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Causality
‘Causality’ is a very large (by no means entirely statistical) topic, but
encompasses two important subfields:

• causal discovery: determining causal structure from observational
data;

• causal inference: estimating causal effects from data, given the
structure.

We will concentrate on the latter of these two topics.
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Learning objectives

The plan for these two weeks is to introduce basic concepts of causal
learning (reasoning, modelling, and inference) to enable you to read more
advanced ‘causal’ papers.

We will focus on:

• formulating causal (research) questions;

• understanding sources of (avoidable and unavoidable) bias;

• some basic inference methods, such as adjustment and inverse
weighting;

• a couple of ML methods (e.g. double machine learning).

Please ASK if you have question or comments.
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Outline

1. Introduction

2. Single-World Intervention Graphs

3. Estimation Methods

4. Machine Learning Methods

6



History of Causal Inference

Causal inference is a topic with a history almost
as long as history itself!

Aristotle is generally credited as the earliest to
consider this question philosophically.

• There are distinct traditions in different disciplines. Notably,
medicine, epidemiology, econometrics, and psychiatry.

• These approaches have different terminology, accepted assumptions
and sources of data.

• Only in the past few years has some convergence emerged across
fields.

• Causality is fundamental to many research questions in different
scientific fields.

7



Statistical Causality

(Associational) statistics asks ‘what?’

Causality asks ‘why?’ and ‘how?’ and ‘what if?’

Causation / causality: philosophical, moral and other usages of the
term—not what we are concerned with here.

This module takes particular (narrow) view of causality most relevant for
scientific enquiries: causality we can implement.

We are interested in a ‘causal effect’; that is, a difference in outcomes, or
their distribution, between (hypothetical) experiments we might do.
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Causation vs Association

Population of interest

control treated

Association

control treated

Causation

control treated

(From Hernán and Robins, 2025)
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Causal Questions

Descriptive or predictive questions

(A) “Is this patient suitable for surgery?”

(B) “Is this patient at high risk of developing complications during
surgery?”

Causal questions

(C) “Which type of anaesthetic should this patient receive to minimise
the risk of complications during surgery?”

(C’) “How does the amount of anaesthetic affect the risk of
complications during surgery?”

(D) “What can be done to reduce the risk of complications during
surgery for an average / a particular type of patient?”
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Causal Questions

Much of the art of causal inference lies in:

1. formulating a causal question;

2. turning that causal question into something that can be answered
with data (i.e. a statistical question.)

The general strategy is:

1. determine a causal quantity that will answer the scientific question
of interest;

2. check that the quantity is identifiable from the data you have and
assumptions you are willing to make;

3. choose a statistical estimator based on your data and assumptions.
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Target Trials
Formulate the ideal randomized clinical trial that you would use to
answer your question. Use the usual trial design criteria (e.g. Hernán and
Robins, 2016):

PICOT

Population: identify which subjects should be included/excluded.

Intervention: what is the treatment you wish to investigate?

Comparison: what will you use as a baseline?

Outcome: what outcome measure will you consider?

Time: the horizon over which comparisons should be made.

Your (likely observational) data can be manipulated to fit with the
answers you give. See Hernán et al. (2008) for an example applied to
hormone replacement therapy.

Chris will talk about this more next week.

13



References

Hernán, M. A., ... & Robins, J. M. (2008). Observational studies
analyzed like randomized experiments: an application to postmenopausal
hormone therapy and coronary heart disease. Epidemiology, 19(6),
766-779.

Hernán, M. A. and Robins, J. M. What if. CRC Press, 2025(?)

Hernán, M. A. and Robins, J. M. Using Big Data to Emulate a Target
Trial When a Randomized Trial Is Not Available. American Journal of
Epidemiology, 183 (8): 758–764, 2016.

14



Motivation

1. Introduction

Basic Causal Concepts

Motivation

Conditional Independence

Directed Acyclic Graphs

Confounding and Adjustment

Selection Bias

Potential Outcomes

Other Causal Effects

15



A Causal Story

Consider the following situation.

