StatML.io CDT: Causality Module

Robin J. Evans
Imperial College London and University of Oxford March 2024

Outline

1. Machine Learning Methods

Post Double Selection Inference

1. Machine Learning Methods

- Post Double Selection Inference
- Double Machine Learning

Post ‘Double Selection' Inference

Suppose we have the following set up, where \boldsymbol{X}, is high-dimensional (say $|\boldsymbol{X}|=p$).

It is clear that we can identify the causal effect of A on Y, since assuming independent observations and the model implied by the SWIG:

$$
\mathbb{E} Y(a)=\sum_{\boldsymbol{x}} P(\boldsymbol{x}) \cdot \mathbb{E}[Y \mid a, \boldsymbol{x}]=\mathbb{E}\left[\frac{Y_{\{A=a\}}}{P(A=a \mid \boldsymbol{X})}\right]
$$

however, statistically we may still have difficulties.

- We do not know what form the expressions for $\mathbb{E}[Y \mid a, \boldsymbol{x}], P(\boldsymbol{x})$, or $P(a \mid x)$ should take.
- Even if we knew the families, actually estimating the parameters may be infeasible with a finite dataset of reasonable size.

Frisch-Waugh-Lovell Theorem

Suppose we have n i.i.d. observations $\left(\boldsymbol{X}_{i}, \boldsymbol{A}_{i}, Y_{i}\right)$ such that

$$
A_{i}=\alpha^{\top} \boldsymbol{X}_{i}+\delta_{i} \quad Y_{i}=\beta A_{i}+\gamma^{\top} \boldsymbol{X}_{i}+\varepsilon_{i}
$$

where \boldsymbol{X}_{i} has fewer than $n-1$ entries.

Consider two different ways of obtaining an estimate of β :

1. regress Y on \boldsymbol{X} and A using OLS, and look at $\hat{\beta}$;
2. regress Y on \boldsymbol{X} to obtain residual r_{Y}; and then A on \boldsymbol{X} to obtain r_{A}; then regress r_{Y} on r_{A}, and take the linear coefficient $\tilde{\beta}$.

Theorem (Frisch and Waugh (1933), Lovell (1963))

The estimates for β from methods 1 and 2 are the same.

Intuition

Why does this result hold?

Proof.

Note that $r_{A}=A-\hat{\alpha}^{T} \boldsymbol{X}$, so $r_{A} \Perp \boldsymbol{X}$.
Then

$$
\begin{aligned}
\mathbb{E}[Y \mid \boldsymbol{X}, A] & =\beta A+\gamma^{T} \boldsymbol{X} \\
& =\beta\left(r_{A}+\alpha^{T} \boldsymbol{X}\right)+\gamma^{T} \boldsymbol{X} \\
& =\beta r_{A}+(\alpha+\gamma)^{T} \boldsymbol{X} .
\end{aligned}
$$

Then, since $\boldsymbol{X} \Perp r_{A}$, we must have that regressing Y on \boldsymbol{X} gives an estimate of $\alpha+\gamma$.
Hence

$$
\mathbb{E} r_{Y}=\beta \mathbb{E} r_{A}
$$

giving the result.

Sparsity

Suppose that we have

$$
\begin{aligned}
\mathbb{E}[A \mid \boldsymbol{X} & =\boldsymbol{x}]
\end{aligned}=\alpha^{\top} \boldsymbol{x} .
$$

Assume also that $\log p=o\left(n^{1 / 3}\right)$ and there exist subsets \boldsymbol{B} and \boldsymbol{D} of size at most $s_{n} \ll n$ such that:

$$
\begin{aligned}
\mathbb{E}[A \mid \boldsymbol{x}] & =\alpha_{\boldsymbol{B}}^{\top} \boldsymbol{x}+r_{n} \\
\mathbb{E}[Y \mid A=a, \boldsymbol{X}=\boldsymbol{x}] & =\beta a+\gamma_{\boldsymbol{D}}^{T} \boldsymbol{x}+t_{n},
\end{aligned}
$$

where the approximation error is stochastically smaller than the estimation error: i.e.

$$
\mathbb{E}\left\|r_{n}\right\|_{2} \lesssim \sqrt{\frac{s_{n}}{n}} \quad \text { and } \quad \mathbb{E}\left\|t_{n}\right\|_{2} \lesssim \sqrt{\frac{s_{n}}{n}} .
$$

In other words, a much smaller subset of covariates is sufficient to approximately make A and Y unconfounded.

