y).
Note that if p(y) > 0 then the solution is unique and given by the familiar expression

p(z,y)
ply)

LOf course, for continuous random variables densities are only defined up to a set of measure zero, so
, )
the condition should really read ‘almost everywhere’. We will ignore such measure theoretic niceties in

p(xly) =

this course.



Definition 2.2. Let X,Y be random variables defined on a product space X x Y; let Z
be a third random variable so that the joint density is p(z,y,2). We say that X and Y
are conditionally independent given Z if

p(z |y, z) =plx]2), Ve e X,y € Y,z € Z such that p(y, z) > 0.

When this holds we write X I Y | Z [p], possibly omitting the p for brevity.

In other words, once Z = z is known, the value of Y provides no additional information
that would allow us to predict or model X. If Z is degenerate—that is, there is some z
such that P(Z = z) = 1, then the definition above is the same as saying that X and Y
are independent. This is called marginal independence, and denoted X 1L Y.

Example 2.3. Let X1,..., X} be a Markov chain. Then X}, is independent of X1, ..., Xi_o
conditional upon Xj_1:

PXp=z|Xp1=a1, -, X1i=21) =P Xy =2 | Xj—1 = z4-1)

for all x,z;_1,...,z1. That is, Xj L Xi,..., Xp_o | Xx—1. This is known as the Markov
property, or memoryless property.

Although the definition of conditional independence appears to be asymmetric in X and
Y, in fact it is not: if X gives no additional information about Y then the reverse is also
true, as the following theorem shows.

Theorem 2.4. Let X,Y,Z be random variables on a Cartesian product space. The fol-
lowing are equivalent.

(i) p(z|y,z) =p(x|z) for all x,y,z such that p(y,z) > 0;

(ii) p(z,y|z) =p(x|z)- -p(y|z) for all x,y,z such that p(z) > 0;

(
(
(iii) p(x,y,z) = p(y, z) - p(z | 2) for all z,y,z such that p(z) > 0;
(iv) p(z) - p(x,y,2) = p(x, 2) - ply, 2) for all z,y, z;

(

(v) p(x,y,2) = f(x,z) - g(y, z) for some functions f,g and all z,y,z

Proof. Note that p(y, z) > 0 implies p(z) > 0, so (i) = (ii) follows from multiplying by
p(y|2), and (ii) = (iii) by multiplying by p(z). (ilii) = (i) directly.

The equivalence of (iii) and (iv) is also clear, and (iii) implies (v). It remains to prove
that (v) implies the others. Suppose that (v) holds. Then

Py, z) = /p(w,y,Z) dx = g(y,Z)/f(w,Z) dr = g(y,2) - [ (2).

If f(z) > 0 (which happens whenever p(z) > 0) we have

f(z,2)
p(x,y, 2) = ——p(y, 2).
f(2)
But by definition f(z,z)/f(2) is p(x |y, z), and it does not depend upon y, so we obtain
(ii). O



Conditional independence is a complicated and often unintuitive notion, as the next ex-
ample illustrates.

Example 2.5 (Simpson’s Paradox). Below is a famous data set that records the races of
the victim and defendants in various murder cases in Florida between 1976 and 1987, and
whether or not the death penalty was imposed upon the killer. The data are presented as
counts, though we can turn this into an empirical probability distribution by dividing by
the total, 674.

Victim White Victim Black
Defendant | White Black Defendant | White Black
Yes 53 11 Yes 0 4
No 414 37 No 16 139
The marginal table has
Defendant | White Black
Yes 53 15
No 430 176

Here we see that the chance of receiving a death sentence is approximately independent
of the defendant’s race. P(Death | White) = 53/(53 + 430) = 0.11, P(Death | Black) =
15/(15 4 176) = 0.08. (One could fiddle the numbers to obtain exact independence.)

However, restricting only to cases where the victim is white we see that black defendants
have nearly a 1/3 chance of receiving the death penalty, compared to about 1/8 for whites.
And for black victims the story is the same, a handful of blacks were were sentenced to
death while no white defendants were. (In fact we will see in Chapter [3|that this conditional
dependence is not statistically significant either, but for the purposes of this discussion
this doesn’t matter: we could multiply all the numbers by 10 and get a data set in which
the correlations are significant. For more on this data set, take a look at Example 2.3.2
in the book Categorical Data Analysis by Agresti).

The previous example teaches us the valuable lesson that marginal independence does
not imply conditional independence (nor vice versa). More generally, conditioning on
additional things may result in dependence being induced. However, there are properties
that relate conditional independences, the most important of which are given in the next
theorem.

Theorem 2.6 (Graphoid Axioms). Conditional independence satisfies the following prop-
erties, sometimes called the graphoid axioms.

L XLY|Z = YLX|Z;
XLY,W|Z = X1Y|Z;
XLY,W|Z = X1LW|Y, 2

XAIWI|Y,Zand X LY |Z = X LY,W|Z;

A S

if p(z,y,z,w) >0, then X LW |Y,Z and X LY |W,Z —= X LY, W | Z.



These properties are sometimes referred to respectively as symmetry, decomposition, weak
union, contraction and intersection.

Proof. 1. Symmetry follows from Theorem

2. Starting from p(z,y,w | z) = p(x | 2)p(y, w| z) and integrating out w gives p(x,y| z) =
p(z|2)p(y|2).

3. and 4: see Examples sheet.

5. By Theorem [2.4we have p(z, y,w, 2) = f(x,y, 2)g(y,w, z) and p(,y,w, 2) = f(z,w, 2)§(y, w, 2).
By positivity, taking ratios shows that

f(@,w,2)g(y, w, z)
9(y,w, 2)

_ fx,wo, 2)g(y, wo, 2)

g(yv Wo, Z)

f(xj%z) -

for any wy, since the LHS does not depend upon w; now we see that the right hand
side is a function of x, z times a function of y, z, so

f(xa Y, Z) = a(x, Z) ’ b(yv Z)‘
Plugging into the first expression gives the result. ]

Remark 2.7. Properties 2—4 can be combined into a single ‘chain rule’:

X1LW|Y,Z and X1Y|Z — XLY,W|Z

The fifth property is often extremely useful (as we shall see), but doesn’t generally hold if
the distribution is not positive: see the Examples Sheet.

2.3 Statistical Inference

Conditional independence crops up in various areas of statistics; here is an example that
should be familiar.

Example 2.8. Suppose that X ~ fp for some parameter § € ©. We say that T' = ¢(X)
is a sufficient statistic for 0 if the likelihood can be written as

LB | X =) = fola) = g(t(2).6) - h(x),

Note that under a Bayesian interpretation of 6, this is equivalent to saying that X 1 6 | T

Conditional independence can also give huge computational advantages for dealing with
complex distributions and large datasets. Take random variables X,Y,Z on a product
space with joint density

p@(.fC,y,Z) :gn(xvy)'h((y7z)7 V%%%a

for some functions g, h, where 6 = (1, () is a Cartesian product.

10



Then suppose we wish to find the maximum likelihood estimate of 6; well this is just
0 = (1,¢) where

n n
n= argmangn(:):i, Yi), ¢ = arg maXH he(yi, 2i)-
= ¢ =t

So we can maximize these two pieces separately. Notice in particular that we don’t need
all the data in either case!

If in a Bayesian mood, we might impose a prior m(n, () = 7(n)7(¢). Then

m(n,¢ |,y 2) o< w(n) - 7(C) - Hgn(xi,yi) “he (i #i)

7

= {W(n) Hgn(fm, yi)} : {W(C) H he(Yis Zi)}

=7(n|®y) 7|y 2)

Applying Theorem [2.4(ii) we see that n 1L ( | X,Y, Z, and so we can perform inference
about this distribution for the two pieces separately (e.g. by running an MCMC procedure
or finding the posterior mode).

Indeed, each piece only require part of the data, and for large problems this can be a
tremendous computational saving.

2.4 The Multivariate Gaussian Distribution

Let Xy = (X1,...,X,)T € R? be a random vector. Let p € RP and ¥ € RP*P be a positive
definite symmetric matrix. We say that Xy has a multivariate Gaussian distribution
with parameters p and X if the joint density is

_ 1 1 Tv—1 P
f(xV)—WWeXP{—2(IBV—M) b (wv—u)}, xy € RP,
This is also called the multivariate normal distribution. The concentration matrix is
K=x1

Proposition 2.9. Let Xy have a multivariate Gaussian distribution with concentration
matriv K = 7', Then X; L X; | Xv\(ijy of and only if ki; = 0, where kij is the
corresponding entry in the concentration matriz.

Proof. The log-density is

1
log f(av) = —5(zv — )" K (zy — ) + const

where the constant term does not depend upon zy . It is clear that the only term involving
both z; and x; is —k;;(x; — ps)(x; — pj). Hence, k;j = 0 if and only if the log-density has
separate terms for each of x; and x;. O

We will return to the multivariate Gaussian distribution in Chapter

11



3 Contingency Tables

For much of the rest of the course we will be dealing with collections of random variables
Xy = (X, :veV), indexed by aset V = {1,...,p}. Each X, takes values in the set X.
For a subset of the variables A C V', we write X4 to denote (X, : v € A).

In this section we will assume that our variables X, are discrete with a finite set of
levels X, = {1,...,d,}. Though we use integers as labels, they can represent something
completely arbitrary and unordered such as religion, social preference, or a car model.

Given a vector of these categories X‘(/i) = (Xfi), ... ,X,gi)) sampled over individuals i =
1,...,n, it is helpful to cross-tabulate their responses. Define:

n

n(xy) = Z ]l{Xy) =x,... ,Xi(,i) =2p},
i=1

i.e. the number of individuals who have the response pattern xy. These counts are the
sufficient statistics for a multinomial model, whose log-likelihood is

I(p;n) = Zn(xv)logp(:rv), p(zv) >0, ZP(UCV) =1

Each possibility zy is called a cell of the table. Given a subset of the responses A C V
we may be interested in the marginal table:

n(xa) = Zn(xA,xB),

T
where B =V'\ A.
Example 3.1. Consider the death penalty data again:

Victim White Victim Black
Defendant | White Black Defendant | White Black
Yes 53 11 Yes 0 4
No 414 37 No 16 139

The marginal table has

Defendant | White Black
Yes 53 15
No 430 176

3.1 Computation

As noted in the introduction, even a moderately sized contingency table will cause statisti-
cal problems in practice due to the curse of dimensionality. If we have k binary variables,
then the contingency table will have 2" cells. Even for k£ = 10 we will have over a thousand
possibilities, and for k¥ = 50 there are too many to cells to store in a computer’s memory.

Conditional independence can help, however; suppose that X4 1L Xp | Xg for some
AUBUS =V, so that we have

p(xv) =plxs) - p(ra | zs) -plep | Ts).

12



Now we can store each of these factors in computer memory separately, which means
25 4 20+s 4 9b+s — 95(1 4 2% + 20) cells instead of 2572*%. This is a considerable saving if
s is small. With respect to calculations, if we want to find P(X, = 1) and v € A, then we
need only sum over the 257 entries in p(zg) - p(x 4 | r5) rather than the 227°+5 entries in

p(xy).

Of course, if there are other conditional independences then one might imagine that further
computational savings are possible: indeed this is correct, and is one of the main ideas
behind graphical models.

3.2 Log-linear models

The log-linear parameters for p(xy) > 0 are defined by the relation

logp(zv) = Y Aa(xa)

ACV
=X+ Ai(z1) +- + Av(zv),
and the identifiability constraint A4(x4) = 0 whenever z, = 1 for some a € A. (Other
identifiability constraints can also be used.)

In the case of binary variables (that is, each variable takes only two states, d, = 2,
X, = {1,2}), there is only one possibly non-zero level for each log-linear parameter A4 (z4),
which is when z4 = (2,...,2). In this case we will simply write Ag = A4(2,...,2). We
will proceed under this assumption from now on.

Example 3.2. Consider a 2 x 2 table with probabilities 7;; = P(X = i,Y = j). The
log-linear parametrization has

logm = )\@ log mo1 = )\@ + Ax
log7r12:)\@+)\y logﬂ’gg:)\@—i-)\x—l-/\y—i-)\xy.
From this we can deduce that
117722

)\XY = log .
21712

The quantity exp Axy is called the odds ratio between X and Y, and is a fundamental
quantity in statistical inference.

Multinomial models can be fitted as Poisson GLMs using the following fact:

Proposition 3.3. Let X; ~ Poisson(y;) independently, and let N = Zle X;. Then,
N ~ Poisson(z i)
i
(X1,...,Xr) | N =n ~ Multinom(n, (71, ...,7)),

where T = p1i/ > ; -

13



3.3 Conditional Independence

Log-linear parameters provide a convenient way of expressing conditional independence
constraints, since factorization of a density is equivalent to an additive separation of the
log-density.

Theorem 3.4. Let p > 0 be a discrete distribution on Xy with associated log-linear
parameters \c, C C V. The conditional independence X, 1L X | X\ {a,p) holds if and
only if \c =0 for all {a,b} CC C V.

Proof. See examples sheet. O

If there is a conditional independence, then the log-linear parameters can be calculated by
just looking at the distribution of each ‘piece’ of the conditional independence separately.
For example, suppose that X4 1L Xp | X¢, where AUBUC = V. Then by Theorem [2.4
we have

p(ﬂj’c) 'p(warBaxC) :p(l’A,QZ'C) 'p(.iUB,JZ'C),

and hence

logp(za,2p,2¢) = logp(za, x¢) +logp(zp, xc) — log p(zc).
Then applying the log-linear expansions to each term, we get
Sodwlew)= D> M@w)+ Y. Mew) - D Milaw),
wcCcv WCAUC WCBUC wcc
where Apc By equating terms we can see that
M (zw) = M (zw) for any W C AUC with WNA#
M (@w) = ABC () for any W C BUC with WN B # )

Aw (zw) = M (@w) + AiE (aw) — Afy (ww)  for any W C C.

So under this conditional independence, the log-linear parameters for p(xy) are easily
obtainable from those for p(z4,z¢) and p(zp, zc).

Example 3.5. Let us now try applying this to our death penalty dataset using R. The
file deathpen.txt is available on the class website.

> df <- read.table("deathpen.txt", header=TRUE)
> df

DeathPen Defendant Victim freq

1 Yes White White 53]
2 No White White 414
3 Yes Black White 11
4 No Black White 37
5 Yes White Black 0
6 No White Black 16
7 Yes Black Black 4
8 No Black Black 139

14



We can fit log-linear models using the glm() command with a Poisson response. This
gives the model DeathPen I Defendant | Victim.