An obstetrician is interested in whether giving a vitamin A sup-
plement (A) to new mothers may help to reduce the risk of post-
natal depression (Y ). She implements an encouragement W to
take such supplements, by offering it to a randomly selected sub-
set of half the new mothers in her ward. This is assumed not
to have any effect other than increasing the change of mothers
taking vitamin A.

She suspects that age (Z ) is also a determinant of how likely a
mother is to take the supplement, and that this also affects the
baby’s health (X ). This in turn affects the likelihood of post-natal
depression, but not the probability of taking the supplement.

There is assumed to be no direct effect of age on post-natal
depression.

How should we represent the information contained in this paragraph?

16



Directed Graphs

Use a graph!

A

Z

W

X

Y

• Z age;

• W encourage;

• X infant health;

• A vitamin A;

• Y post-natal depression;

[Y ] is assumed to be directly
affected by the treatment (A).

W is randomly assigned, and
affects only A.
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Directed Graphs

Use a graph!

A

Z

W

X

Y

• Z age;

• W encourage;

• X infant health;

• A vitamin A;

• Y post-natal depression;

Z may determine A and X , but not
Y .

X is predictive of Y , but does not
affect A.
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Interpreting a Graph

Now that we’ve drawn a graph, we get a nice representation of the
(possible) causal structure underlying our data.

We can immediately see which paths are causal (they’re directed!) and
which are not.

A

Z

W

X

Y

This is useful even if we do not intend to use the graph for inference!
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Independence

Definition
Given two random variables X and Y defined on a Cartesian product
space, we say that X is independent of Y under p (denoted X ⊥⊥ Y [p])
if

p(x | y) = p(x).

Example. Air quality is adversely affected by both traffic and local
weather conditions, but these two factors may not be related.

traffic weather

air quality
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Conditional Independence

Definition
Given two random variables X and Y defined on a Cartesian product
space, and a third variable Z , we say that X is conditionally
independent of Y given Z under p (denoted X ⊥⊥ Y | Z [p]) if

p(x | y , z) = p(x | z).

Example. People’s genes are conditionally independent of their
grandparents’s genes, given their parents’s genes.

GP P C

Example. Lung cancer is conditionally independent of having yellow
fingers, given one’s smoking status.

yellow smoker lung cancer
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Alternative Characterizations

Theorem
Let X ,Y ,Z be random variables, with joint density p. Then we can write

p(x , y , z) = f (x , z) · g(y , z)

if and only if X ⊥⊥ Y | Z [p].

This can be very useful if we only know the density up to a constant of
proportionality.
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Simpson’s Paradox

Conditional independence is sometimes quite unintuitive.

Below is the margin of an infamous dataset on death penalty convictions
in Florida between 1976 and 1987.

Death Penalty?
Defendant’s Race

White Black

Yes 53 15
No 430 176

White defendants are slightly more likely than black defendants to face
the death penalty.
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Simpson’s Paradox

Here is the full dataset.

Victim’s Race Death Penalty?
Defendant’s Race

White Black

White
Yes 53 11
No 414 37

Black
Yes 0 4
No 16 139

Now we can see that if we condition on the victim’s race, the dependence
of the penalty applied conditional on the defendant’s race is completely
reversed!
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Morals

Let:

• D be an indicator that the death penalty was imposed;

• V be an indicator for the race of the victim;

• R be an indicator for the race of the defendant.

By changing the numbers only very slightly, it is easy to obtain either:

D ⊥⊥ R and D 6⊥⊥ R | V ,

or D 6⊥⊥ R and D ⊥⊥ R | V .
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Graphoids
Conditional independences obey several rules called semi-graphoid
axioms (though in this context they are not really axioms!) These are:

1. Symmetry: X ⊥⊥ Y | Z =⇒ Y ⊥⊥ X | Z ;

2. Decomposition: X ⊥⊥ Y ,W | Z =⇒ X ⊥⊥ Y | Z ;

3. Weak union: X ⊥⊥ Y ,W | Z =⇒ X ⊥⊥W | Y ,Z ;

4. Contraction: X ⊥⊥ Y | Z and X ⊥⊥W | Y ,Z =⇒ X ⊥⊥ Y ,W | Z ;

We can summarize axioms 2–4 as a ‘chain rule’:

X ⊥⊥ Y | Z and X ⊥⊥W | Y ,Z ⇐⇒ X ⊥⊥W ,Y | Z .