Post 'Double Selection' Inference

Graphical representation:

The idea is that if we account for variables in both \boldsymbol{B} and \boldsymbol{D}, then we will be guaranteed to have good control of the bias in estimating β.

In principle we can use any consistent selection method to choose \boldsymbol{B} and
D. In practice, Belloni et al. recommend a version of the lasso.

Post 'Double Selection' Inference

Here we perform a simulated example. Suppose that

$$
\begin{aligned}
A_{i} & =\alpha \sum_{i=1}^{7} X_{i}+\delta_{i} \\
Y_{i} & =\beta A_{i}+\gamma \sum_{i=4}^{10} X_{i}+\varepsilon_{i}
\end{aligned}
$$

where $\delta_{i}, \varepsilon_{i} \stackrel{\text { i.i.d }}{\sim} N(0,1)$ (independently), and we are given 1000 covariates in \boldsymbol{X}, where each $X_{i j} \sim N(0,1)$ independently.

Set $\beta=\gamma=2$ and $\alpha=1$, and pick $n=100$.

Post 'Double Selection' Inference

```
alpha <- 1
gamma <- beta <- 2
n <- 100; p <- }100
```

\#\# simulate data
set.seed (123)
Z <- matrix (rnorm (n*p), n, p)
$X<-Z \% * \% c(r e p(a l p h a, 7), r e p(0, p-7))+\operatorname{rnorm}(n)$
$Y<-Z \% * \% c(\operatorname{rep}(0,3), \operatorname{rep}($ gamma, 7$), \operatorname{rep}(0, p-10))+\operatorname{beta} * X+\operatorname{rnorm}(n)$
dat <- data.frame ($\mathrm{Y}=\mathrm{Y}, \mathrm{X}=\mathrm{X}, \mathrm{Z}$)
names(dat) <- c("Y", "X", paste0("Z", seq_len(p)))
head(dat [, 1:9])

	Y	X	Z 1	Z 2	Z 3	Z 4	Z 5	Z 6	Z 7
1	-1.932	0.876	-0.5605	-0.710	2.199	-0.715	-0.0736	-0.6019	1.0740
2	-11.460	0.227	-0.2302	0.257	1.312	-0.753	-1.1687	-0.9937	-0.0273
3	0.821	0.408	1.5587	-0.247	-0.265	-0.939	-0.6347	1.0268	-0.0333
4	-0.752	-1.633	0.0705	-0.348	0.543	-1.053	-0.0288	0.7511	-1.5161
5	-4.478	-1.284	0.1293	-0.952	-0.414	-0.437	0.6707	-1.5092	0.7904
6	-2.355	0.906	1.7151	-0.045	-0.476	0.331	-1.6505	-0.0951	-0.2107

Post 'Double Selection' Inference

We can try a naïve model, and obtain the wrong answer.

```
sum_lm <- summary(lm(Y ~ X, data=dat))
sum_lm$coef
\begin{tabular}{lrrrr} 
& Estimate & Std. Error & t value & \(\operatorname{Pr}(>|\mathrm{t}|)\) \\
(Intercept) & 0.244 & 0.492 & 0.496 & \(6.21 \mathrm{e}-01\) \\
X & 3.067 & 0.184 & 16.649 & \(2.52 \mathrm{e}-30\)
\end{tabular}
coef <- sum_lm$coef
```

Notice that the estimate $\hat{\beta}=3.07$ is not within 2 s.e.s (0.37) of $\beta=2$.