> modl = glm(freq ~ DeathPen*Victim + Defendant*Victim,

+ family=poisson, data=df)
> summary(modl)$coefficients

The output (edited for brevity) is:

Coefficients:
Estimate Std. Error z value Pr(>|zl|)

(Intercept) 4.0610 0.1258 32.283 < 2e-16 **x*
DeathPenNo 1.9526 0.1336 14.618 < 2e-16 *xx*
VictimBlack -4.9711 0.5675 -8.760 < 2e-16 *xx*
DefendantBlack -2.2751 0.1516 -15.010 < 2e-16 **x
DeathPenNo:VictimBlack 1.7045 0.5237 3.255 0.00114 *x
VictimBlack:DefendantBlack 4.4654 0.3041 14.685 < 2e-16 *x*x

We can verify that the coefficient of Victim-Defendant is the same as the marginal log
odds-ratio between those two variables by fitting a model that ignores whether or not the
death penalty was administered:

> mod2 = glm(freq ~ Defendant*Victim,

+ family=poisson, data=df)
> summary(mod2)$coefficients

Estimate Std. Error z value Pr(>|z|)

(Intercept) 5.45318 0.04627 117.84  <2e-16 **x*
DefendantBlack -2.27513 0.15157 -15.01 <2e-16 **x*
VictimBlack -3.37374 0.25423 -13.27 <2e-16 ***

DefendantBlack:VictimBlack 4.46538 0.30407 14.69 <2e-16 ***

Note that the parameter estimates relating to the Defendant’s race (and their standard
errors) are the same as in the larger model.

It is perhaps easier just to recover the predicted counts under the model:

> countl <- predict.glm(modl, type="response")
> countl

1 2 3 4 5 6 7 8
58.035 408.965 5.965 42.035 0.403 15.597 3.597 139.403

Compare these to the actual counts: a goodness of fit test can be performed by using
Pearson’s x? test or (almost equivalently) by looking at the residual deviance of the model.
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4 Undirected Graphical Models

Conditional independence is, in general, a rather complicated object. In fact, one can
derive a countably infinite number of properties like those in Theorem [2.6)to try to describe
it. Graphical models are a class of conditional independence models with particularly nice
properties. In this section we introduce undirected graphical models.

4.1 Undirected Graphs
Definition 4.1. Let V be a finite set. An undirected graph G is a pair (V, E') where:

e V are the vertices;

o EC{{i,j}:i,j €V,i+#j}is aset of unordered distinct pairs of V', called edges.

We represent graphs by drawing the vertices (also called nodes) and then joining pairs of
vertices by a line if there is an edge between them.

Example 4.2. The graph in Figure[[|(a) has five vertices and six edges:
V={1,2,3,4,5};
E= {{1’ 2}7 {17 3}7 {27 3}? {37 4}7 {3, 5}7 {47 5}}

We write ¢ ~ j if {i,j} € E, and say that ¢ and j are adjacent in the graph. The vertices
adjacent to ¢ are called the neighbours of i, and the set of neighbours is often called the
boundary of i and denoted bdg(i).

A path in a graph is a sequence of adjacent vertices, without repetition. For example,
1—2—3—5is a path in the graph in Figure [Ifa). However 3 —1 —2—3 — 4 is not a
path, since the vertex 3 appears twice. The length of a path is the number of edges in it.
There is trivially a path of length zero from each vertex to itself.

Definition 4.3 (Separation). Let A, B, S C V. We say that A and B are separated by S
in G (and write A Lg B | S[G]) if every path from any a € A to any b € B contains at
least one vertex in S.

For example, {1,2} is separated from {5} by {3} in Figure [I|a).

Note that there is no need for A, B, S to be disjoint for the definition to make sense,
though in practice this is usually assumed.

Given a subset of vertices W C V', we define the induced subgraph Gy of G to be the graph
with vertices W, and all edges from G whose endpoints are contained in W. For example,
the induced subgraph of Figure [Ifa) over {2,3,5} is the graph 2 — 3 — 5.

We remark that A and B are separated by S (where SN A =5SNB =) if and only if A
and B are separated by 0 in Gy g.

4.2 Markov Properties

A graphical model is a statistical model based on the structure of a graph. We associate
each vertex v with a random variable X,, and infer structure (a model) on the joint
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Figure 1: Two undirected graphs.

Figure 2: An undirected graph.

distribution of the random variables from the structure of the graph. In all the examples
we consider, the model will be defined by conditional independences arising from missing
edges in the graph.

Definition 4.4. Let G be a graph with vertices V', and let p be a probability distribution
over the random variables Xy. We say that p satisfies the pairwise Markov property for
g if

1 74 Jin G = X; 1L Xj ’ XV\{i,j} [p]

In other words, whenever an edge is missing in G there is a corresponding conditional
independence in p.

Example 4.5. Looking at the graph in Figure[2| we see that there are two missing edges,
{1,4} and {2,4}. Therefore a distribution obeys the pairwise Markov property for this
graph if and only if X1 1 X4 | XQ,Xg and X2 1 X4 | Xl,Xg.

Note that, if the distribution is positive then we can apply Property 5 of Theorem to
obtain that X, Xy 1L X4 | X3.

The word ‘Markov’ is used by analogy with Markov chains, in which a similar independence
structure is observed. In fact, undirected graph models are often called Markov random
fields or Markov networks in the machine learning literature.

Definition 4.6. We say that p satisfies the global Markov property for G if for any disjoint
sets A, B, S

AJ_SB‘Sing — XAJLXB|X5[p].

In other words, whenever a separation is present in G there is a corresponding conditional
independence in p.
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Proposition 4.7. The global Markov property implies the pairwise Markov property.

Proof. 1f i ¢ j then clearly any path from 4 to j first visits a vertex in V' \ {i,j}. Hence
V' \ {i,7} separates ¢ and j. O

We will shortly see that the pairwise property ‘almost’ implies the global property.

It is common, though a pet peeve of your lecturer, to confuse a ‘graph’ with a ‘graphical
model’. A graph is—as should now be clear from the definitions above—a purely mathe-
matical (as opposed to statistical) object; a graphical model is a statistical model that is
based on the structure of a graph.

4.3 Cliques and Factorization

The pairwise Markov property implies a conditional independence involving all the vari-
ables represented in a graph for each edge that is missing from the graph; from Theorem [2.4]
it is therefore a factorization on the joint distribution. A natural question is whether these
separate factorizations can be combined into a single constraint on the joint distribution;
in this section we show that they can, at least for positive distributions.

Definition 4.8. Let G be a graph with vertices V. We say C is complete if i ~ j for every
1,7 € C. A maximal complete set is called a cligue. We will denote the set of cliques in a
graph by C(G).

The cliques of Figure[Ia) are {1,2,3} and {3,4,5}, and the complete sets are any subsets
of these vertices. Note that {v} is trivially complete in any graph.
The graph in Figure [I[b) has cliques {1, 2}, {2,3}, {3,4} and {1, 4}.

Definition 4.9. Let G be a graph with vertices V. We say a distribution with density p
factorizes according to G if

plev) =[] velze) (1)
CceC(9)

for some functions ©¥¢c. The functions ¢ are called potentials.

Recalling Theorem it is clear that this factorization implies conditional independence
constraints. In fact, it implies those conditional independence statements given by the
global Markov property.

Theorem 4.10. Ifp(xy) factorizes according to G, then p obeys the global Markov property
with respect to G.

Proof. Suppose that S separates A and B in G. Let A be the set of vertices that are
connected to A by paths in Gy g; in particular, BN A = (. Let B =V \ (AUS), so that

A and B are separated by S,V =AUBUS, and AC A, B C B.

Every clique in G must be a subset of either AU S or BUS, since there are no edges
between A and B. Hence we can write

11 votee) = ] ve(ze)- I velze)

ceC CeCy CeCp
= f(rz,2s) f(zg,25).
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and hence X ; I X5 | Xg. Then applying property 2 of Theorem gives X4 1L Xp |
Xs. O

Theorem 4.11 (Hammersley-Clifford Theorem). If p(xy) > 0 obeys the pairwise Markov
property with respect to G, then p factorizes according to G.

The proof of this is omitted, but if of interest it can be found in Lauritzen’s book.

We can now summarize our Markov properties as follows:
factorization = global Markov property = pairwise Markov property,
and if p is positive, then we also have
pairwise Markov property = factorization,

so all three are equivalent. The result is not true in general if p is not strictly positive.

Example 4.12. Let X3 and X4 be independent Bernoulli variables with P(X3 = 1) =
P(X4 = 1) = %, and P(X1 = XQ = X4) = 1. Then X4 A X1 ’ XQ,Xg and X4 1 XQ ’
X1, X3, but Xy L X1, Xo | Xs.

Hence, P satisfies the pairwise Markov property with respect to Figure [2 but not the
global Markov property.

It is important to note that one can define models of the form that are not graphical,
if the sets C do not correspond to the cliques of a graph. See the Examples Sheet.

4.4 Decomposability

Given the discussion in Section we might wonder whether we can always perform
inference on cliques separately in graphical models? The answer turns out to be that, in
general, we can’t—at least not without being more careful. However, for a particularly
important subclass known as decomposable models, we can.

Definition 4.13. Let G be an undirected graph with vertices V = AU S U B, where
A, B, S are disjoint sets. We say that (A, S, B) constitutes a decomposition of G if:

e (g is complete;

e A and B are separated by S in G.

If A and B are both non-empty we say the decomposition is proper.

Example 4.14. Consider the graph in Figure [Ifa). Here {1,2} is separated from {4, 5}
by {3}, and {3} is trivially complete so ({1,2},{3},{4,5}) is a decomposition. Note that
({2},{1,3},{4,5}) is also a decomposition, for example. We say that a decomposition is
minimal if there is no subset of S that can be used to separate A and B.

The graph in Figure (b) cannot be decomposed, since the only possible separating sets are
{1,3} and {2, 4}, which are not complete. A graph which cannot be (properly) decomposed
is called prime.
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Figure 3: Left: a decomposable graph. Right: the results of a possible decomposition of
the graph, ({1,2},{3,4},{5,6}).

Definition 4.15. Let G be a graph. We say that G is decomposable if it is complete, or
there is a proper decomposition (A, S, B) and both G4s and Gpug are also decomposable.

The graph in Figure[I|(a) is decomposable, because using the decomposition ({1,2}, {3}, {4,5})
we can see that Gy 93y and Gy 45y are complete (and therefore decomposable by defini-
tion).

The graph in Figure (3| can be decomposed as shown, into Gy 934y and Gy3 456}, both of

which are themselves decomposable.

Definition 4.16. Let C be a collection of subsets of V. We say that the sets C satisfy
the running intersection property if there is an ordering C1,...,Ck, such that for every
j=2,...,k there exists o(j) < j with

j—1
c;nN U C;=0C;n Cg(j).

=1

In other words, the intersection of each set with all the previously seen objects is contained
in a single set.

Example 4.17. The sets {1, 2,3}, {3,4}, {2,3,5}, {3, 5, 6} satisfy the running intersection
property, under that ordering.

The sets {1,2}, {2,3}, {3,4}, {1,4} cannot be ordered in such a way.
Proposition 4.18. If C4,...,Cy satisfy the running intersection property, then there is

a graph whose cliques are precisely (the inclusion maximal elements of) C = {C1,...,Ck}.

Proof. This is left as an exercise for the interested reader. O

Definition 4.19. Let G be an undirected graph. A cycle is a sequence of vertices
(v1,...,vg) for k > 3, such that there is a path v; —--- — vy and an edge vy — v;.

A chord on a cycle is any edge between two vertices not adjacent on the cycle. We say that
a graph is chordal or triangulated if whenever there is a cycle of length > 4, it contains a
chord.

Beware of taking the word ‘triangulated’ at face value: the graph in Figure (b) is not
triangulated because of the cycle 1 — 2 — 5 — 4, which contains no chords.
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(a) (b)

Figure 4: Two undirected graphs: (a) is chordal, (b) is not.

Theorem 4.20. Let G be an undirected graph. The following are equivalent:

(i) G is decomposable;
(ii) G is triangulated;
(iii) every minimal a,b-separator is complete;

(iv) the cliques of G satisfy the running intersection property.

Proof. (i) = (ii). We proceed by induction on p, the number of vertices in the graph.
Let G be decomposable; if it is complete then it is clearly triangulated, so the result holds
for p = 1. Otherwise, let (A, S, B) be a proper decomposition, so that Gaus and Gpus
are both have strictly fewer vertices and are decomposable. By the induction hypothesis,
there are no chordless cycles entirely contained in AU S or BU S, so any such cycle must
contain a vertex a € A and b € B. Then the cycle must pass through S twice, and since
S is complete this means there is a chord on the cycle.

(i) = (iii). Suppose there is a minimal a, b-separator, say S, which is not complete;
let s1,s9 € S be non-adjacent. Since the separator is minimal there is a path m; from a
to b via s1 € S, and another path 7o from a to b via sy € S, and neither of these paths
intersects any other element of S. By concatenating the paths we obtain a closed walk;
by shrinking the end of the paths to any vertices which are common to both we obtain
a cycle. Make the cycle of minimal length by traversing chords, and we end up with a
chordless cycle of length > 4.

(ili) == (iv). If the graph is complete there is nothing to prove, otherwise pick a, b not
adjacent and let S be a minimal separator. As in Theorem let A be the connected
component of a in Gy g, and B the rest. Then apply the result by induction to the strictly
smaller graphs G ; g and G - Then claim that this gives a series of cliques that satisfies
the RIP. [See Examples Sheet 2.]

(iv) = (i). We proceed by induction, on the number of cliques. If ¥ = 1 there is nothing
to prove. Let Ry =V \ C, and Sy = Cy, N Uf:_ll C;; we claim that (Ry, Sk, Cy \ Sk) is a
proper decomposition, and that the graph Gg,us, has k — 1 cliques that also satisfy the
running intersection property. O

Corollary 4.21. Let G be decomposable and (A, S, B) be a proper decomposition. Then
Gaus and Gpus are also decomposable.
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Proof. If G is triangulated then so are any induced subgraphs of G. O

This corollary reassures us that to check if a graph is decomposable we can just go ahead
and start decomposing, and we will never have to ‘back track’.

Definition 4.22. A forest is a graph that contains no cycles. If a forest is connected we
call it a tree.

All forests (and hence trees) are decomposable, since they are clearly triangulated. In fact,
the relationship between trees and connected decomposable graphs is more fundamental
than this. Decomposable graphs are ‘tree-like’; in a sense we will make precise later in the
course (Section . This turns out to be extremely useful for computational reasons.

4.5 Separator Sets

Let G be a decomposable graph, and let C,...,Cy be an ordering of the cliques which
satisfies running intersection. Define the jth separator set for j > 2 as

j—1
Si=CinlCi=CinChy.
=1

By convention S7 = .

Lemma 4.23. Let G be a graph with decomposition (A, S, B), and let p be a distribu-
tion; then p factorizes with respect to G if and only if its marginals p(x aus) and p(xpus)
factorize according to Gaus and Gpus respectively, and

p(zv) - p(zs) = p(zaus) - p(xBUs)- (2)

Proof. Note that, as observed in the proof of Theorem every clique in G4ug is a
(subset of a) clique in G. Hence if (2)) and the factorizations with respect to those subgraphs
hold, then we can see that p factorizes with respect to G.

