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Post ‘Double Selection’ Inference
Suppose we have the following set up, where X , is high-dimensional
(say |X | = p).

A a

X

Y (a)

It is clear that we can identify the causal effect of A on Y , since
assuming independent observations and the model implied by the SWIG:

EY (a) =
∑
x

P(x) · E[Y | a, x ] = E
[

Y1{A=a}

P(A = a |X )

]
;

however, statistically we may still have difficulties.

• We do not know what form the expressions for E[Y | a, x ], P(x), or
P(a | x) should take.

• Even if we knew the families, actually estimating the parameters
may be infeasible with a finite dataset of reasonable size.
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Frisch-Waugh-Lovell Theorem

Suppose we have n i.i.d. observations (Xi ,Ai ,Yi ) such that

Ai = αTXi + δi Yi = βAi + γTXi + εi ,

where Xi has fewer than n − 1 entries.

Consider two different ways of obtaining an estimate of β:

1. regress Y on X and A using OLS, and look at β̂;

2. regress Y on X to obtain residual rY ; and then A on X to obtain
rA; then regress rY on rA, and take the linear coefficient β̃.

Theorem (Frisch and Waugh (1933), Lovell (1963))

The estimates for β from methods 1 and 2 are the same.
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Intuition

Why does this result hold?

Proof.

Note that rA = A− α̂TX , so rA ⊥⊥ X .
Then

E[Y | X ,A] = βA+ γTX

= β(rA + αTX ) + γTX

= βrA + (α+ γ)TX .

Then, since X ⊥⊥ rA, we must have that regressing Y on X gives an
estimate of α+ γ.
Hence

ErY = βErA,

giving the result.
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Sparsity
Suppose that we have

E[A |X = x ] = αTx

E[Y |A = a,X = x ] = βa+ γTx .

Assume also that log p = o(n1/3) and there exist subsets B and D of size
at most sn ≪ n such that:

E[A | x ] = αT
Bx + rn

E[Y |A = a,X = x ] = βa+ γTDx + tn,

where the approximation error is stochastically smaller than the
estimation error: i.e.

E∥rn∥2 ≲
√

sn
n

and E∥tn∥2 ≲
√

sn
n
.

In other words, a much smaller subset of covariates is sufficient to
approximately make A and Y unconfounded.
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Post ‘Double Selection’ Inference

Graphical representation:

A a

B ∩ D

Y

B \ D D \ B

X \ (B ∪ D)

The idea is that if we account for variables in both B and D, then we
will be guaranteed to have good control of the bias in estimating β.

In principle we can use any consistent selection method to choose B and
D. In practice, Belloni et al. recommend a version of the lasso.
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Post ‘Double Selection’ Inference

Here we perform a simulated example. Suppose that

Ai = α

7∑
i=1

Xi + δi

Yi = βAi + γ

10∑
i=4

Xi + εi

where δi , εi
i.i.d.∼ N(0, 1) (independently), and we are given 1000 covariates

in X , where each Xij ∼ N(0, 1) independently.

Set β = γ = 2 and α = 1, and pick n = 100.
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Post ‘Double Selection’ Inference

alpha <- 1

gamma <- beta <- 2

n <- 100; p <- 1000

## simulate data

set.seed(123)

Z <- matrix(rnorm(n*p), n, p)

X <- Z %*% c(rep(alpha, 7), rep(0,p-7)) + rnorm(n)

Y <- Z %*% c(rep(0,3), rep(gamma, 7), rep(0,p-10)) + beta*X + rnorm(n)

dat <- data.frame(Y=Y, X=X, Z)

names(dat) <- c("Y","X",paste0("Z",seq_len(p)))

head(dat[,1:9])

Y X Z1 Z2 Z3 Z4 Z5 Z6 Z7

1 -1.932 0.876 -0.5605 -0.710 2.199 -0.715 -0.0736 -0.6019 1.0740

2 -11.460 0.227 -0.2302 0.257 1.312 -0.753 -1.1687 -0.9937 -0.0273

3 0.821 0.408 1.5587 -0.247 -0.265 -0.939 -0.6347 1.0268 -0.0333

4 -0.752 -1.633 0.0705 -0.348 0.543 -1.053 -0.0288 0.7511 -1.5161

5 -4.478 -1.284 0.1293 -0.952 -0.414 -0.437 0.6707 -1.5092 0.7904

6 -2.355 0.906 1.7151 -0.045 -0.476 0.331 -1.6505 -0.0951 -0.2107

10



Post ‘Double Selection’ Inference

We can try a näıve model, and obtain the wrong answer.