In addition, if p > 0 then we have:

5. Intersection: X ⊥⊥ Y |W ,Z and
X ⊥⊥W | Y ,Z =⇒ X ⊥⊥ Y ,W | Z .

All five rules are called the graphoid axioms.
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Directed Acyclic Graphs

V ∈ Vvertices

edges

no directed cycles

directed acyclic graph (DAG), G

A

ZW X

Y

We will associate the vertices/nodes with random variables, and the
edges will denote causal dependence.
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Terminology and Notation
For a DAG G with vertices V ...

If ... we say... and we write...

X → Y
X is a parent of Y X ∈ paG(Y )
Y is a child of X Y ∈ chG(X )

X → · · · → Y X is an ancestor of Y X ∈ anG(Y )
or X = Y Y is a descendant of X Y ∈ deG(X )

A path is a sequence of adjacent edges, without repeating a vertex.

A directed path is a path where all the edges are oriented pointing
towards the final vertex.

A directed cycle is a directed path from X to Y and an edge Y → X .

Given a topological ordering (parents precede their children) of the
variables V1, . . . ,Vp we write pre<(i) = {1, . . . , i − 1} for each i .
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DAG Models (aka Bayesian Networks)

A

ZW X

Y

graph G

⇐⇒ p(v) =
∏

v∈V p(v | paG(v)).

(factorization)

model M(G)

So in example above:

p(v) = p(w) · p(z) · p(x | z) · p(a |w , z) · p(y | a, x).
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DAG Models (aka Bayesian Networks)
Can also define model as a list of conditional independences:

A

ZW X

Y

pick a topological ordering
< of the graph: e.g.
W ,Z ,X ,A,Y .

Can always factorize a joint distribution as:

p(w , z , a, x , y) = p(w) · p(z |w) · p(a |w , z) · p(x |w , z , a) · p(y |w , z , a, x).

The model is the same as setting (e.g.)

p(y |w , z , a, x) = p(y | a, x) = p(y | pa(y)).

Thus M(G) is precisely distributions such that:

Vi ⊥⊥ Vpre<(i)\pa(i) |Vpa(i), i = 1, . . . , |V |.
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Ordered Markov Property
We say that p obeys the ordered local Markov property with respect
to G and a topological ordering < if:

Vi ⊥⊥ Vpre<(i)\pa(i) |Vpa(i), i = 1, . . . , |V |.

In our example, with the order W ,Z ,X ,A,Y
this means

Z ⊥⊥W X ⊥⊥W | Z
A ⊥⊥ X |W ,Z Y ⊥⊥W ,Z | A,X .

A

ZW X

Y

If we switch A and X , we get

Z ⊥⊥W X ⊥⊥ A,W | Z Y ⊥⊥W ,Z | A,X ,

which is equivalent (this may not be obvious, but you can check with
semi-graphoids!)
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d-Separation
Note that we can also obtain other
independences using the graphoid
axioms:

A

ZW X

Y

X ⊥⊥W ,A | Z and Y ⊥⊥W ,Z | X ,A
=⇒ X ⊥⊥W | Z ,A and Y ⊥⊥W | Z ,X ,A
=⇒ X ,Y ⊥⊥W | Z ,A =⇒ Y ⊥⊥W | Z ,A.

Is there a way to deduce these directly?

Yes! We can use d-separation.

A path π is a sequence of adjacent edges, without repeating any vertex.

Examples:

Z → X → Y ; (this is a directed path)

W → A→ Y ← X .
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d-Separation

For any path, the internal vertices are either:

• colliders: i.e. → V ←; or

• non-colliders: i.e. → V → or ← V → or ← V ←.

We say a path π from A to B is open given a set C if and only if

• no non-colliders on π are in C ; and

• every collider on π is an ancestor of something in C .

Otherwise π is blocked (or closed).

Definition
We say that sets of vertices A and B are d-separated given C if every
path from any A ∈ A to any B ∈ B is blocked by C .
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d-Separation Example

A

ZW X

Y

Is {W ,A} d-separated from {X} by {Z}?

Yes! There are two paths to consider:

A← Z → X A→ Y ← X

Z a non-collider so this path blocked, Y a collider so path also blocked.