Now suppose that p factorizes with respect to G, and note that this implies that p obeys the
global Markov property with respect to G. From the decomposition, we have A L3 B | S
in G, and so by the global Markov property applied to G we obtain the independence X4 I
Xp | Xs[p]; this gives us the equation by Theorem Since this is a decomposition,
all cliques of G are contained either within AUS or BUS (or both). Let A be the cliques
contained in AU S, and B the rest.

Then p(zv) = [[oeaVo(ze) - [loep¥o(xe) = h(wa, xs) - k(xB, s). Substituting p(zy)
into and integrating both sides with respect to x4 gives

pzs) - k(s zs) / Wz, 25) doa = plas) - plas, os)

p(xS) : k(l‘Bvxs) ) h(xs) :p(ﬂjs) 'p(xB,ﬂfs),

which shows that p(zp,zs) = V5(rs) [[oep e as required. O
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Theorem 4.24. Let G be a decomposable graph with cliques C1,...,Cy. Then p factorizes
with respect to G if and only if

k

p(zy) = Hp(‘rCi\Si | Ts;) = H p(xCi)’

Further, the quantities p(xci\si | zs,) are variation independent (i.e. they may jointly take
any set of values that would be valid individually), so inference for p(zy) can be based on
separate inferences for each p(xc;).

Proof. If p factorizes in the manner suggested then it satisfies the factorization property
for G.

For the converse we proceed by induction on k. If kK = 1 the result is trivial. Otherwise,
note that Cy \ Sk is separated from Hy, = (UKk Ci) \ Sk by Sk, so we have a decomposition
(Hy, Sk, Ck \ Sk), and hence applying Lemma

p(xsk) 'p(l’v) = p(ka) 'p(J:Hk?xSk)

where p(zy, , vs, ) factorizes according to Gy, us, . This is the graph with cliques C1, ..., Ck_1,
which trivially also satisfy running intersection. Hence, by the induction hypothesis

giving the required result.

The variation independence follows from the fact that p(zc,\s, | *s,) can take the form
of any valid probability distribution. O

This result is extremely useful for statistical inference, since we only need to consider the
margins of variables corresponding to cliques. Suppose we have a contingency table with
counts n(zy). The likelihood for a decomposable graph is

l(p;n) = Z n(xy)log p(xy)

Ea%

k
=> n(zyv) Y logplzcys, | ©s,)
Ty =1

k
= Z Z”(UCCZ-) logp(zops, | 2s,),

=1 zc;

so inference about p(rc,\s, | 7s;) should be based entirely upon n(zc,). Using Lagrange
multipliers (see also Sheet 0, Question 4) we can see that the likelihood is maximized by
choosing

using the empirical distribution for each clique.
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4.6 Non-Decomposable Models

It would be natural to ask at this point whether the closed-form results for decomposable
models also hold for general undirected graph models; unfortunately they do not. However,
from our discussion about exponential families we can say the following:

Theorem 4.25. Let G be an undirected graph, and suppose we have counts n(zy). Then
the maximum likelihood estimate p under the set of distributions that are Markov to G is
the unique element in which

n-plxe) =n(ze).

The iterative proportional fitting (IPF) algorithm, also sometimes called the iterative pro-
portional scaling (IPS) algorithm, starts with a discrete distribution that satisfies the
Markov property for the graph G (usually we pick the uniform distribution, so that every-
thing is independent), and then iteratively fixes each margin p(z¢) to match the required
distribution using the update step:

e i) ®

=pD(ay\c | 2c) - plac).

P zy) = p(zy) -

Note that this is closely related to the message passing algorithm in Section

Algorithm 1 Iterative Proportional Fitting (IPF) algorithm.

function IPF(collection of consistent margins ¢(x¢,) for sets C1,...,Cy)
set p(zy) to uniform distribution;
while max; max, |p(zc,) — q(zc;)| > tol do
foriin 1,...,k do
update p(zv) to p(zy\¢; | z¢;) - a(@c,);
end for
end while
return distribution p with margins p(z¢;,) = q¢(z¢;).
end function

The sequence of distributions in IPF converges to the MLE p(xy). To see this, first
note that the update ensures that the moments for the sufficient statistics involving
the clique C' are matched. Second, after each update step the joint distribution remains
Markov with respect to G: this can be seen easily by considering the factorization. Per-
forming each step increases the likelihood, and since the log-likelihood is concave, this sort
of co-ordinate based iterative updating scheme will converge to the global maximum.

Example 4.26. Consider the 4-cycle in Figure[20|(a), with cliques {1,2}, {2, 3}, {3, 4}, {1,4}.

Suppose we have data from n = 96 observations as shown in the table below (the column
‘count’).
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X1 Xo X3 Xy | count step 0 stepl step2 step3d step4 7
0 0 0 0 5 6 7.5 13 13 12,59 | 12.6
1 0 0 0 10 6 3.75 6.5 6.5 6.97 | 6.95
0 1 0 0 20 6 9.25 1197 11.97 11.59 | 11.58
1 1 0 0 1 6 3.5 4.53 4.53 4.86 | 4.87
0 0 1 0 0 6 7.5 2 1.17 1.13 | 1.13
1 0 1 0 3 6 3.75 1 0.58 0.63 | 0.63
0 1 1 0 4 6 9.25 6.53 3.81 3.69 | 3.69
1 1 1 0 0 6 3.5 2.47 1.44 1.55 | 1.55
0 0 0 1 24 6 7.5 13 13 13.33 | 13.35
1 0 0 1 0 6 3.75 6.5 6.5 6.11 6.1
0 1 0 1 9 6 9.25 1197 11.97 12.28 | 12.27
1 1 0 1 3 6 3.5 4.53 4.53 4.26 | 4.28
0 0 1 1 1 6 7.5 2 2.83 291 | 291
1 0 1 1 2 6 3.75 1 1.42 1.33 | 1.33
0 1 1 1 4 6 9.25 6.53 9.25 9.49 | 9.46
1 1 1 1 10 6 3.5 2.47 3.5 3.29 3.3

The marginals over the cliques are:
n(xlg) XQ =0 1 n(xgg) X3 =0 1
X1=0 30 37 Xo=0 39 6
1 15 14 1 33 18
n x34) X4 =0 1 n .%'14) X4 =0 1
X3=0 36 36 X1=0 29 38
1 717 1 14 15

To implement IPF, we start with a uniform table, given in the column ‘step 0’. We then
scale the entries so as to match the Xi, Xo margin above. For instance, the four entries
corresponding to X7 = Xy = 0 are scaled to add up to 30; this gives the column ‘step
1’. This is repeated for each of the other cliques, giving steps 2-4. By the fourth step
the distribution of all cliques has been updated, but note that the margin over X1, Xs is
now 29.96, 15.04, 37.04, 13.96. We keep cycling until the process converges to the final

column, which matches all four margins.

25




5 Gaussian Graphical Models

Recall that Xy has a multivariate Gaussian distribution with parameters p and ¥ if
the joint density is

flzv) = (27T);a/12|gm exXp {—;(ﬂﬁv —w)"S (ay - u)} : zy € RP.

Exercise: show that EX = p and CovX = X (hint: using the Cholesky decomposition
write ¥ = LLT, where L is a lower triangular invertible matrix, and use a change of
variables).

Proposition 5.1. Let Xy ~ Ny(u, X), and let A be a g x p matriz of full rank q. Then
AXy ~ Ny(Ap, ALAT).

In particular, for any U CV we have Xy ~ Ny(pu, Evv).

Proof sketch (you should fill in the gaps). For ¢ = p this just follows from applying the
transformation Z = AXy to the density of Xy . If ¢ < p then since X is positive definite
we can write ¥ = LLT for a non-singular lower triangular matrix L; then construct a

-2

whose first ¢ rows are A, and such that AL has its first ¢ rows orthogonal to its last p — ¢
rows. Then

non-singular p X p matrix

ro ASAT 0
T _
AxA _< 0 BZBT>

and the first ¢ components have the desired marginal distribution. ]

For simplicity of notation, we will assume throughout that u = 0.

5.1 Gaussian Graphical Models

We only consider the case in which ¥ is positive definite, so all our density functions are
strictly positive. Hence, by the Hammersley-Clifford Theorem, the pairwise and global
Markov properties, and the factorization criterion all lead to the same conditional inde-
pendence restrictions. If any of these hold, we will say that ¥ ‘is Markov with respect to’
a graph, without ambiguity.

Recall that X4 1 Xp if and only if ¥ 45 = 0, and note that a corollary of this is that
X LY and X I Z does imply X 1L Y, Z for jointly Gaussian random variables.

Theorem 5.2. Let Xy ~ Ny(u,X) for positive definite 32, with K = Y=t Then the
distribution of Xv is Markov with respect to G if and only if ke, = 0 whenever a 4 b in G.

Proof. This follows immediately from Proposition O
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We introduce some notation for convenience. If M is a matrix whose rows and columns
are indexed by A C V, we write {M}4 4 to indicate the matrix indexed by V whose
A, A-entries are M and with zeroes elsewhere.

Lemma 5.3. Let G be a graph with decomposition (A, S, B), and Xy ~ N,(0,%). Then
p(xy) is Markov with respect to G if and only if

yl= {(EAUS,AUS)_l}AU&AUg + {(EBUS,BUS)_l}BU&Bug - {(ES,S)_l}&Sa

and X aus,aus and Xpus,pus are Markov with respect to Gaus and Gpus respectively.

Proof. We know from Lemma that

p(zv) - p(zs) = p(za,zs) - p(zp, Ts5).

where p(z4,2g) and p(zp,zg) are Markov with respect to Gaus and Gpus respectively.
Since margins of multivariate Gaussians are also multivariate Gaussian, we can insert the
appropriate density for each term, take logs and rearrange to see that:

Tv—1 T -1 T -1 T 1
oy X ry +x5(Xss) T s = 5B aus,aus) Taus + Tpus(EBUS,BUS) T TBUS + const.

which is a quadratic polynomial in the variables z,. By, comparing coefficients for each
term we obtain that
-1 -1 -1 -1
S = {(Zaus,aus) }AUS,AUS + {(ZBus,Bus) }BUS,BUS —{(Zs,9) }5’5-

This gives the result. O

Applying the previous result to a decomposable graph repeatedly we see that Xy, is Markov
with respect to G if and only if

k

k
271 = Z {(EC’i,Ci)il}ChCi - Z {(Zsiysi)il}ghsi :
=2

i=1

5.2 Maximum Likelihood Estimation

Let X‘(,l), .. ,X‘(/n) be i.i.d. N,(0,3); then the maximum likelihood estimator of ¥ is the
sample covariance matrix

Let 329 denote the MLE for ¥ under the restriction that the distribution satisfies the
Markov property for G, and KY its inverse.

Then, since the MLE of a saturated Gaussian is to have ¥ = W, the maximum likelihood
estimate for K = ¥~ ! is given by

k

_ k
<ig> 1 - Z {(WC’i,Ci)il}Ci,Ci - Z {(WSnSi)il}Si’Si .
1=2

i=1
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analysis vectors

mechanics

statistics

Figure 5: A graph for the maths test data.

5.3 Data Examples

Example 5.4. Whittaker (1990) analyses data on five maths test results administered
to 88 students, in analysis, algebra, vectors, mechanics and statistics. The empirical
concentration matrix (i.e. S~1) is given by the following table (entries multiplied by 103)

mechanics vectors algebra analysis statistics

mechanics 5.24 -2.43 -2.72 0.01 -0.15
vectors -2.43 10.42 -4.72 -0.79 -0.16
algebra -2.72 -4.72 26.94 -7.05 -4.70
analysis 0.01 -0.79 -7.05 9.88 -2.02

statistics -0.15 -0.16 -4.70 -2.02 6.45

Notice that some of the entries in the concentration matrix are quite small, suggesting
that conditional independence holds. Indeed, fitting the graphical model in Figure [5| gives
an excellent fit (see Examples Sheet 2). The model suggests that ability in analysis and
statistics is independent of ability in mechanics and vector calculus, conditional on one’s
fundamental abilities in algebra.
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6 The Lasso and Graphical Lasso

6.1 The Lasso

Consider the ordinary linear regression model

P
Y, = Zﬂ%’jﬁj + &,

j=1
with g; "= N(0,02). The least squares estimator of 8 = (B1,..., ;)7 is
B = argming||Y — XA|* = (X" X)Xy,

provided that X has full column rank p. You may recall that B—B~ N,(0,0%(X Tx)=1,
so in particular the MLE is unbiased and achieves the Cramér-Rao lower bound exactly.
Note, however, that since the estimator is a continuous random variable, the probability
that B]- = 0 is always zero. In other words, B does not select a submodel of non-zero
coeflicients.

To select a submodel for linear regression we could use, for example, sequential likelihood-
ratio or t-tests, or some sort of stepwise selection with an AIC penalty:

Barc = arg ming||Y" — X B2 + 202||B]|o-

Here ||Bllo = #{j : B; # 0} is the Lo-penalty, which counts the number of non-zero entries
in the argument. However, these approaches do not ‘scale well’, in the sense that they
become prohibitively computationally expensive (or just don’t work) for large numbers
of variables p. To solve the AIC program above, we have to fit separate models for each
subset of the p parameters. This potentially leads to 2P different linear model fits (though
in practice we would use some sort of search method).

An alternative is to use a different penalty, one which is convex.
Brasso = arg ming||Y — X% + |81 (4)

Here ||8]]1 = Y_7_ |8i] is the Ly-penalty. This estimator has several nice properties, which
we will explore.

First note that, if we ignore terms not depending upon ;, we get

n

> (25 — i;B8))% + AlBj| (5)

i=1

where z;; = Y; — >, £ ZiBk. This is just a quadratic function of 3;, plus the penalty
term, so should be relatively simple to solve. The next lemma gives us the solution.

Lemma 6.1. Let
R(p) = ap® — by + Al

for a > 0. Then R is minimized at

- 1 .
= 5 sign(B)(bl = \).

where x4 = max{z,0}.
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Figure 6: A plot of f(z) = sign(x)(Jz| — A\)4+ for x € (=5,5) and A = 1. The dashed line
isy=ux.

To interpret this, first assume a = 1. The usual quadratic function would be minimized
at b/2, but the penalty function ‘shrinks’ the solution towards 0. The function f(z) =
sign(z)(|z| — A)4 is shown in Figure[6] The absolute value of z is reduced by the penalty
parameter, and values below the threshold A are cut off to zero entirely. This is sometimes
called soft-thresholding.

To find the global minimizer of the lasso problem , we need to minimize with respect
to each ;. Note, however, that the coefficients z;; depend upon the other values 5_;.
The simplest way to solve this is to iteratively update each 3; by solving the problem
and then updating the z;;. This is called the method of coordinate descent, and is
guaranteed to find the global maximum for problems of the form .

6.2 Sparsity

The lasso has the property of producing sparse estimates; that is, it can return an estimate
of the parameter vector B for which a large proportion of the entries are exactly 0. This is
very useful in scientific contexts where there are a large number of possible explanations
for an effect, but it is reasonable to assume that only a few are actually important. For
example: ‘which subset of genes are responsible for causing this disease?’