sum_lm <- summary(lm(Y ~ X, data=dat))

sum_lm$coef

Estimate Std. Error t value Pr(>|t|)

(Intercept) 0.244 0.492 0.496 6.21e-01

X 3.067 0.184 16.649 2.52e-30

coef <- sum_lm$coef

Notice that the estimate β̂ = 3.07 is not within 2 s.e.s (0.37) of β = 2.
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Post ‘Double Selection’ Inference
Then we can try using the R package hdm, which implements double
selection.

library(hdm) ## library for implementation

lasso_out = rlassoEffect(y=dat[,"Y",drop=FALSE],

d=dat[,"X",drop=FALSE],

x=Z, method="double selection")

sum_out <- summary(lasso_out)

sum_out

[1] "Estimates and significance testing of the effect of target variables"

Estimate. Std. Error t value Pr(>|t|)

X 2.018 0.119 16.9 <2e-16 ***

---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Note this solution β̃ = 2.02, is (well) within two s.e.s (0.24) of β = 2.
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Post ‘Double Selection’ Inference: Application

Let us try applying double selection to a wage dataset.

X <- model.matrix(~ -1 + female + (widowed +divorced + separated +

nevermarried + hsd08 + hsd911 + hsg + cg + ad + mw + so +

we + exp1 + exp2 + exp3)^2, data = cps2012)

X <- X[, apply(X, 2, var) != 0] # exclude all constant variables

y <- cps2012$lnw

effects_female <- rlassoEffects(x = X, y = y, index = "female")

summary(effects_female)

[1] "Estimates and significance testing of the effect of target variables"

Estimate. Std. Error t value Pr(>|t|)

female -0.28067 0.00692 -40.5 <2e-16 ***

---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
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Post ‘Double Selection’ Inference: Application

Now let’s try fitting the other covariates too (note some are causally
subsequent to sex).

data(cps2012)

X <- model.matrix(~ -1 + female + female:(widowed + divorced + separated +

nevermarried +hsd08 + hsd911 + hsg + cg + ad + mw + so +

we + exp1 + exp2 + exp3) + (widowed +divorced + separated +

nevermarried + hsd08 + hsd911 + hsg + cg + ad + mw + so +

we + exp1 + exp2 + exp3)^2, data = cps2012)

X <- X[, apply(X, 2, var) != 0] # exclude all constant variables

index.gender <- grep("female", colnames(X))

y <- cps2012$lnw
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Post ‘Double Selection’ Inference: Application
effects_female <- rlassoEffects(x = X, y = y, index = index.gender)

summary(effects_female)

[1] "Estimates and significance testing of the effect of target variables"

Estimate. Std. Error t value Pr(>|t|)

female -0.15492 0.05016 -3.09 0.00201 **

female:widowed 0.13610 0.09066 1.50 0.13332

female:divorced 0.13694 0.02218 6.17 6.7e-10 ***

female:separated 0.02330 0.05321 0.44 0.66144

female:nevermarried 0.18685 0.01994 9.37 < 2e-16 ***

female:hsd08 0.02781 0.12091 0.23 0.81809

female:hsd911 -0.11934 0.05188 -2.30 0.02144 *

female:hsg -0.01289 0.01922 -0.67 0.50252

female:cg 0.01014 0.01833 0.55 0.58011

female:ad -0.03046 0.02181 -1.40 0.16241

female:mw -0.00106 0.01919 -0.06 0.95581

female:so -0.00818 0.01936 -0.42 0.67247

female:we -0.00423 0.02117 -0.20 0.84176

female:exp1 0.00494 0.00780 0.63 0.52714

female:exp2 -0.15952 0.04530 -3.52 0.00043 ***

female:exp3 0.03845 0.00786 4.89 1.0e-06 ***

---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

15



References

Belloni, A., Chernozhukov, V. and Hansen, C. (2014). Inference on
treatment effects after selection among high-dimensional controls. The
Review of Economic Studies, 81(2), 608–650.

Frisch, R. and F.V. Waugh (1933). Partial time regression as compared
with individual trends. Econometrica 1 (October): 387–401.

Lovell, M.C. (1963). Seasonal adjustment of economic time series and
multiple regression analysis. JASA 58 (December): 993–1010.

16



Double Machine Learning

1. Machine Learning Methods

Post Double Selection Inference

Double Machine Learning

17



Double Machine Learning

Double (or debiased) machine learning is an increasingly common
approach to estimating causal effects. See, e.g. Chernozhukov et
al. (2018).

The basic idea is the same as the approach of Belloni et al. (2014).

We estimate separate high-dimensional models for the treatment and
outcome.