Post 'Double Selection' Inference

Then we can try using the R package hdm, which implements double selection.

```
library(hdm) ## library for implementation
lasso_out = rlassoEffect(y=dat[,"Y",drop=FALSE],
    d=dat[,"X",drop=FALSE],
    x=Z, method="double selection")
sum_out <- summary(lasso_out)
sum_out
```

[1] "Estimates and significance testing of the effect of target variables"
Estimate. Std. Error t value $\operatorname{Pr}(>|\mathrm{t}|)$
X $2.018 \quad 0.119 \quad 16.9<2 e^{-16} * * *$
Signif. codes: $0{ }^{\prime} * * * ' 0.001$ '**' 0.01 '*' $0.05 '^{\prime} 0.1$ ' ' 1

Note this solution $\tilde{\beta}=2.02$, is (well) within two s.e.s (0.24) of $\beta=2$.

Post ‘Double Selection' Inference: Application

Let us try applying double selection to a wage dataset.

```
X <- model.matrix(~ -1 + female + (widowed +divorced + separated +
    nevermarried + hsd08 + hsd911 + hsg + cg + ad + mw + so +
    we + exp1 + exp2 + exp3)^2, data = cps2012)
X <- X[, apply(X, 2, var) != 0] # exclude all constant variables
y <- cps2012$lnw
effects_female <- rlassoEffects(x = X, y = y, index = "female")
summary(effects_female)
[1] "Estimates and significance testing of the effect of target variables"
    Estimate. Std. Error t value Pr(>|t|)
female -0.28067 0.00692 -40.5 <2e-16 ***
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
```


Post ‘Double Selection' Inference: Application

Now let's try fitting the other covariates too (note some are causally subsequent to sex).

```
data(cps2012)
X <- model.matrix(~ -1 + female + female:(widowed + divorced + separated +
    nevermarried +hsd08 + hsd911 + hsg + cg + ad + mw + so +
    we + exp1 + exp2 + exp3) + (widowed +divorced + separated +
    nevermarried + hsd08 + hsd911 + hsg + cg + ad + mw + so +
    we + exp1 + exp2 + exp3) }2\mathrm{ 2, data = cps2012)
X <- X[, apply(X, 2, var) != 0] # exclude all constant variables
index.gender <- grep("female", colnames(X))
y <- cps2012$lnw
```


Post ‘Double Selection’ Inference: Application

effects_female <- rlassoEffects (x = X, y = y, index = index.gender)
summary (effects_female)
[1] "Estimates and significance testing of the effect of target variables"
Estimate. Std. Error t value $\operatorname{Pr}(>|t|)$

female	-0.15492	0.05016	-3.09	0.00201	$* *$
female:widowed	0.13610	0.09066	1.50	0.13332	
female:divorced	0.13694	0.02218	6.17	$6.7 e-10$	$* * *$
female:separated	0.02330	0.05321	0.44	0.66144	
female:nevermarried	0.18685	0.01994	9.37	$<2 e-16$	$* * *$
female:hsd08	0.02781	0.12091	0.23	0.81809	
female:hsd911	-0.11934	0.05188	-2.30	0.02144	$*$
female:hsg	-0.01289	0.01922	-0.67	0.50252	
female:cg	0.01014	0.01833	0.55	0.58011	
female:ad	-0.03046	0.02181	-1.40	0.16241	
female:mw	-0.00106	0.01919	-0.06	0.95581	
female:so	-0.00818	0.01936	-0.42	0.67247	
female:we	-0.00423	0.02117	-0.20	0.84176	
female: exp1	0.00494	0.00780	0.63	0.52714	
female: $\exp 2$	-0.15952	0.04530	-3.52	0.00043	$* * *$
female: \exp	0.03845	0.00786	4.89	$1.0 e-06$	$* * *$

Signif. codes: $0{ }^{\prime * * * '} 0.001$ '**' $0.01{ }^{\prime *} 0.05 '^{\prime} 0.1 '^{\prime} 1$

References

Belloni, A., Chernozhukov, V. and Hansen, C. (2014). Inference on treatment effects after selection among high-dimensional controls. The Review of Economic Studies, 81(2), 608-650.