The geometric explanation for this property can be seen by first taking the Lagrangian
dual of @ For any A > 0, there exists a t > 0 such that

Brasso(N) = argmingep, (|| — X512, (6)
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Figure 7: Tllustration of why the Li-penalty leads to sparse estimates. The L;-ball Bi(t)
for t = 1 is shown, and the maximum within it lies at the corner (0, 1).

where Bi(t) = {# € RP : ||B]|1 < t}. In other words, it is equivalent to constraint the
Li-norm of 8 to be smaller than t.

The effect of this is shown in Figure |7}, which shows that the contours of the L;-norm are
‘pointy’ on the axes, and therefore a local minimum can occur with positive probability.
You will prove this in the case of a one-dimensional model on Examples Sheet 2.

Let 5 = (ﬁg,ﬁV\S)T, where S = {j : B; # 0}. We call S the set of active covariates. In
many problems it is just as important to estimate S consistently as 8. Given an estimate
B, let

S

S(B) ={j: B; # 0%
the property of consistency for model selection is that P(S =5)—1asn— oc.

It can be proved that the lasso is consistent for model selection as the amount of data
n — oo, provided certain conditions are satisfied. One is the so-called irrepresentability
condition, which prevents a set of active covariates from being too closely related to a set
of inactive covariates. Let %X TX — % as n — oo, where ¥ is a p X p-matrix (you may
recall that this is proportional to the Fisher information matrix for ). Then divide ¥
into blocks S and N =V '\ S corresponding to the active and inactive covariates:

5 (Ess ZSN)
YNs 2NN
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The irrepresentability condition requires that
max Yj5(Sss) ' sign(Bs) < 1,
JEN

where sign(fg) is a vector of the signs of the entries in Sg (i.e. it takes values in {—1,+1}).
If this condition holds, then P(S’ =S5) — 1 as n — oo, provided that A is chosen to grow
at the appropriate rate. If the condition is violated (i.e. the expression above is strictly
greater than 1), then inconsistency is guaranteed in the sense that no value of A will give
the correct model.

Example 6.2. Suppose that X;;, X;» are independent standard normals and X;3 = %Xﬂ—i—
%Xiz + %Zi for some independent Z; ~ N(0,1). Then one can check that

E:

who O =
wo = O
= Lo INoI N

and if the active set is S = {1,2} we get

_ 2 2
E3,12(2121,12) = (3, 3) ;

hence if £, B2 have the same sign the irrepresentability condition is violated.

Picking f1 = 2 and B2 = 3 gives the lasso path shown in Figure with the example
shown for n = 103. For sufficiently small A (the right-hand side of the plot) we see the
estimate is approximately correct, as we expect from maximum likelihood estimation with
a fairly large sample size. However, nowhere in the plot is 83 = 0, because the algorithm
prefers having 3 # 0 to (correctly) having both 8; and 2 non-zero.

6.3 The Graphical Lasso

For Gaussian graphical models, we are interested in determining the true edges of a
graph from data. For a large number of variables, finding the best fitting graph by an
exhaustive—or even greedy—search is infeasible. An alternative is to use a method that
has a continuous penalty function, similar to the ordinary lasso.

In this case, in terms of the concentration matrix K, the log-likelihood is
I(K; S, n) = g {log |K| — tr(SK)}

Recall that we obtain the conditional independence X; I X | Xy ;1 (and hence can
consider the i — j edge missing from the true graph) if and only if k;; = 0. This suggests
that, to obtain a sparse graph we want to penalize the off-diagonal entries in K.

This suggests a penalized estimator of the form

- . n n
Kglasso = argming b log | K| + 5 tr(SK) + )\Z | K|
1<J
This is the graphical lasso estimator (sometimes called the Glasso estimator) for K
(and hence for ). Here we only penalize the off-diagonal entries, since we do not want
the partial covariances to be zero.

Under similar (though slightly more complicated) conditions to the ordinary lasso, the
graphical lasso is consistent for model selection.
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Figure 8: Lasso solution path for Example in which the irrepresentability condition
does not hold.

Example 6.3. The Sachs et al. (2005) data consists of measurements of 11 signalling
proteins in 7,466 different cells.

> dat <- read.table("sachs_et_al.txt", header=TRUE)
> head(dat)

PIP3 Plcg PIP2 PKC PKA Raf Mek Erk P38 Jnk Akt

1 568.80 8.82 18.30 17.00 414 26.4 13.20 6.61 44.9 40.0 17.0
2 8.13 12.30 16.80 3.37 352 35.9 16.50 18.60 16.5 61.5 32.5
3 13.00 14.60 10.20 11.40 403 59.4 44.10 14.90 31.9 19.5 32.5
4 1.29 23.10 13.50 13.70 528 73.0 82.80 5.83 28.6 23.1 11.8
524.80 5.19 9.73 4.66 305 33.7 19.80 21.10 25.7 81.3 46.1
6 10.90 17.60 22.10 13.70 610 18.8 3.75 11.90 49.1 57.8 25.7

> S <- cov(dat)

Most of the correlations between these variables are quite large, but let’s try to find a sparse
graphical model that can explain these relationships. The glasso package implements the
graphical lasso.

> library(glasso)
> out <- glassopath(S,
+ rholist = 10"seq(from=3, to=5, length=21),
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Figure 9: The graph output by the graphical lasso algorithm applied to the Sachs et al.
data, for A = 10%.

+ penalize.diagonal = FALSE, trace=0)
> names(out) # wi is the estimated inverse covariance

[1] "w" "wi" "approx" '"rholist" "errflag"

6.4 Selection of the Penalty Parameter

It should be clear from the form of (4) that the penalty parameter needs to grow with n in
order to have any influence on the parameter estimate. Exactly what rate the parameter
should grow at depends on what the objective of using the lasso estimator is.

There are two main approaches. If the goal is the prediction of future observations Y;,
then the usual approach is to use cross-validation to select A. This is not covered here,
but see the Part B Statistical Machine Learning course.

If the goal is to select the correct model, then it is necessary for A = A\, to grow with n
at a rate between O(n'/2) and O(n). You will show this in the one-dimensional case on
Examples Sheet 2.
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earthquake

Figure 10: A directed graph representing a burglar alarm and the reasons it might go off.

7 Directed Graphical Models

Undirected graphs represent symmetrical relationships between random variables: the
vertices in an undirected graph are typically unordered. In many realistic situations the
relationships we wish to model are not symmetric: for example, in regression we have a
outcome that is modelled as a function of covariates, and implicitly this suggests that the
covariates ‘come before’ the outcome (in a temporal sense or otherwise).

A further limitation of undirected graphs is that they are only able to represent conditional
independences; marginal independences arise very naturally. For example, suppose that
we have independent inputs to a system, and an output that is a (random) function of the
inputs. An example is given in Figure

Such situations are naturally represented by a directed graph.

Definition 7.1. A directed graph G is a pair (V, D), where

e I/ is a finite set of wertices; and

e D CV xV is a collection of edges, which are ordered pairs of vertices. Loops (i.e.
edges of the form (v, v)) are not allowed.

If (v,w) € D we write v — w, and say that v is a parent of w, and conversely w a child of
v. Examples are given in Figures [10] and [11f(a).

We still say that v and w are adjacent if v — w or w — v. A path in G is a sequence of
distinct vertices such that each adjacent pair in the sequence is adjacent in G. The path
is directed if all the edges point away from the beginning of the path.

For example, in the graph in Figure (a)7 1 and 2 are parents of 3. There is a path
1 — 3+ 2 — 5, and there is a directed path 1 — 3 — 5 from 1 to 5.

The set of parents of w is pag(w), and the set of children of v is chg(v).

Definition 7.2. A graph contains a directed cycle if there is a directed path from v to w
together with an edge w — v. A directed graph is acyclic if it contains no directed cycles.
We call such graphs directed acyclic graphs (DAGs).

All the directed graphs considered in this course are acyclic.

A topological ordering of the vertices of the graph is an ordering 1,...,k such that i €
pag(j) implies that 4 < j. That is, vertices at the ‘top’ of the graph come earlier in the
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ordering. Acyclicity ensures that a topological ordering always exists (see the Examples
Sheet).

We say that a is an ancestor of v if either a = v, or there is a directed path a — --- — v.
The set of ancestors of v is denoted by ang(v). The ancestors of 4 in the DAG in Figure
11{a) are ang(4) = {2,4}. The descendants of v are defined analogously and denoted
deg(v); the non-descendants of v are ndg(v) = V \ deg(v). The non-descendants of 4 in

Figure [L1f(a) are {1,2,3}.

7.1 Markov Properties

As with undirected graphs, we will associate a model with each DAG via various Markov
properties. The most natural way to describe the model associated with a DAG is via a
factorization criterion, so this is where we begin.

For any multivariate probability distribution p(xy ), given an arbitrary ordering of the

variables x1,...,xE, we can iteratively use the definition of conditional distributions to
see that
k
plav) = [ p: [ z1,. .. 2i0).
i=1

A directed acyclic graph model uses this form with a topological ordering of the graph,
and states that the right-hand side of each factor only depends upon the parents of i.

Definition 7.3 (Factorization Property). Let G be a directed acyclic graph with vertices
V. We say that a probability distribution p(xy ) factorizes with respect to G if

p(mv) = H p(il?v | mpag(v))a zy € Xy.
veV

This is clearly a conditional independence model; given a total ordering on the vertices V,
let pre_(v) = {w | w < v} denote all the vertices that precede v according to the ordering.
It is not hard to see that we are requiring

p(l‘v | xpre<(v)) = p(xv | xpag(v))a veV

for an arbitrary topological ordering of the vertices <. That is,

Xy L Xpre<(v)\pag(v) | Xpag(v) [p] (7)

Since the ordering is arbitrary provided that it is topological, we can pick < so that as
many vertices come before v as possible; then we see that implies

Xo L Xudg()\pag(e) | Xpag(e) [P] (8)

Distributions are said to obey the local Markov property with respect to G if they satisfy
for every v € V.

For example, the local Markov property applied to each vertex in Figure (a) would
require that

X)L Xy, X, X, L X, X3 L Xy | X1, X
Xy 1 X1, X3 | Xo X5 L X1, X5 | X3,Xy4
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(a) (b)

Figure 11: (a) A directed graph and (b) its moral graph.

There is some redundancy here, but not all independences that hold are given directly.
For example, using Theorem we can deduce that Xy, X5 1 X | X2, X3, but we might
wonder if there is a way to tell this immediately from the graph. For such a ‘global Markov
property’ we need to do a bit more work.

7.2 Ancestrality

We say that a set of vertices A is ancestral if it contains all its own ancestors. So, for
example, the set {1,2,4} is ancestral in Figure [11[a); however {1, 3} is not, because {2}
is an ancestor of {3} but it not included.

Ancestral sets play an important role in directed graphs because of the following proposi-
tion.

Proposition 7.4. Let A be an ancestral set in G. Then p(xy) factorizes with respect to
G only if p(x4) factorizes with respect to G4.

Proof. See Examples Sheet 3. O

Now suppose we wish to interrogate whether a conditional independence X4 1L Xp | X¢
holds under a DAG model. From the previous result, we can restrict ourselves to asking
if this independence holds in the induced subgraph over the ancestral set ang(AU BUC).

Definition 7.5. A v-structure is a triple i — k < j such that i /¢ j.

Let G be a directed acyclic graph; the moral graph G™ is formed from G by joining any
non-adjacent parents and dropping the direction of edges.

In other words, the moral graph removes any ‘v-structures’ by filling in the missing edge,
and then drops the direction of edges. An example is given in Figure

Proposition 7.6. If py factorizes with respect to a DAG G, then it also factorizes with
respect to the undirected graph G™.

Proof. This follows from an inspection of the factorization and checking the cliques from
G™. See the Examples Sheet. O
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Using this proposition, we see that the DAG in Figure[11|(a) implies X1 L X4, X5 | X2, X3,
by using the global Markov property applied to the moral graph in Figure b). In fact,
moral graphs are used to define the global Markov property for DAGs.

Definition 7.7. We say that p(zy ) satisfies the global Markov property with respect to G
if whenever A and B are separated by C' in (Ganaupuc))™ we have X4 I Xp | Xc [p].

The global Markov property is complete in the sense that any independence not exhibited
by a separation will not generally hold in distributions Markov to G. We state the result
formally here, but the proof is not given in this course.

Theorem 7.8 (Completeness of global Markov property.). Let G be a DAG. There ezists
a probability distribution p such that X4 L Xp | X¢ [p] if and only if A Ly B | C in
(gan(AUBUC)m‘

In other words, the global Markov property gives all conditional independences that are

implied by the DAG model.

We now give the main result concerning Markov equivalence, which says that each of our
three properties give equivalent models.

Theorem 7.9. Let G be a DAG and p a probability distribution. Then the following are
equivalent:

(i) p factorizes according to G;
(ii) p is globally Markov with respect to G;

(iii) p is locally Markov with respect to G.

Notice that, unlike for undirected graphs, there is no requirement of positivity on p: it
is true even for degenerate distributions. There is also a ‘pairwise’ Markov property for
directed graphs, which we will not cover; see Lauritzen’s book for interest.

Proof. (i) = (ii). Let W = ang(A U B U C), and suppose that there is a separation
between A and B given C in (Gy)™. The distribution p(zy ) can be written as

p(ftw) = H p(mv | ‘Tpa(v))a
veW
so in other words it is Markov w.r.t. Gy and hence to (G )™ (see Propositions|7.6|and[7.4)).

But if p factorizes according to the undirected graph (Gy)™ then it is also globally Markov
with respect to it by Theorem and hence the separation implies X4 1L Xp | X¢ [p].

(i) = (iii). Note that moralizing only adds edges adjacent to vertices that have a child
in the graph, and also that {v} Undg(v) is an ancestral set. It follows that in the moral
graph (Gyjundg(v))""» there is a separation between v and ndg(v) \ pag(v) given pag(v).

(ili) = (i). Let < be a topological ordering of the vertices in G. The local Markov

property implies that X, is independent of X, q(,)\pa(v) g1ven Xpa(w), so in particular it is

independent of Xjre_(4)\pa(

p(ry) = Hp(xv | $pre<(v)) = Hp(xv | xpa(v))

v) given X, (,). Hence

as required. ]

38



7.3 Statistical Inference

The factorization of distributions that are Markov with respect to a DAG is particularly
attractive statistically because, as with the decomposable models in Theorem the
conditional distributions can all be dealt with entirely separately.