The methods make extensive use of cross-fitting, i.e. splitting the data
into separate components and using each to predict the other.

This allows for estimation while preventing over-fitting.

Mathematically speaking, much more complicated models can be used
but still give an unbiased estimator of a (low-dimensional) causal effect.
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Conditions for Double ML

A crucial condition for double ML to work is Neyman orthogonality,
which says that the derivative of the estimating equation (at the true
parameters) with respect to any nuisance parameters should be zero.

Suppose our score function is ψ(W ; θ, η), with parameters of interest θ
and nuisance parameters η. Then we need:

∂

∂η
Eψ(W ; θ0, η)

∣∣∣∣
η=η0

= 0,

where (θ0, η0) are the true parameters.

If we are given a score function that is not Neyman orthogonal, we can
often change it to become so.

19



Conditions for Double ML
Consider the linear model example, where the usual score is

ψ̃β(W ;β, γ) = (Y − βA− γTX ) · A
ψ̃γ(W ;β, γ) = (Y − βA− γTX ) · X .

Suppose we consider a directional derivative δ · h with h ∈ R|X |, then we
have

∂

∂γ
ψ̃β(W ;β, γ0 + δh)

∣∣∣∣
δ→0

= lim
δ→0

(Y − βA− (γ0 + δh)TX ) · A− (Y − βA− γT0 X ) · A
δ

= −hTX .

In particular, this is not zero!
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Conditions for Double ML
Now, we can reparametrize the nuisance parameter γ as η = (γ, µ),
where we choose µ so that the new score for β is

ψβ(W ;β, η) = ψ̃β(W ;β, γ)− µT ψ̃γ(W ;β, γ)

= (Y − βA− γTX )(A− µTX ).

If we pick µ = α, then note that the expectation of second factor is 0!

Hence, small errors in the estimation of γ and α will not affect the
estimate of β.

In particular:
∂

∂γ
ψβ(W ;β, γ, α) = −X (A− αTX )

and
∂

∂α
ψβ(W ;β, γ, α) = −X (Y − βA− γTX ),

and these both have expectation 0.

Moral: Neyman orthogonality is very helpful for robustness to
misspecification.
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401(k) Example

Chernozhukov et al. (2018) analyse data on 401(k) savings plans, and
whether eligibility to enroll leads to an increase in net assets.

They consider a dataset of 9,915 individuals, measuring:

age age in years;

inc income;

educ years of education;

fsize family size;

marr indicator of being married;

twoearn two earners in household;

db member of defined benefit pension scheme;

pira eligible for Individual Retirement Allowance;

hown homeowner.
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DML for 401(k) Example
library(DoubleML)

library(mlr3)

library(data.table)

library(dplyr)

## note that the DoubleML package uses data.table objects

dat <- fetch_401k(return_type = "data.table", instrument = TRUE)

# Initialize DoubleMLData (data-backend of DoubleML)

dml = DoubleMLData$new(dat,

y_col = "net_tfa",

d_cols = "e401",

x_cols = c("age", "inc", "educ", "fsize",

"marr", "twoearn", "db", "pira", "hown"))

mod <- DoubleMLIRM$new(dml,

ml_m = lrn("classif.cv_glmnet", s = "lambda.min"),

ml_g = lrn("regr.cv_glmnet",s = "lambda.min"),

n_folds = 10, n_rep = 10)

mod$fit() ## fit the model

c(beta=mod$coef, se=mod$se)

beta.e401 se.e401

1669 3752
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DML for 401(k) Example
We can also try using a more flexible set of covariates.

## add quadratic terms to age, income, education and family size

formula_flex = formula(" ~ -1 + poly(age, 2, raw=TRUE) +

poly(inc, 2, raw=TRUE) + poly(educ, 2, raw=TRUE) +

poly(fsize, 2, raw=TRUE) + marr + twoearn + db + pira + hown")

features_flex = data.frame(model.matrix(formula_flex, dat))

model_data = data.table("net_tfa" = dat[, net_tfa],

"e401" = dat[, e401], features_flex)

## initialize and fit model

dml_f <- DoubleMLData$new(model_data, y_col = "net_tfa",

d_cols = "e401")

mod_f <- DoubleMLIRM$new(dml_f,

ml_m = lrn("classif.cv_glmnet", s = "lambda.min"),

ml_g = lrn("regr.cv_glmnet",s = "lambda.min"),

n_folds = 10, n_rep = 5)

mod_f$fit()
We obtain a much smaller standard error.

c(beta=mod_f$coef, se=mod_f$se)

beta.e401 se.e401

8538 1258
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