Frisch, R. and F.V. Waugh (1933). Partial time regression as compared with individual trends. Econometrica 1 (October): 387-401.
Lovell, M.C. (1963). Seasonal adjustment of economic time series and multiple regression analysis. JASA 58 (December): 993-1010.

Double Machine Learning

1. Machine Learning Methods

- Post Double Selection Inference
- Double Machine Learning

Double Machine Learning

Double (or debiased) machine learning is an increasingly common approach to estimating causal effects. See, e.g. Chernozhukov et al. (2018).

The basic idea is the same as the approach of Belloni et al. (2014).
We estimate separate high-dimensional models for the treatment and outcome.

The methods make extensive use of cross-fitting, i.e. splitting the data into separate components and using each to predict the other.

This allows for estimation while preventing over-fitting.
Mathematically speaking, much more complicated models can be used but still give an unbiased estimator of a (low-dimensional) causal effect.

Conditions for Double ML

A crucial condition for double ML to work is Neyman orthogonality, which says that the derivative of the estimating equation (at the true parameters) with respect to any nuisance parameters should be zero.

Suppose our score function is $\psi(W ; \theta, \eta)$, with parameters of interest θ and nuisance parameters η. Then we need:

$$
\left.\frac{\partial}{\partial \eta} \mathbb{E} \psi\left(W ; \theta_{0}, \eta\right)\right|_{\eta=\eta_{0}}=0
$$

where $\left(\theta_{0}, \eta_{0}\right)$ are the true parameters.

If we are given a score function that is not Neyman orthogonal, we can often change it to become so.

Conditions for Double ML

Consider the linear model example, where the usual score is

$$
\begin{aligned}
& \tilde{\psi}_{\beta}(W ; \beta, \gamma)=\left(Y-\beta A-\gamma^{T} \boldsymbol{X}\right) \cdot A \\
& \tilde{\psi}_{\gamma}(W ; \beta, \gamma)=\left(Y-\beta A-\gamma^{T} \boldsymbol{X}\right) \cdot \boldsymbol{X} .
\end{aligned}
$$

Suppose we consider a directional derivative $\delta \cdot h$ with $h \in \mathbb{R}^{|\boldsymbol{X}|}$, then we have

$$
\begin{aligned}
& \left.\frac{\partial}{\partial \gamma} \tilde{\psi}_{\beta}\left(W ; \beta, \gamma_{0}+\delta h\right)\right|_{\delta \rightarrow 0} \\
& =\lim _{\delta \rightarrow 0} \frac{\left(Y-\beta A-\left(\gamma_{0}+\delta h\right)^{T} \boldsymbol{X}\right) \cdot A-\left(Y-\beta A-\gamma_{0}^{T} \boldsymbol{X}\right) \cdot A}{\delta} \\
& =-h^{T} \boldsymbol{X} .
\end{aligned}
$$

In particular, this is not zero!

Conditions for Double ML

Now, we can reparametrize the nuisance parameter γ as $\eta=(\gamma, \mu)$, where we choose μ so that the new score for β is

$$
\begin{aligned}
\psi_{\beta}(W ; \beta, \eta) & =\tilde{\psi}_{\beta}(W ; \beta, \gamma)-\mu^{T} \tilde{\psi}_{\gamma}(W ; \beta, \gamma) \\
& =\left(Y-\beta A-\gamma^{T} \boldsymbol{X}\right)\left(A-\mu^{T} \boldsymbol{X}\right)
\end{aligned}
$$

If we pick $\mu=\alpha$, then note that the expectation of second factor is 0 !
Hence, small errors in the estimation of γ and α will not affect the estimate of β.