Consider again the example of a contingency table with counts n(xy ). The likelihood for
a DAG model is

l(p;n) = Z (zv)logp(zy)
—Z n\xry Zlogva|xpav)

veV

= Z Z xv, )logp(l’v | xpa(v))

VEV Tv,Tpa(v)

=2 D0 D0l Ty 10820 | Tpuie):

veV zpd('u) Ty

where each of the conditional distributions p(zy | Zpa(y)) can be dealt with entirely sep-
arately. That is, we can separately maximize each inner sum va n(xv,xpa(v)) log p(zy |
Tpa(v)) Subject to the restriction that > p(zy | Zpaw)) = 1, and hence obtain the MLE

n(zy, :Epa(v)) )

ﬁ(-rv ‘ xpa(v)) =

n<mpa(v))
n($va Tpa(v )
hence p(zy) 1_[1):r3v|33pa = HTP())
veV veV pa(v)

This looks rather like the result we obtained for decomposable models, and indeed we will
see that there is an important connection.

A slightly more general result is to say that if we have a separate parametric model
defined by some parameter 6, for each conditional distribution p(z, | Tpa(y); 0), then we
can perform our inference on each 6, separately.

Formally: the MLE for 0 satisfies
l‘v, H Py | Lpa(v) ) zy € Ay
veV

In addition, if we have independent priors 7(6) =[], 7(6,), then
m(0 [ zv) occw(0) - p(av | 0)
= HT[‘ xv | Lpa(v)s 01})7

which factorizes into separate functions for each 6,, showing that the 6, are independent
conditional on Xy. Hence

7T(9v | :EV) X 77(07)) ~p(xv ‘ xpa(v)aev)a
so (0, | zv) = 7(0y | T, Tpa()), and 6, only depends upon X, and X, (,)-
In other words, the data from X,, X, are sufficient for each 6,. This means that if
no vertex has many parents, even very large graphs represent manageable models. For
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(d) ()

Figure 12: (a)-(c) Three directed graphs, and (e) an undirected graph to which they are
all Markov equivalent; (d) a graph which is not Markov equivalent to the others.

a Gaussian distribution we can use our results about conditional distributions to obtain
closed form expressions for the covariance matrices that are Markov with respect to a
graph (see Examples Sheet 3).

7.4 Markov Equivalence

For undirected graphs, the independence X, I Xj | Xy\(qp) is implied by the graphical
model if and only if the edge a — b is not present in the graph. This shows that (under
any choice of Markov property) each undirected graphical model is distinct.

For directed graphs this is not the case. The graphs in Figures|12| (a), (b) and (c) are all
different, but all imply precisely the independence X; 1L Xo | X3.

We say that two graphs G and G’ are Markov equivalent if any p which is Markov with
respect to G is also Markov with respect to G’, and vice-versa. This is an equivalence
relation, so we can partition graphs into sets we call Markov equivalence classes.

In model selection problems we are not trying to learn the graph itself, but rather the
Markov equivalence class of indistinguishable models. The presence or absence of edges
induces all conditional independences, so unsurprisingly the graph of adjacencies is very
important.

Given a DAG G = (V, D), define the skeleton of G as the undirected graph skel(G) = (V, E),
where {i,j} € E if and only if either (i,j) € D or (j,7) € D. In other words, we drop the
orientations of edges in G.

For example, the skeleton of the graphs in Figures[12|(a)-(d) is the graph in Figure [12(e).

Lemma 7.10. Let G and G' be graphs with different skeletons. Then G and G' are not
Markov equivalent.

Proof. Suppose without loss of generality that ¢ — j in G but that i /¢ j in G. Then let p

be any distribution in which X, I Xy~ 1} for each v € V'\ {4, 7}, but that X; and X are
dependent.
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The local Markov property for G is clearly satisfied, since each variable is independent of
its non-descendants given its parents. For G’, however, we claim that the global Markov
property is not satisfied. By Sheet 2 Question 5, there is some set C' such that the GMP
requires X; 1L X; | Xc.

Let ¢ € C; under p we have X. L Xy, so by applying property 2 of the graphoid
axioms, X. L Xj, Xo\(e)- Then using properties 3 and 4 we see that X; L X | Xco
is equivalent to X; L X; | Xco\{c}- Repeating this we end up with a requirement that
X; 1 X, which does not hold by construction. Hence p is not Markov with respect to G’,
and the graphs are not Markov equivalent. ]

Theorem 7.11. Directed graphs G and G' are Markov equivalent if and only if they have
the same skeletons and v-structures.

Proof. We will prove the ‘only if’ direction for now: the converse is harder.

If G and G’ have different skeletons then the induced models are different by the previous
Lemma. Otherwise, suppose that a — ¢ < b is a v-structure in G but not in G’.

Let p be a distribution in which all variables other than X,, X;, X, are independent of all
other variables. By the factorization property, we can then pick an arbitrary

plzv) = p(zc | Ta, Tp) H p(xy)

veV\{c}
and obtain a distribution that is Markov with respect to G.

In G’ there is no v-structure, so either a — ¢ — b, a < ¢ — b, or a < ¢ + b. In particular,
either a or b is a child of ¢. Now let A = ang({a,b, c}); we claim that there is no d € A
such that a — d <+ b. To see this, note that if this is true, then d is a descendant of each
of a, b and ¢, and if d € A it is also an ancestor of one a, b and ¢, so the graph is cyclic.

Now, it follows that in the moral graph (G/)™, there is no edge between a and b, so
a Lsb| A\{a,b} in (G))™. But by a similar argument to the previous Lemma, the
corresponding independence does not hold in p, and therefore p is not Markov with respect
to G if p(x. | z4,xp) is chosen not to factorize. O

7.5 Directed Graphs, Undirected Graphs, and Decomposability

Closely related to the previous point is whether an undirected graph can represent the
same conditional independences as a directed one. The undirected graph in Figure (e)
represents the same model as each of the directed graphs in Figures [12[a)—(c), so clearly
in some cases this occurs.

However the graph in Figure [12d) does not induce the same model as any undirected
graph. Indeed, it is again this ‘v-structure’ that is the important factor in determining
whether the models are the same.

Theorem 7.12. A directed graph is Markov equivalent to an undirected graph if and only

if it contains no v-structures.

Proof. We proceed by induction on p; the result is clearly true for graphs of size p < 2.
We have already established that if G is a DAG, then p being Markov with respect to G
implies that it is also Markov with respect to G™.
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undirected directed

decomposable

Figure 13: Venn diagram of model classes introduced by directed and undirected graphs.

Now suppose that p is Markov with respect to G". Let v be a vertex in G without
children. We will attempt to show that p(zy~ 1) is Markov with respect to Gy g, and
that X, 1L Xy (pa(w)ufe}) | Xpa(w) under p, and hence that p satisfies the local Markov
property with respect to G.

The neighbours of v in G™ are its parents in G, and in the moral graph G™ these are all
adjacent, so there is a decomposition ({v}, pag(v), W) in G, where W = V\ ({v}Upag(v)).
By Lemma we have X, I Xy | Xpa(0), and that p(zy f,1) is Markov with respect to
(G™)v\{v}- Now, since G has no v-structures, (G" )y {3 = (Gv\{v})™, so by the induction
hypothesis, p(xy (y}) is Markov with respect to Gy (- O

Corollary 7.13. A undirected graph is Markov equivalent to a directed graph if and only
if it is decomposable.

Proof. This can be seen by the same decomposition and induction as in the proof of the
Theorem above. O

This shows that decomposable models represent the intersection of undirected and directed
graphical models.
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tuberculosis lung cancer w
cancer or tub.

Figure 14: The ‘Chest Clinic’ network, a fictitious diagnostic model.
8 Junction Trees and Message Passing

In this chapter we answer some of the problems mentioned in the introduction: given
a large network of variables, how can we efficiently evaluate conditional and marginal
probabilities? And how should we update our beliefs given new information?

Consider the graph in Figure which is a simplified diagnostic model, containing patient
background, diseases, and symptoms. The variables represent the following indicators:

e Asia (A): the patient recently visited parts of Asia with endemic tuberculosis;
e smokes (5): the patient smokes;

e tuberculosis (T'), lung cancer (L), bronchitis (B): the patient has each of these
respective diseases;

e cither (E): logical indicator of having either lung cancer or tuberculosis;
e x-ray (X): there is a shadow on the patient’s chest x-ray;

e cough (C): the patient has a pesistent cough.

In practice, we observe the background and symptoms and with to infer the probability of
disease given this ‘evidence’. Of course, to calculate the updated probability we just need
to use Bayes’ formula, but for large networks this is computationally infeasible. Instead
we will develop an algorithm that exploits the structure of the graph to simplify the
calculations.
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For this discussion we will abuse notation mildly and use capital letters A, S, X,... to
represent both the random variables and the vertices, and lower case letters for states of
the random variables. From the DAG factorization, we have

pla;s,t,1,b,¢,x,¢) = pla) - p(s) - p(t | a) - p(L ] s)-p(b|s)-ple[t,])-p(x|e)-plc|eb).

Suppose a patient smokes, has not visited Asia (tuberculosis is endemic in South Asian
countries), has a negative x-ray, and a cough. Then to work out the probability of lung
cancer:

p(l,@,c|a,s)
[ =
p( ‘ nem 8) le(l,l‘,c | CL,S)

The quantity we need can be obtained from the factorization of the directed graph as

p(l.z,cla,s) =Y p(t|a)-pl]s)-pb]|s)-ple|t,)-plx|e)-plc|eb).
t,e,b

There is more than one way to evaluate this quantity, because some of the summations
can be ‘pushed in’ past terms that do not depend upon them. So, for example,

p(l,z,c|a,s)
=p(l]5)) plx]|e) (Zp(b | s)-p(c] €7b)> <Zp(t | a)-p(e U)) :
e b t

How computationally difficult is this to calculate? A common metric is just to total the
number of additions, subtractions, multiplications and divisions required. In our case,
start with the expression in the sum ), p(t | a) - p(e | t,1). This has to be calculated
for each of the 16 values of ¢, a, e, [, and involves a single multiplication. The summation
involves adding pairs of these expressions, so this gives 8 separate additions, and leaves an
expression depending on a,e,l. The other expression in brackets is calculated in exactly
the same way, so there are another 24 operations and expression depending on s, ¢, e.

Now, the outer sum is over expressions depending on a,e,l, s, c,z, and involves two mul-
tiplications; this gives a total of 2 x 26 = 128. The sum itself is over 32 pairs of numbers,
and each of the 32 results must be multiplied by one number. So, in total we have
24 + 24 + 128 + 32 + 32 = 240 operations.

The nalve way implied by the first expression requires rather more effort: each term in
the summand involves five multiplications, and there are 28 = 256 combinations. The
sum is then over 2° combinations of 8 terms (i.e. requires 7 additions). Hence we get
5 x 28 4+ 7 x 2% = 1,504 operations. Over larger networks with dozens or hundreds of
variables these differences are very substantial.

This section provides a method for systematically arranging calculations of this sort in an
efficient way, using the structure of a graph.

8.1 Junction Trees
We have already seen that we can write distributions that are Markov with respect to an

undirected graph as a product of ‘potentials’, which are functions only of a few variables.
A junction tree is a way of arranging these potentials that is computationally convenient.
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Figure 15: (a) A decomposable graph and (b) a possible junction tree of its cliques. (c)
The same junction tree with separator sets explicitly marked.

Figure 16: A tree of sets that is not a junction tree.

Let 7 be a tree (i.e. a connected, undirected graph without any cycles) with vertices V
contained in the power set of V; that is, each vertex of 7 is a subset of V. We say that
T is a junction tree if whenever we have C;,C; € V with C; N Cj # (), there is a (unique)
path 7 in 7 from C; to C} such that for every vertex C on the path, C; N C; C C.

Example 8.1. The graph in Figure (b) is a junction tree. Note that, for example,
{2,4,5} and {4, 6} have a non-zero intersection {4}, and that indeed 4 is contained on the
intermediate vertex {2, 3,4}.

The graph in Figure is not a junction tree, because the sets {1,2} and {1,3} have
the non-empty intersection {1}, but the intermediate sets in the tree (i.e. {2,3}) do not
contain {1}; this more general object is sometimes called a clique tree. The fact that these
sets cannot be arranged in a junction tree is a consequence of these sets not satisfying the
running intersection property (under any ordering), as the next result shows.

Proposition 8.2. If T is a junction tree then its vertices V can be ordered to satisfy
the running intersection property. Conversely, if a collection of sets satisfies the running
intersection property they can be arranged into a junction tree.

Proof. We proceed by induction on k£ = |V|. If £ < 2 then both the junction tree and

running intersection conditions are always satisfied. Otherwise, since T is a tree it contains
a leaf (i.e. a vertex joined to exactly one other), say C} which is adjacent to Cy ).
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Consider 7%, the graph obtained by removing C} from 7. The set of paths between C;
and C; vertices in 7% is the same as the set of such paths in 7: we cannot have paths
via C, because it would require repetition of Cy (). Hence T~ is still a junction tree, and
by induction its elements C1, ..., Cy_1 satisfy the RIP.

But then by the definition of a junction tree, Cy N, Ci = Ck N Cypy, s0 C1, ..., Cy
satisfies the RIP.

For the converse result, again by induction just join the final set Cy, to Cy;,) and it is clear
that we obtain a junction tree by definition of running intersection. O

In other words, this result shows that junction trees are available for the cliques of de-
composable graphs. The graph in Figure [I5|(a) for example has cliques {1, 2}, {2, 3,4},
{2,4,5}, {4,6} and {6,7,8}. Since it is a decomposable graph, these satisfy the running
intersection property, and can be arranged in a junction tree such as the one in Figure
[15(b). Notice that this is not unique, since we could join either (or both) of {1,2} or {4,6}
to {2,4,5} instead of {2,3,4}.

We can explicitly add in the separator sets as nodes in our tree, so that each edge contains
an additional node, as shown in Figure [15(c).

We will associate each node C' in our junction tree with a potential V¢ (xc) > 0, which is
a function over the variables in the corresponding set. We say that two potentials ¢, ¥p
are consistent if

> velwe) = fwenp) = Y, ¥p(xn).
To\D TD\C
That is, the margins of ¥ and ¥p over C N D are the same.

Of course, the standard example of when we would have consistent margins comes when
each potential is the margin of a probability distribution. Indeed, this relationship turns
out to be quite fundamental.

Proposition 8.3. Let C1,...,Cy satisfy the running intersection property with separator
sets So, ..., S, and let

k
_ 1/]01' (‘TQ)
B g s, (@s,)

(where S1 = 0 and 1y = 1 by convention). Then each V¢, (xc;) = p(xc;) and Vs, (xs;) =
p(zs,) if (and only if) each pair of potentials is consistent.

Proof. The only if is clear, since margins of a distribution are indeed consistent in this
way.