Is {W ,A} d-separated from {X} by {Z ,Y }?

No! The path A→ Y ← X is now open.
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Global Markov Property

Definition
A distribution P is said to obey the global Markov property with
respect to a DAG G if whenever

A ⊥d B | C in G,

we have

VA ⊥⊥ VB | VC in P.

In other words, d-separation implies conditional independence.

In addition to being ‘sound’ d-separation is complete: that is, any triple
not d-separated is generally not independent.

That is: d-separation gives all independences implied by the model!
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Markov Properties

There are three main Markov properties (models) which we can
associate with DAGs.

Factorization. That is (if P has a density p) we have

p(v) =
∏
v∈v

p(v | paG(v)).

(Ordered) Local Markov Property. For any topological ordering ≺, we
have

Vi ⊥⊥ Vpre(i ;≺)\pa(i) | Vpa(i) [P].

Global Markov Property. Whenever A and B are d-separated by C in G
then

VA ⊥⊥ VB | VC [P].
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Structural Equations

An alternative model considers each variable to be generated from a
structural equation:

Xv = fv (Xpa(v), Ev )

for a measurable function fv and a noise term Ev .
The noise terms are assumed independent for DAGs.

Implications of this definition are completely equivalent to the others!

In a causal setting they are sometimes called structural causal models
(Pearl, 2009; Peters et al., 2017), though we prefer the term structural
equation models.
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Causal Models
A DAG can also encode causal information:

A

ZW X

Y

If we intervene to experiment (do) on A, delete incoming edges.

In distribution, delete factor corresponding to A:

p(w , z , x , a, y) = p(w) · p(z) · p(x | z) · p(a |w , z) · p(y | x , a).

p(w , z , x , y | do(a)) = p(w) · p(z) · p(x | z) × p(y | x , a).

All other factors are preserved (if causal DAG correctly specified).
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Causal Effects

The function p(· | do(a)) is just like any ordinary probability distribution,
and obeys the same rules of conditioning and marginalization.

In particular, we can define expectations in the usual way:

E[Y | do(A = a)] :=
∑
y

y · p(y | do(a)).

Equipped with this distribution, we can now define the average
treatment effect of A on Y :

ATE := E[Y | do(A = 1)]− E[Y | do(A = 0)].

This is sometimes called the average causal effect (ACE) or the total
effect.
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Confounding

In this case there are other variables that
causally affect both propensity to take
the intervened A and our outcome Y .

A

ZW X

Y

For example, suppose older mothers (Z = 1) are more likely to take
vitamin A (A), and their infants generally have worse health outcomes
(X ) which reduces their overall mental health level (Y ).

A näıve estimate E[Y |A = 1]− E[Y |A = 0] includes correlation due to
this confounding.

This is not a causal quantity, since if we actually intervene to set A (e.g.
by randomization), the contrast will (generally) be different.
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Adjustment Using Parents
Note that we have

p(w , z , x , y | do(a)) =
p(w , z , x , a, y)

p(a |w , z)
.

Hence, to obtain (e.g.) p(y | do(a)) we just marginalize:∑
w ,z,x

p(y ,w , z , x | do(a)) =
∑
w ,z,x

p(y ,w , z , x , a)

p(a |w , z)

=
∑
w ,z,x

p(w , z) · p(x , y |w , z , a)

=
∑
w ,z

p(w , z) · p(y |w , z , a).

In this case we call {W ,Z} an adjustment set for the effect of A on Y .

The set of parents of a variable is always a valid adjustment set.

Adjustment sets are much more general that this, however.
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Back-Door Paths

A

ZW X

Y

A back-door path from A to Y starts with an arrowhead at A.

Example. A← Z → X → Y .

To identify p(y | do(a)) we must block all back-door paths without
blocking any causal ones, nor inducing any selection bias.
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Back-Door Criterion
Definition

A back-door adjustment set for the pair (A,Y ) is one which:

• blocks all back-door paths from A to Y ;

• does not contain any descendants of A.