In particular:

$$
\begin{aligned}
\frac{\partial}{\partial \gamma} \psi_{\beta}(W ; \beta, \gamma, \alpha) & =-\boldsymbol{X}\left(A-\alpha^{T} \boldsymbol{X}\right) \\
\text { and } \frac{\partial}{\partial \alpha} \psi_{\beta}(W ; \beta, \gamma, \alpha) & =-\boldsymbol{X}\left(Y-\beta A-\gamma^{T} \boldsymbol{X}\right),
\end{aligned}
$$

and these both have expectation 0 .
Moral: Neyman orthogonality is very helpful for robustness to misspecification.

401(k) Example

Chernozhukov et al. (2018) analyse data on 401(k) savings plans, and whether eligibility to enroll leads to an increase in net assets.

They consider a dataset of 9,915 individuals, measuring:
age age in years;
inc income;
educ years of education;
fsize family size;
marr indicator of being married;
twoearn two earners in household;
db member of defined benefit pension scheme;
pira eligible for Individual Retirement Allowance;
hown homeowner.

DML for 401(k) Example

```
library(DoubleML)
library(mlr3)
library(data.table)
library(dplyr)
## note that the DoubleML package uses data.table objects
dat <- fetch_401k(return_type = "data.table", instrument = TRUE)
# Initialize DoubleMLData (data-backend of DoubleML)
dml = DoubleMLData$new(dat,
    y_col = "net_tfa",
    d_cols = "e401",
    x_cols = c("age", "inc", "educ", "fsize",
    "marr", "twoearn", "db", "pira", "hown"))
mod <- DoubleMLIRM$new(dml,
    ml_m = lrn("classif.cv_glmnet", s = "lambda.min"),
    ml_g = lrn("regr.cv_glmnet",s = "lambda.min"),
    n_folds = 10, n_rep = 10)
mod$fit() ## fit the model
c(beta=mod$coef, se=mod$se)
beta.e401 se.e401
    1669 3752
```


DML for 401(k) Example

We can also try using a more flexible set of covariates.

```
## add quadratic terms to age, income, education and family size
formula_flex = formula(" ~ -1 + poly(age, 2, raw=TRUE) +
    poly(inc, 2, raw=TRUE) + poly(educ, 2, raw=TRUE) +
    poly(fsize, 2, raw=TRUE) + marr + twoearn + db + pira + hown")
features_flex = data.frame(model.matrix(formula_flex, dat))
model_data = data.table("net_tfa" = dat[, net_tfa],
    "e401" = dat[, e401], features_flex)
## initialize and fit model
dml_f <- DoubleMLData$new(model_data, y_col = "net_tfa",
    d_cols = "e401")
mod_f <- DoubleMLIRM$new(dml_f,
    ml_m = lrn("classif.cv_glmnet", s = "lambda.min"),
    ml_g = lrn("regr.cv_glmnet",s = "lambda.min"),
    n_folds = 10, n_rep = 5)
mod_f$fit()
We obtain a much smaller standard error.
c(beta=mod_f$coef, se=mod_f$se)
beta.e401 se.e401
    8538 1258
```


References

V. Chernozhukov, D. Chetverikov, M. Demirer, E. Duflo, C. Hansen, W. Newey and J.M. Robins (2018). Double/debiased machine learning for treatment and structural parameters. The Econometrics Journal, 21(1) C1-C68.

References

Pearl, J. Causality: Models, Reasoning, and Inference. 3rd Ed. Cambridge, 2009.
Spirtes, P, Glymour, C, Scheines R. Causation, Prediction, and Search. Lecture Notes in Statistics 81, Springer-Verlag, 2000.
Wright, S. The theory of path coefficients. Genetics, 8: 239-255, 1923.
Wright, S. The method of path coefficients. Annals of Mathematical Statistics, 5(3): 161-215, 1934.