For the converse we proceed by induction on k; for k = 1 there is nothing to prove.
Otherwise, let Ry = Cy \ Sk (: Ck \ Ui<k CZ), SO

k-1
(e (xCl)
p(zv\R,) ZP zv) H wsi(xsi) (25.) ;ﬂwk Tcy)

ka
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Since the cliques are consistent, we have

Zsz dJCk (IC"‘) _ wsk (wsk)
wsk (x5k> B wsk (a:Sk)

=1,

SO

p(zv\R,) H 9)

By the induction hypothesis, we have that ¢, (z¢c;) = p(x¢;) for ¢ < k — 1. In addition,
by the RIP S, = C} N C} for some j < k, and hence by consistency

bs(s,) = > vo,(e) = D plre,) = plxs,)-

TCi\S), TCi\S),
Finally, substituting @D into our original expression, we have

(e (xck)
p(xsk)

play) = p(wim = p(ryir,)

9

and so p(zg, | Ty\g,) = % by definition of conditional probabilities. Since this only

depends upon z¢,, this is also p(zg, | zs,). Hence,

(Gl (‘Tck) = p(sz | xsk) 'p(xsk) = p(xck)

as required. ]

If a graph is not decomposable then we can triangulate it by adding edges. We discuss
will this further later on.

8.2 Message Passing and the Junction Tree Algorithm

We have seen that having locally consistent potentials is enough to deduce that we have
correctly calculated marginal probabilities. The obvious question now is how we arrive at
consistent margins in the first place. In fact we shall do this with ‘local’ update steps,
that alter potentials to become consistent without altering the overall distribution. We
will show that this leads to consistency in a finite number of steps.

Suppose that two cliques C' and D are adjacent in the junction tree, with a separator set
S =CnND. An update from C to D consists of replacing g and 1p with the following:

Ys(zs)
Vs(rs)

Ys(zs) = Y vole), Yplap) = ¥p(zD).

To\S

This operation is also known as message passing, with the ‘message’ ¢s(xg) being passed
from C to D. We note three important points about this updating step:

e after updating, ¢c and 1 are consistent;
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e if ¢)p and 1y are consistent, then so are ¢}, and ¥: to see this, note that

/ _ 1/)%(963) -
3 wh(an) —Z\ oy bntn)

Tp\s
Ys(zs
N %ZZE:L"si 33%\:5 ¥olep),
so if g and ¥ p are consistent then ¥g(xg) = pr\s Yp(zp) and we are left with
Us-
e the product over all clique potentials

[eee ve(ze)

[Tses ¥s(xs)
is unchanged: the only altered terms are ¢)p and 1g, and by definition of ¢}, we
have

Yp(rp)  p(rp)

Volrs)  s(xs)

Hence, updating preserves the joint distribution and does not upset margins that are
already consistent. The junction tree algorithm is a way of updating all the margins such
that, when it is complete, they are all consistent.

Let 7 be a tree. Given any node t € T, we can ‘root’ the tree at ¢, and replace it with
a directed graph in which all the edges point away from tE] The junction tree algorithm
involves messages being passed from the edge of the junction tree (the leaves) towards a
chosen root (the collection phase), and then being sent away from that root back down to
the leaves (the distribution phase). Once these steps are completed, the potentials will all
be consistent. This process is also called belief propagation.

Algorithm 2 Collect and distribute steps of the junction tree algorithm.
function COLLECT(rooted tree T, potentials 1)
let 1 < ... <k be a topological ordering of 7
fortink,...,2 do
send message from 1; to Y, (4);
end for
return updated potentials i/,
end function
function DISTRIBUTE(rooted tree T, potentials ;)
let 1 < ... <k be a topological ordering of T
for tin 2,...,k do
send message from 9,(;) to 9y;
end for
return updated potentials 1,
end function

The junction tree algorithm consists of running COLLECT(T, ;) and DISTRIBUTE(T , v}),
as given in Algorithm

2This process always gives a Markov equivalent graph although, of course, we are not really applying
the Markov property to our junction tree. The directions are just for convenience.
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Figure 17: Illustration of the junction tree algorithm with {2, 3,4} chosen as the root. (a)
Collect steps towards the root: note that the {4,6} to {2, 3,4} step must happen after the
{6,7,8} to {4,6} update. (b) Distribute steps away from the root and towards the leaves:
this time the constraint on the ordering is reversed.

Theorem 8.4. Let T be a junction tree with potentials V¢, (xc,). After running the
junction tree algorithm, all pairs of potentials will be consistent.

Proof. We have already seen that each message passing step will make the separator node
consistent with the child node. It follows that each pair ¢c, and vg, are consistent after the
collection step. We also know that this consistency will be preserved after future updates
from 1/1(;0@. Hence, after the distribution step, each ¢, and g, remain consistent, and
¢Cg(i) and g, become consistent for each ¢. Hence, every adjacent pair of cliques is now
consistent.

But whenever C; NC; # 0 there is a path in the junction tree such that every intermediate
clique also contains C; N C}, so this local consistency implies global consistency of the
tree. O

Remark 8.5. In practice, message passing is often done in parallel, and it is not hard to
prove that if all potentials update simultaneously then the potentials will converge to a
consistent solution in at most d steps, where d is the width of the tree.

Example 8.6. Suppose we have just two tables, ¥ xy and Yy arranged in the junction
tree:

1
X,Y [V} Y, Z

representing a distribution in which X 1L Z | Y. We can initialize by setting
Uxy(z,y) =p(z | y) Yyz(y,2) = py, 2) vy (y) =1,

so that p(z,y,2) = p(y, 2) - p(x | y) = by zbxy [y

Now, we could pick YZ as the root node of our tree, so the collection step consists of
replacing

Ve(y) =D Uxy(zy) =D pla|y) =1
x x
so 11, and vy are the same; hence the collection step leaves 1)y and vy z unchanged.
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Figure 18: The moral graph of the Chest Clinic network, and a possible triangulation.

The distribution step consists of

V) =Y dvzly.2) = py.2) = py);

Yy (z,y) = w%; Yxy(z,y) = p(ly)p(l‘ | y) = p(z,y);

Hence, after performing both steps, each potential is the marginal distribution correspond-
ing to those variables.

In junction graphs that are not trees it is still possible to perform message passing, but
convergence is not guaranteed. This is known as ‘loopy belief propagation, and is a topic
of current research.

8.3 Directed Graphs and Triangulation

How does any of this relate to directed graphs? And what should we do if our model is not
decomposable? In this case we cannot immediately form a junction tree. However, all is
not lost, since we can always embed our model in a larger model which is decomposable.

For a directed graph, we start by taking the moral graph, so that we obtain an undirected
model. If the directed model is decomposable then so is the moral graph. If the moral
graph is still not decomposable, then we can triangulate it by adding edges to obtain a
decomposable graph. Figure [18|(b) contains a triangulation of the moral graph of Figure
We can arrange the cliques as

{L,E, B}, {T,E, L}, {L,B, S}, {E,C, B}, {A, T}, {E, X},

giving rise to the junction tree in Figure

Taking the 4-cycle in Figure (a) as an example, we can add chords to the cycle until
we obtain a graph that is triangulated; a resulting graph is called a triangulation. This
process is not unique, as is obvious from this example. Given the new graph we can form
a junction tree for the larger model.

Naturally, to keep our computations efficient we want the cliques in the model to remain
small when we triangulate: after all, we could always embed our graph in the complete
model! Finding a triangulation that is ‘optimal’—in the sense of giving the smallest
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Figure 19: A possible junction tree for the Chest Clinic network, and (right) with separator
sets drawn on.

Figure 20: A non-decomposable graph, and a possible triangulation of it.

cliques—is a very hard problem in general. Some approximate and heuristic methods
exist. A simple method, Tarjan elimination, is given on Examples Sheet 3.

Suppose we have a directed graphical model embedded within a decomposable model
C1,...,Ck. For each vertex v, the set {v} U pag(v) is contained within at least one of
these cliques. Assigning each vertex arbitrarily to one such clique, let v(C') be the vertices
assigned to C. Then we can set Yo (z¢) = [[,ep(c) P(%v | Tpa()) and ¢s(zg) =1, and we
have

b boi ()
I1 50505 = TL et | m) = pov).
i=1 v ¢

veV

This is called initialization. Now if we run the junction tree algorithm to obtain consistent
potentials, then these will just be the marginal probabilities for each clique.

8.4 Evidence

The junction tree gives us a mechanism for calculating marginal distributions for quantities
that are contained in the same clique. How should we deal with queries about conditional
distributions for quantities that may not be adjacent? For example, what difference does
it make to our chest clinic network if a patient smokes?

We can answer this by introducing ‘evidence’ into our tables, and then propagating it
through the tree. The new evidence corresponds to replacing an existing marginal table
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with one in which the event that occurred has probability 1: for example,

smokes ‘ doesn’t smoke

1| 0

smokes ‘ doesn’t smoke

P =035 | 07

becomes p(s) =

Let our evidence be the event {X, = y.} for some relevant node e; we can write the new
joint distribution as

Lize=y.}
v | Xe = ye) = play, xe) —e=bet |
p( \%4 ‘ Y ) p( \%4 ) p($e)

Thus, replacing

Uawe=y.}
vo(ee) « olze) - ———=2
¢ p(ye)
for any potential with C' 5 e will alter the joint distribution in the required way. If the
potentials are already consistent then p(y.) can be calculated from ¢ directly.

Of course, after replacing ¥ the potentials will no longer be consistent, and therefore the
junction tree algorithm needs to be run again. In fact, only a distribution step with ¥ ¢
chosen as the root node is needed.

Proposition 8.7. Suppose that potentials ¥ for a junction tree T with root C are all
consistent, except for ¥c. Then after running DISTRIBUTE (T, V), all potentials are con-
sistent.

Proof. Each separator set potential is already consistent with the clique potential(s) ‘away’
from C in the graph. This consistency is preserved, and distribution will ensure that
each separator set is consistent with the clique potentials ‘towards’ C. Hence, all clique
potentials and separator sets are now consistent. ]

If we try to introduce evidence in two different places without propagating in between
then we may not obtain the conditional distribution that we want. To see this, consider
again our very simple example with two cliques:

1
X,Y [v] Y, Z

If the potentials are already consistent, then ©¥xy = p(x,y) and ¢¥yz = p(y,z) with
1y = p(y). Now suppose we want to introduce two pieces of evidence: {X = z*} and
{Z = 2z*}. To introduce the first, we replace 1) xy with

ey = iy = oy,
XY XY p(x*) {z=a*}"

This means that the potentials are jointly representing the distribution ¢ in which

q(z,y,2) = %Z)XY(x;i/)zp;;Z(y’ 2 = Ply | xp()y.)p(y’ 2 ]l{x:ac*} =p(y,# | l'*)]l{x:;t*},

as required.
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Now, the second would be introduced by replacing vy z with
%/Z = p(y | Z*)H{z:z*}'
But now this gives

Uy (@ )Py (y,2)  ply | a*)-ply ]| 2*)

ez = vy (y) B p(y) Homer =)
_ ply,z") - p(y, 27) o
p(y)p(a)p(y?) 1)

% % p($*7 Z*)
= T2z T=x*,2=2%}>

where the last equality holds from applying Theorem (iv) to X L Z|Y. Now since
X X Z in general, this final expression is not equal to p(y | z*, 2*).
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9 Causal Inference

Causal inference, at its heart, asks what would happen if we were to perform an experiment
in a system. This is different to the more familiar forms of prediction using conditional
distributions, as the following example illustrates.

Example 9.1. Suppose that a health and safety inspector is interested in the safety of a
set of outdoor steps. She commissions a study that monitors the weather conditions each
day, and whether anyone slips on the steps.

She finds that it rains (making the steps wet, W = 1) on 40% of days, and that the
temperature is below freezing (making the steps icy, I = 1) on one day out of 10, and that
these happen independently. Given the four possible conditions, she finds the probability
of someone slipping each day is:

P(S=s|WI)
W TI|s=0 s=1
0 01]095 0.05
1 0109 0.1
0 11038 0.2
1 1]05 0.5

So, for example, if it is icy but not wet then the probability of someone slipping is 0.2.

Now, suppose we know that someone has slipped on the steps: what is the probability
that the steps were wet? Using Bayes’ formula,

e S PW=1)-PI=i)-P(S=1|W=11=i)
P(W_1|S_1)_ZﬁwP(W:w)-P(I:i)-P(Szl\szafzi)
0.06

Unsurprisingly, if someone slips then this is predictive of wet steps: since the probability
increases from 0.4 to 0.59. Similarly, if there is no slip then the probability decreases
slightly to P(W =1] S5 =0) =0.38.

Now suppose the health and safety inspector insists that salt and grit be placed on the
steps, so that they never get icy. Given this event, how would we estimate the probability
of slipping? Well, this should just depend on whether the steps are wet as before, but
always with I = 0. So our new distribution is P(R =r,S = s | [ = 0). In particular, this
means that the overall probability of someone slipping is P(S = 1|1 = 0) = 0.07, down
from P(S=1)=0.1.

Consider a third scenario: suppose that the health and safety inspector shuts the steps,
so that no-one can slip (S = 0). What happens to the probability of the steps being icy?
Following the same approach as above, we would look at P(I =1 | S = 0) = 0.34, which is
higher than P(I = 1) = 0.1 But this is surely absurd: health and safety inspector’s actions
will have no affect on the local climate! Indeed, we would expect that the probability of
icy steps remains at P(I = 1) = 0.1, regardless of the action taken to fix S = 0.

The asymmetry in the previous example is an example of a causal relationship. Ordinary

prediction is, in some sense, symmetric: if the steps being icy increase the chance of a
slip, then a slip makes it more likely that it was icy. However, causal prediction is not
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slip

(a) (b)

Figure 21: (a) A causal DAG on three vertices; (b) after intervening on ‘slip’ none of the
variables are correlated.

(a) (b)

Figure 22: (a) A causal DAG on three vertices, and (b) after intervening on X.

symmetric: if I make it rain then that will makes the steps wet, but if I make the steps
wet then it will not cause it to start raining.

The scenarios of adding grit to prevent ice, or of closing the steps are examples of interven-
tions or treatments that affect the variables in the system and the relationships between
them. If we intervene in a system in such a way as to set a variable such as S = s, we
denote the resulting distribution of other variables as

P(R=r,I=i|do(S=s)).

The example above shows that in some cases this is the same as the relevant conditional
distribution, but not always:

P(S=s|do(I=1i)=P(S=s]|1=1)
P(I=i|do(S=s))=P(=1).
Directed graphs provide a convenient framework for representing the structural assump-
tions underlying a causal system, and the asymmetry in interventions. We can think of
each edge v — w as saying that X, is a ‘direct cause’ of X,,; i.e. that it affects it in a way

that is not mediated by any of the other variables. In our example, the system could be
represented by the graph in Figure 21f(a).

9.1 Interventions

Let G be a directed acyclic graph representing a causal system, and let p be a probability
distribution over the variables Xy,. An intervention on a variable w € V does two things:

e graphically we represent this by removing edges pointing into w (i.e. of the form
v — w);
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o probabilistically, we replace our usual factorization
p(xV) = H p(xv ’ xpa(v))
veV
with
Liwu=ay}
p(l‘;ku | xpa(w))

= ]l{:vw:a:;j,} H p(l‘v ’ xpa(v))'
veV\{w}

P(xv\fwy | do(zy,)) = p(zv)

In words, we are assuming that w no longer depends upon its parents, but has been fixed
to x7,; hence the p(wy | Tpaw)) factor is replaced with the indicator function that assigns
probability 1 to the event that {X,, = z} }. Other variables will continue to depend upon
their parents according to the same conditionals p(zy | Zpa(v))-

When we say a graph and its associated probability distribution is causal, we mean that we
are making the assumption that, if we were to intervene on a variable X, via some exper-
iment, then the distribution would change in the way described above. This assumption
is something that has to be justified in specific applied examples.