A

ZW X

M

S

Y

Examples:

{Z}, {X}, {Z ,X}
{W ,Z}, {W ,X}, {W ,Z ,X}
{S ,Z}, {S ,X}, {S ,Z ,X}
{S ,W ,Z}, {S ,W ,X}, {S ,W ,Z ,X}.

The optimal adjustment set is just {X ,S}. 45



Back-Door Adjustment

Theorem (Pearl, 1993)

Suppose that the pair p is causally Markov w.r.t. G, and that we are
interested in the causal effect of A on Y . Then this can be identified by

p(y | do(a)) =
∑
xC

p(xC ) · p(y | a, xC ),

provided that XC represents a back-door adjustment set for (A,Y ).

Proof.
Since the back-door adjustment set contains no descendants of A, we
have A ⊥⊥ XC | Xpa(a).

It is also easy to see that Y ⊥⊥ Xpa(a) | A,XC if XC blocks all back-door
paths and A all causal paths.
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Back-Door Adjustment (ctd.)

Then:

p(y | do(a)) =
∑
xpa(v)

p(xpa(v)) · p(y | a, xpa(v))

=
∑
xpa(v)

p(xpa(v))
∑
xC

p(y | xC , a, xpa(v)) · p(xC | a, xpa(v))

=
∑
xpa(v)

p(xpa(v))
∑
xC

p(y | xC , a) · p(xC | xpa(v))

=
∑
xC

p(y | xC , a)
∑
xpa(v)

p(xpa(v)) · p(xC | xpa(v))

=
∑
xC

p(xC ) · p(y | a, xC ).
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Selection Bias

Bias can come from various sources; the most common is confounding,
but selection bias is also a big concern.

intelligence athletic

college

If we only observe people on a University Campus, we may incorrectly
believe that intelligence and athletic ability are negatively correlated.

This is also referred to as collider bias or Berkson’s paradox.
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Side Effects
Suppose that patients may differentially drop out of a study due to
side-effects.

• H — general health;

• E — side effects;

• S — drop out (only observe S = 1).

A

E

S

H

Y

In this case we may erroneously think that the treatment is helpful, when
really there is no effect.
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Post-treatment Variables

It is generally a mistake to control for post-treatment variables, since it
may block the causal effect:

A C Y

Indeed, the reverse problem can also occur!

A C

U

Y
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M-bias
Another concern is so-called M-bias, which can arise if we try to
condition on pre-treatment covariates but actually open a non-causal
path by doing so.

A

L

C

U

Y

Suppose that treatment A is smoking behaviour, C is childhood asthma
and Y is adult asthma; L is parental smoking, U is underlying atopy.

Note that the back-door path is marginally blocked, but conditioning
upon (only) C opens it!

The length of the path (four edges) means it is unlikely to be a strong
bias in practice, however.
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Potential Outcomes

Consider a situation relevant to our running example:

• A ∈ {0, 1}, indicator of taking the vitamin A supplement;

• Y ∈ {0, 1}, indicator of no post-natal depression.

A woman takes the supplement (A = 1), and does not have post-natal
depression (Y = 1).

It this because she took the treatment?

The question is begged: what would have happened if she had not
taken it (A = 0)?
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Potential Outcomes
Let us imagine two outcomes: Y (a) for a ∈ {0, 1}.

We observe Y (A), but Y (1− A) is always unseen.

Y (0) Y (1) type
0 0 never recover
1 0 hurt
0 1 helped
1 1 always recover

These pairs are known as potential outcomes (sometimes called
counterfactuals). The individual causal effect (ICE) for me is

ICE := Y (1)− Y (0).

Y (1) = 1, so ICE is either 1 or 0; but cannot deduce full ‘type’.

This is the fundamental problem of causal inference (Holland, 1986).

Potential outcomes for causal inference is known as the Neyman-Rubin
framework after Splawa-Neyman (1923/1990) and Rubin (1974).
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Assumptions for Potential Outcomes
We generally make two important assumptions about potential outcomes.

• No interference. That is, the value of my outcome does not
depend upon what anyone else decides to do.

Counter-example: causal effect of a vaccine.

• Single version of treatment. For each treatment a and each
individual there is a unique value of Y (a).

Counter-example: there are two different training courses run by
different providers, but we consider them both to be A = 1.