Example 9.2 (Confounding). Consider the graph in Figure 22|(a); here Z causally affects
both X and Y, so some of the observed correlation between X and Y will be due to this
‘common cause’ Z. We say that X and Y are ‘confounded’ by Z. Suppose we intervene
to fix X = z, so that it is no longer causally affected by Z. Hence, we go from

p(z,2,y) =p(2) -plz | 2) - ply | 2,7)
to

p(z,y | do(z")) = p(2) - ply | 2, 2%).

Note that this last object is not generally the same as the ordinary conditional distribution:

p(zy | a®) =pz|2") ply |z 2")
p(z,y | do(z")) = p(z) -plylz2").
Example 9.3. Suppose we have a group of 64 people, half men and half women. We ask

them whether they smoke, and test them for lung damage. The results are given by the
following table.

women men

not smoke smoke not smoke smoke
no damage 21 6 6 6
damage 3 2 2 18

Given that a person smokes, the probability that they have lung damage is P(D = 1 |
S =1) =23 = 2. If someone doesn’t smoke the probability is P(D =1]5 =0) = 2.
What happens if we had prevented everyone from smoking? Would this mean that only
% x 64 = 10 of our participants showed lung damage? If we assume the following causal
model, then the answer is no.
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We have (taking G = 0 to represent male) that

P(D=1]do(S ZP =1[5=0,G=g)-P(G=yg)
:P( =1]8=0,G=0)-P(G=0)+P(D=1]|8=0,G=1)-P(G=1)
21, 3 1
827212
3 _ 5
16 32

So in fact, we would expect % x 64 = 12 people to have damage if no-one was able to
smoke.

The difference can be accounted for by the fact that some of the chance of getting lung
damage is determined by gender. If we ‘observe’ that someone does not smoke then they
are more likely to be female; but forcing someone not to smoke does not make them more
likely to be female!

9.2 Adjustment Sets and Back-Door Paths

For this section we will assume we are interested in the distribution of Y after intervening
on Z. The method given above for finding p(y | do(z)) appears to involve summing over
all the variables in the graph:

p Y, 2, Tw)
(y | do(z
Z | xpa(z))
Here we present some methods for adJustlng by only a small number of variables.
Lemma 9.4. Let G be a causal DAG. Then

p(y ’ dO(Z)) = Z p(y ‘ Zaxpa(z)) 'p('fpa(z))'

Tpa(z)

Proof. Let Xy be divided into Y, Z, X,y and Xy, where Xy is any other variable (that
is, not Y, Z, nor a parent of Z). Then

p(y7 %5 Tpa(z)s xW)

s Tpalz), £ do(z)) = =p(y,zw | 2, Tpa(z)) - P(Tpa(z))-
(Y, Tpa(z), Tw | do(z)) D0z | Znis)) Py, 2w | 2, Tpa(z)) - P(Tpacz))
Then
p(y ‘ dO(Z)) = Z p(yal'W | zaxpa(z)) 'p(xpa(z))
TWTpa(z)
= Z p(l‘pa(Z)) Zp(yvxw ‘ z’xpa(z))
Tpa(z) Tw
= Z p(wpa(z))p(y | zaxpa(z))
Tpa(z)
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O——C

Figure 23: A causal directed graph.

as required. ]
This result is called an ‘adjustment’ formula. Applied to the graph in Figure for

example, it would tell us that p(y | do(z)) =3, p(y | =, 2,t) - p(2,1), so, for example, we
do not need to consider W. In fact, though, you might notice that Y 1L T'| X, Z, so we

can write
(y | do(z Zp | z, 2)

ZZp(y | z,2) - p(2),

and we only need to adjust for Z! Further,

ply | do(x Zpy\xz (Z)Z;p(y,wl%Z)'P(z)
= gp(y |z, w,2) - p(w |z, 2)  p(2)
zgp@ | 2,w) - p(w] 2) - p(2)
:gp(y | z,w) - p(w, z)
:Z;U:p(y | z,w) - p(w);

the fourth equality here uses the fact that W L X | Z and Y 1L Z | W, X, which can be
seen from the graph.

So, in other words, we could adjust by W instead of Z! This illustrates that there are often
multiple equivalent ways of obtaining the same causal quantity. We will give a criterion
for valid adjustment sets, but we first need an extra definition and theorem to prove this
criterion correct.

9.3 Paths and d-separation

Let G be a directed graph and 7 a path in G. We say that an internal vertex ¢ on 7 is a
collider if the edges adjacent to t meet as — t <—. Otherwise (— t —, <=t <, or <t —)
we say t is a non-collider.

Let 7 be a path from a to b. We say that 7 is open given (or conditional on) C' C V'\ {a, b}
if
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e all colliders on 7 are in ang(C);

e all non-colliders are outside C.

(Recall that C' C ang(C').) A path which is not open given C is said to be blocked by C.

Example 9.5. Consider the graph in Figure There are two paths from T to W:
T X<—Z—=W T—X—=Y W

Without conditioning on any variable, both these paths are both blocked, since they
contain colliders. Given {Y}, however, both paths are open, because Y is the only collider
on the second path, and the only collider on the first is X, which is an ancestor of Y.
Given {Z,Y'}, the first path is blocked because Z is a non-collider, but the second is open.

Definition 9.6. Let A, B, C be disjoint sets of vertices in G (C' may be empty). We say
that A and B are d-separated given C if every path from a € A to b € B is blocked by C.

Theorem 9.7. Let G be a DAG and let A, B,C be disjoint subsets of G. Then A is
d-separated from B by C in G if and only if A is separated from B by C in (Gan(aupuc))™-

In other words, this gives us an alternative version of the global Markov property for
DAGs: instead of being based on paths in moral graphs, we can use paths in the original
DAG.

Proof (not ezaminable). Suppose A is not d-separated from B by C in G, so there is an
open path 7 in G from some a € A to some b € B. Dividing the path up into sections
of the form - --- <—— --- —, we see that 7 must lie within ang(A U B U C), because
every collider must be an ancestor of C', and the extreme vertices are in A and B. Each
of the colliders 1 — k <+ j gives an additional edge ¢ — j in the moral graph and so can
be avoided; all the other vertices are not in C' since the path is open. Hence we obtain a
path from a € A to b € B in the moral graph that avoids C.

Conversely, suppose A is not separated from B by C' in (GanauBuc))™, so there is a path
in (gan(AUBUC))m from some a € A to some b € B that does not traverse any element of C'.
Each such path is made up of edges in the original graph and edges added over v-structures.
Suppose an edge corresponds to a v-structure over k; then k is in ang(AU BUC). If k
is an ancestor of C' then the path remains open; otherwise, if k is an ancestor of A then
there is a directed path from %k to a’ € A, and every vertex on it is a non-collider that is
not contained in C. Hence we can obtain a path with fewer edges over v-structures from
a’ to b. Repeating this process we obtain a path from A to B in which every edge is either
in G or is a v-structure over an ancestor of C'. Hence the path is open. O

9.4 Back-door Adjustment

We say that C is a back-door adjustment set for the ordered pair (v, w) if

e no vertex in C' is a descendant of v.

e every path from v to w with an arrow into v (i.e. starting v « - -) is blocked by C;
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Theorem 9.8. Let C be a back-door adjustment set for (v,w). Then

p(zw | do(zy)) = ZP(QCC) P(Tw | o, 20).

That is, C' is a valid adjustment set for the causal distribution.

Proof. Since no vertex in C' is a descendant of v, we have that X, 1L X¢ | Xp,(,) using

the local Markov property. We also claim that w is d-separated from pag(v) by C'U {v}.

To see this, suppose for contradition that there is an open path 7 from w to some ¢ € pag(v)
given C'U {v}. If 7 is also open given C, then we can add the edge ¢ — v to find an open
path from w to v. If 7 is not open given C, this can only be because there is a collider
s on 7 that is an ancestor of v but not of C; hence there is a directed path from s to v
that does not contain any element of C'. In this case, simply concatenate the path from
w to s with this directed path (shortening if necessary) to obtain an open path from w to
v. Either way we obtain a path from w to v that is open given C' and ends — v, which
contradicts our assumptions.

We conclude that w is d-separated from pag(v) by C'U{v}, and hence the global Markov
property implies that Xy, 1L Xpa0 | Xu, Xc. Then:

p(xw ’ dO(.T}U)) = Z p(mpa(v)) -p(l‘w | w'thxpa(v))

Zpa(v)
= Z p(xpa(v)) Zp(xwa Trc | Ly, xpa(v))
Tpa(v) rc
= Z p(xpa(v)) Zp(l’w | Ic, Lo, xpa(v)) ’ p<xC | xv?‘rpa(v))
Tpa(v) zrc
= Z p(xpa(v)) Zp($w | $C,£L'1,) 'p(.%'c ’ xpa(v))
Tpa(v) rc
= Zp(xw | ¢\ o) Z p(xpa(v)) plzc | xpa(v))
xc Tpa(v)

- Zp<370) 'p(xw ’ .%‘U,.’EC)-

O]

Proposition 9.9. Let G be a causal DAG. The set pag(v) is a back-door adjustment set
for (v,w).

Proof. Any (v,w) back-door path starts with an edge v < t, so clearly ¢ € pag(v) is a
non-collider on the path, which is therefore blocked. O

9.5 Example: HIV Treatment

Figure depicts a situation that arises in HIV treatment, and more generally in the
treatment of chronic diseases. A doctor prescribes patients with AZT (A), which is known
to reduce AIDS related mortality, but also harms the immune system of the patient,
increasing the risk of opportunistic infections such as pneumonia (L). If pneumonia arises,
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Figure 24: Causal diagram representing treatment for HIV patients. A is treatment with
AZT (an anti-retroviral drug), L represents infection with pneumonia, B treatment with
antibiotics, and Y survival.

patients are generally treated with antibiotics (B), and the outcome of interest is 5 year
survival (V).

An epidemiologist might ask what the effect on survival would be if we treated all patients
with antibiotics and AZT from the start, without waiting for an infection to present. What
would this do to survival?

Well,

p(y | do(a,b)) =Y p(y|a,1,b)p(l | a),
l

so the answer can be determined directly from observed data without having to perform
an experiment.

1
P(Y=1|do(A=1,B=1))=» P(Y=1[A=1,L=0,B=1)-P(L=1|A=1).
=0

Note that, in this case, there is no ‘back-door’ like solution, because L is a descendant of
A so cannot form part of a back-door set, but without including on L the back-door path
B < L — Y will introduce spurious (i.e. non-causal) correlations.

9.6 Gaussian Causal Models

The adjustment formula can be thought of as averaging the conditional distribution over
a portion of the population:

p(y | do(z prc p(y | z,2c).

If the variables we are dealing with are multivariate Gaussian, then conditional distribu-
tions such as p(y | z,x¢) are determined by regressing Y on Z, X using a simple linear
model.

The regression coefficient between Z and Y in such a model is the same for all values
of X¢ = x¢, and therefore in this case we can forget the averaging and just look at the
regression to obtain the causal effect. Consider the example in Figure[23} if we regress Y on
X then the estimate we obtain is biased because of the back-door path X «+ Z - W — Y
but if we add in Z or W (or both), then the estimate will be unbiased. See slides for an
example.
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10 Model Selection and Causal Discovery

So far we have tended to study the models in this course in a ‘forwards’ manner; that is, we
first define the model (such as a set of distributions satisfying a particular factorization),
and then derive properties of it (such as a list of conditional independences). This in turn
will give us properties that we expect data generated from these models to display. In
statistics, however, we have to reverse this process: we start with some data, and want to
infer the process that generated it!

We have already seen one approach to this in Section [6] where we performed a form of
penalized maximum likelihood estimation to infer the structure of an undirected graph. In
this section we will consider a more direct approach that tries to check which conditional
independences hold in the data, and then reconstructs the graph accordingly.

Example 10.1. Suppose we measure three variables X,Y, Z over n individuals, and ob-
serve empirically (i.e. approximately in the data) that X L Y, but no other independences
hold. Which directed graph(s) are consistent with this data? The obvious answer would
seem to be X — Z < Y, since this graph implies the only independence we see, and no
others.

10.1 Faithfulness
There is a danger in the approach given in the previous example, as we now illustrate.

> n <- 1000

> X <- rnorm(n)

> Z <= X + rnorm(n)

>Y <- X - Z + rnorm(n)

> summary(1lm(Y ~ X))$coefficients # no significant effect of X on Y

Estimate Std. Error t value Pr(>|t|)
(Intercept) -0.023 0.043 -0.53 0.60
X -0.025 0.043 -0.57 0.57

The generating mechanism above comes from the graph with topological order X, Z,Y and
all edges present, so we would not expect to get any independences at all. However, because
we have chosen the coefficients very carefully, there is actually no marginal correlation
between X and Y.

Z = /BJBZX + ez
Y = BxyX + BzyZ + Ey

gives

Y = ﬁzyX + Bzy(ﬁsz + 57:) + Ey
= (B:vy + Bzyﬁ:pz)X + BzyE,z + €y,

so if Byy + B.yBz. = 0, then there will be a marginal independence between X and Y. In
the example above we picked 3.y = Bzy = 1 and 3., = —1, which satisfies this condition.
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The fact that we can do this should not be surprising, since the graph with all edges
present gives a saturated model; that is, it does not place any restrictions at all on the
distribution. Therefore, we can create any multivariate Gaussian distribution on three
variables using the construction above. Of course, the same applies to larger graphs and
larger models.

In order to make progress, we will have to introduce an additional assumption to protect
against this possibility.

Definition 10.2. Let p(zy) be a distribution that is Markov with respect to a directed
graph G. Recall that as a consequence of Theorem d-separation in G implies the
existence of a conditional independence in p:

ALdB\C[Q] - XAJLXB|Xc[p].
We say that p(xy) is faithful with respect to G if the reverse implication also holds:

AJ_dB‘C[g] <~ XAJLXB|Xc[p].

Faithfulness allows us to use conditional independences to reconstruct facts about the
graph, and not worry that those conditional independences just occurred ‘by chance’.

Is it a reasonable assumption? Consider the set of parameters for which it fails in the
previous example: i.e. those for which B, + B.yB,. = 0. The full model consists of
all (Bry, Brzs Bay)T € R3, whereas the subset for which Sy + B:yBz: = 0 is only two-
dimensional. In this sense, if we were to put any Lebesgue measure on the set of all
parameters, the measure of the set for which 3, + (.,8.. = 0 would be zero. There are
a finite number of other equations we need to consider corresponding to other conditional
independences, but the union of a finite number of measure zero sets also has measure
Zero.

That is, ‘almost all’ parameter values satisfy the faithfulness condition. Faithfulness is
not an innocuous assumption by any means, but it is reasonable in many cases and some
assumption of this kind is necessary to make progress in causal discovery problems.

10.2 Markov Equivalence

We already know that two different directed graphs, say G; and Gs, may induce the same
conditional independences; that is, they may be Markov equivalent. In this case, we cannot
distinguish between G; and Gy, we can only hope to find the Markov equivalence class.

Of course, if the system itself is causal then we should expect that the correct graph
could be determined, if we were able to perform an appropriate experiment (or set of
experiments) to intervene on some of the variables.

10.3 The PC Algorithm

The PC Algorithm is a systematic method for testing conditional independence constraints
and then reconstructing a graph from the results. Let us suppose, for the time being, that
we have access to a ‘oracle’ conditional independence test which will correctly tell us
whether a conditional independence holds in p. (Since p is faithful, this is equivalent to
being able to check d-separation relations in G.)
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The pseudocode in Algorithm [3| can reconstruct such a graph. How does it proceed? We
start with the function SKELETON, which reconstructs the skeleton of G; begin with a
complete, undirected graph H.

e First, we go through every pair of vertices i, j, and test whether the marginal inde-
pendence X; 1L X; holds; if it does, remove the edge 7 — j from H.

e After this, for every remaining edge ¢ — j we start testing conditional independences
of the form X; I X | Xj; if this holds for any %k then we also remove ¢ — j. We only
test k if either k ~ ¢ or k ~ j in H.

e We now repeat the above for sets of size 2, 3 and so on; each time we only consider
sets C' containing only neighbours of ¢ or only neighbours of j.

Provided that all our conditional independence tests were accurate, this is guaranteed to
return the correct skeleton for G. How do we orient the edges? The priority is to find
v-structures, since once we have these we will have found the Markov equivalence clase.
This can be done straightforwardly given the previous algorithm, and this is the purpose
of the function ORIENT.

e In the skeleton H look at every triple ¢ — k — j with ¢ o j, and consider the set C'
that was used when we removed i — j from the skeleton.

o If £ ¢ C then i — k — j is a v-structure, so orient the edges into k. If k € C then it
is not.

Proposition 10.3. SKELETON returns the skeleton of G, and ORIENT fills in precisely
the v-strictures of G.

Proof. If i ~ j in G then clearly they cannot be d-separated, hence if p is faithful we
will never remove the edge from H. Conversely, if ¢ ¢ j in G then 7 is d-separated from
J by pag(i) (possibly after interchanging i and j). Since none of the edges between i
and its parents are removed from H, we will eventually try C' = pag(i) and find that
Xi L X;| Xe.

For the orientation, if ¢ — k < j then clearly ¢ and j are not d-separated by any set
containing k since this path would be open. Conversely, if it is not a v-structure then k is
a non-collider on this path, and hence the path is open unless k is included in C. O

10.4 Working with Data

Of course, in reality we never have an oracle independence test, and instead have to make
do with data. In this case we can run the algorithm exactly as before, but use a hypothesis
test to check whether X; I X, | X¢. The exact choice of test will depend upon the kind
of data we have (e.g. continuous or discrete, linear or non-linear relationships).

Typically, we select a significance level « (such as 0.05) in advance, and use it for all tests.
If the test rejects—that is, there is evidence of conditional dependence—we leave the edge
in place, and otherwise we remove it. This tends to mean that for small datasets we obtain
fairly sparse graphs, because there is not enough evidence to show that some true edges
are present.
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Algorithm 3 Pseudocode of the PC Algorithm.
function SKELETON(distribution p(zy))
Start with complete undirected graph H;
for Kin0,1,...,p—2do
for every i ~ j in H do
for C C bdy (i) \ {j} or C C bdy(y) \ {i} with |C| =k do
if Xi A Xj | Xc [p(:l}v)] then
remove i — j edge from H;
record SepSet(i,j) = C;
exit loop over C' and move to next edge in H.
end if
end for
end for
end for
return H, collection of Sepset(i, j)s.
end function
function ORIENT(Skeleton #, collection of Sepset(i, j)s)
for every triple i — k — j in ‘H with ¢ ¢ j do
if k & SepSet(i,j) then
orient ¢ — k + j.
end if
end for
return #, collection of Sepset(i, j)s.
end function

For discrete random variables, the two most common conditional independence tests are
the Pearson’s y?-test and the likelihood ratio test (sometimes called a G?-test in the
social statistics literature). We have already seen that testing X L Y | Z corresponds to
comparing

A=2 Z n(x,y, z) log Zg’ Z;@n(zt;

x7y7z

to an appropriate x2-distribution, where (for example) n(x,z) are the marginal counts
over X =x,7 = 2.

For Gaussian random variables, we can either use a likelihood ratio test or make use of
Fisher’s z-transformation. Recall that two normal random variables X and Y are
independent conditional on a set of variables Z = (Z1,...,Z;) if and only if the X,Y
entry in the corresponding concentration matrix, k;, = 0. If the concentration matrix is
scaled so that the diagonal entries are all 1, we get the matrix of partial correlations.
Specifically, the partial correlation between X and Y is defined by

Ky
kxm : kyy

Pry-z =

Fisher’s z-tranformation uses

n—3—d 1+ pry-=
u = log ,
2 1 — pay2

and for large n is approximately standard normally distributed.
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11 Gibbs Sampling

Not all interesting graphs can be triangulated in such a way as to give a junction tree with
small cliques. This makes operations such as marginalization and updating with evidence
intractable for large graphs. Alternative approaches to inference are based on Markov
chain Monte Carlo.

Gibbs Sampling gives a method of sampling from complicated joint distibutions, even if
we are unable to obtain the normalizing constant. The idea is that we divide our distri-
bution into simpler univariate conditional distributions, which often have nice parametric
forms. Even if the univariate conditional is not a simple model, computing the normaliz-
ing constant only requires a one-dimensional integral (or sum), which is relatively easy to
evaulate.

Example 11.1 (Ising Model). Let X, € {—1,+1}, and let G(V, E) be a graph. The Ising
model assumes that

p(x;0) < exp 0 Z T o
{ijteE
this is commonly used in the case of variables arranged on a p X p grid, such as in a black
and white image.

Note that
exp {0 Z{i,j}eE .T,'il'j} _exp {9 Z{i,j}eE xzx]}

p(x;0) = = ;
va exp {92{i7j}eEximj} Z(0)

cannot generally be computed because the sum to obtain Z(0) is intractable. The quantity
Z(0) is sometimes called the partition function.

Of course, if G is decomposable then we can perform these calculations using the expression
from Theorem But for non-decomposable graphs, there is generally no such nice
expression.

To avoid this problem we introduce a very useful Markov chain Monte Carlo method called
Gibbs Sampling. Suppose we wish to simulate from a distribution p(x1,...,zy), and are
given each of the conditionals:

p(.’Ei ‘ CL',Z') :p(ﬂfi | LlyeeeyLi—1Lj41y-- - ,xk).

The Gibbs Sampler is an algorithm that samples as follows:

Algorithm 4 Single iteration of the Gibbs sampler.

function GIBBS(current state x1, ..., zk, conditional distributions p(z; | z—;))
foriinl,...,k do
sample x} from p(z; | z7,..., T 1, Tit1, ..., k) ;
end for
return new state (z7,...,2})

end function
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Repeatedly applying this algorithm gives a Markov chain on z1,...,z;. Under mild con-
ditions, the unique stationary distribution of the Markov chain is the joint distribution p,
and the distribution of the state of the chain will converge to p. Hence, the state can be
used as a sample from p. A potential disadvantage is that it may take a long time for the
Markov chain to converge. We will not attempt to prove these facts, but see the Advanced
Simulation course next term for more details.

Example 11.2. Suppose that p is a bivariate normal distribution with mean p = (u1, o)
and covariance matrix K—!. Then

1

logp(z1 | z2) = —5(3: — w)TK (x — p) + const
1 1
= —5k11($1 —1)? = k1a(z1 — p1) (zg — p2) — §k‘22($2 — pg)?* + const

1
= _§k11x% + (k111 — k12(z2 — p2))z1 + const

1 k12

2
= ——kn (21— p1 + —(x2 —p2) | + const.

Hence, the conditional distribution of X; | X9 = x9 is Gaussian with mean u; — % (xa—p2)
and variance k:l_ll.

A similar result holds for Xs | X7 = 1. Hence the Gibbs sampler consists of the following
steps, starting from some initial @0)’ xéo)), fort=1,2,...,

o draw xgt) from N(u; — %(Igil) — p2), kﬁl)§
o draw xg) from N(ug — %(:ﬂ?) - /il)?kz_zl)-
In the case where 3 = ps = 0 and the variances are 1, one can show that K =

1—p2 —p 1
N(pza, (1 — p?)~1). We implement this in the R code below.

1 - . . .
L < p>, where p is the correlation. This gives updates of the form z; | zo ~

## Gaussian Gibbs sampler

rho <- 0.9 ## correlation

N <- 200 ## number of samples
X <= y <- numeric(N)

x[1] <= y[1] <=0

for (i in 2:N) {
x[i] <- rnorm(1, mean=rhoxy[i-1], sd=sqrt(l-rho~2))
y[i] <- rnorm(1l, mean=rho*x[i], sd=sqrt(i-rho~2))

}

VV+ + + V V VYV YV VYV

plot(x,y, type="1")
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Notice that there is correlation between the samples, as evidenced by the fact that the
Markov chain tends to stay close to the previous step.

Applying Gibbs sampling to the Ising model makes it much easier to obtain samples from.
Even though the joint distribution is hard to evaluate, the full conditional distribution of
each variable is simple, because we have:

p(z; | Ty 4y, 0) o exp q Oz; Z zj
jebdg(9)

€xp {9%’ Zjebdg(i) xj}
in exp {9332‘ Zjebdg () f‘/’j}

this is much easier to compute, because we only have to sum over a single variable x;.

p(xi | v\ (43, 0) =

)

Example 11.3. Consider a model in which X ~ Bernoulli(w) and Y | X =z ~ N(0,,1)
independently for ¢ = 1,...,n. We place priors 7 ~ Beta(a,b) and 6, ~ N(0,1) for
z=0,1.

Now suppose we observe Y but not X. The posterior distribution for the parameters is

p(ﬂ', 6o, 01 | y) X p(y ‘ TFaQanl)p(ﬂ-’eo’al)‘

Unfortunately this is (relatively) hard to evaluate because p(Y | 7, 6o, 61) does not have a
simple form. However, we can instead consider

p(l’,ﬂ',GO,Hl ‘ y) OCp(y ’ T, 90701) p(f]? | 7T) ‘]9(7'(',00,91).
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This is easy to work with because each factor on the right hand side has a simple closed
form. In particular,

rexp(—(Y — 0,)%/2)
rexp(—(V — 002/2) + (1 — m) exp(—(V — 60)%/2)
7w | X ~Beta(a+ X,b+ (1 — X))

P(X =1]Y,00,01,7) =

1 1
0, | X.Y ~N | =XY, ——
X <2 ’1+X>

1 1

Since the full conditionals are easy to evaluate, we can just run a Gibbs sampler to obtain
a sample from the joint posterior distribution of X and the parameters given Y. We can
(if we choose) then just ignore the X samples and keep the sample of parameters.

VVVYVY ¢+ ++++ 4+ 4+ +V VVVVVVVVYVVVVVVVYVYV

set.seed(674)

## generate data

n <- 1000

pi <- 0.3

theta <- c(-1,1)

X <- rbinom(n, 1, pi)

Y <- rnorm(n, mean=thetal[X+1], sd=1)

## initial states

N <- 1000

pi_samps <- numeric(N)

theta_samps <- matrix(0, N, 2)

X_samp <- rbinom(n, 1, 0.5) # random starting point

a <- b <-1 ## prior for pi

## run Gibbs sampler
for (i in 1:N) {
sumX <- sum(X_samp)
pi_samps[i] = rbeta(l, at+sumX, b+n-sumX)
theta_samps[i,1] = rnorm(1l, sum(Y*(1-X_samp))/(1+n-sumX), 1/(1+n-sumX))
theta_samps[i,2] = rnorm(1l, sum(Y*X_samp)/(1+sumX), 1/(1+sumX))
p <- pi_samps[i]*dnorm(Y, theta_samps[i,2])
p <- p/(p + (1-pi_samps[i])*dnorm(Y, theta_samps[i,1]))
X_samp <- rbinom(n, 1, p)

}

par (mfrow=c(1,2))
plot(pi_samps, type="1")
plot(theta_samps[,1], type="1")
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> par(mfrow=c(1,2))
> hist(pi_samps, col=2, breaks=50)
> hist(theta_samps[,1], col=4, breaks=50)
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@culosis

Figure 25: The ‘Chest Clinic’ network, a fictitious diagnostic model.

11.1 Simulation Under Evidence

Gibbs sampling gives a useful alternative method for estimating probability distributions
after the introduction of evidence. In Section [§] we made use of junction trees on de-
composable graphs to compute such probabilities exactly; using Gibbs sampling we can
simulate data from such a distribution without assuming that the graph is decomposable.

Consider again the Chest Clinic network, and suppose that we have:
p(l‘v) = H p(xv ‘ xpa(v))'
veV

We’ve seen that one very efficient way to perform inference in this model is to form a
junction tree, and compute the probabilities using it. This is a form of exact inference,
since our algorithm will give us the exact probability.

An alternative is to simulate data from the network, and then use that data to estimate
the probability. (In this context of such a small model, this is not a sensible strategy, and
we do it here only for illustration!)

Gibbs requires that the joint distribution is positive to guarantee that the Markov chain
can get from any state to any other state (i.e. that it is irreducible), so we remove the
‘Either’ node from our model. To run the Gibbs algorithm, we need to compute full
conditionals; i.e. the distribution of each variable conditional on every other. In practice
of course, conditional independence means that only some variables will be involved (those
in the Markov blanket).

For example, we can read off from the graph that
p(b ’ a’s7l7t7x7c) :p(b | 87C7l7t)
Equivalently,

p(b ’ a,s,l,t,x,c) & H p(xv ‘ mpa(v))a
veV

and we need only retain terms that contain b. Hence

p(b|a,s,1t,x,¢) occp(b | s) - plefb, L, 1),
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which shows the same result. To compute it fully, we just

p(b | s) - plefb,t,1)
b It =
plbla,s bt €)= = Ty ol £1)°

Now, suppose we are interested in the probability of tuberculosis for a person with no visit
to Asia, a non-smoker, a positive x-ray, and no cough.

We can instantiate the seven variables so that those four match the values above, and then
run a Gibbs sampler that only updates the remaining three values.

Of course, since we only obtain samples any inference we do is only approximate, and
depending on the convergence properties of the chain it may require a very long time to
give a good approximation.
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