Together these make up the stable unit treatment value assumption
(or SUTVA for short), and allows us to assert that

A = a =⇒ Y = Y (a).

This is known as the consistency property.

We can also weaken this to the stable unit treatment distribution
assumption (SUTDA); only requires the distribution to be the same.
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Average Causal Effects
The average treatment effect is now

ATE := EY (1)− EY (0).

What is the connection to the näıve estimate?

E[Y |A = x ] = E[Y (a) |A = a]
!

= EY (a),

if the treatment is independent of the potential outcome: Y (a) ⊥⊥ A.

So, for example, if treatment is assigned at random then

E[Y |A = 1]− E[Y |A = 0] = EY (1)− EY (0)

and this difference is guaranteed to be causal.

Is this a good way of modelling causality? There has been contention
(e.g. Dawid, 2000), but it is now generally accepted as a reasonable
approach.
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Conditonal Exchangeability
An alternative is to assume that there is a set of covariates that is
sufficient to control for the confounding (suppose that we have X ).

In other words we assume that Y (a) ⊥⊥ A | X .

Then we can use the g-formula:

EXE[Y |A = a,X ] = EXE[Y (a) |A = a,X ]

!
= EXE[Y (a) | X ]

= EY (a),

if the treatment is conditionally independent of each potential outcome.

So all we need to do is estimate E[Y |A = a,X ] and average over levels
of X . Unfortunately, this is hard to do well if X is multi-dimensional (let
alone high-dimensional!)

Also note that this conditional exchangeability is not a testable
assumption.
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Connection to do-Calculus

Note that

EXE[Y |A = a,X ] =

∫ (∫
y · p(y | a, x) dy

)
p(x) dx

=

∫∫
y · p(y | x , a) · p(x) dy dx

=

∫∫
y · p(y , x | do(a)) dy dx

= E[Y | do(A = a)]

under the assumption that the causal graph is:

A

X

Y
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‘The’ Causal Effect

There is no such thing as the causal effect.

We have seen the average causal effect (ACE, or ATE):

ACE = EY (1)− EY (0) = E[Y | do(A = 1)]− E[Y | do(A = 0)],

but we may also be interested in a conditional ATE (or CATE) given
some X = x :

CATE(x) = E[Y (1) | X = x ]− E[Y (0) | X = x ]

= E[Y | X = x , do(A = 1)]− E[Y | X = x , do(A = 0)],

which considers subgroups defined by particular (pretreatment!)
covariates.
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Causal effects for treatment status

May also be interested in the effect of treatment on the treated (ETT
or ATT), which is

ETT = E[Y (1) | A = 1]− E[Y (0) | A = 1]

= E[Y | A = 1]− E[Y (0) | A = 1].

This is easier to identify, since only need that everyone could have not
been treated:

P(A = 0 | x) > 0 for almost all x .

Can analogously define the effect of treatment on the controlled
(ETC or ATC).
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Other Causal Effects

Some interventions are based on different contrasts (e.g. by a change in
variance, or by adding noise).

Others may be adaptive to (e.g.) a patient’s history.

The individual causal effect (ICE or ITE) requires that potential
outcomes are well-defined:

ICE = Y (1)− Y (0).

Similarly the principal stratum effect requires treatment ‘types’ to be
well-defined:

PSECO = E[Y (1)− Y (0) | Type = CO].

The study of mediation leads to various definitions of direct and
indirect effects (controlled, pure, natural...)
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Identification

In order to identify the ATE, we need:

• SUTVA (or SUDVA);

• positivity:

P(A = a | x) > 0 a ∈ {0, 1} and almost all x .

• conditional exchangeability:

Y (a) ⊥⊥ A | X .

[This is not testable from a single dataset.]

For the ETT we only need

P(A = 0 | x) > 0 for almost all x .
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Identification

Using these assumptions, we have:

P(Y (a)) =
∑
x

P(Y (a) | x) · p(x) probability calculus

=
∑
x

P(Y (a) | a, x) · p(x) conditional exchangeability

=
∑
x

P(Y | a, x) · p(x) consistency+positivity.

This is an example of the g-formula (Robins, 1986).

Reference

Robins, J. (1986). A new approach to causal inference in mortality
studies with a sustained exposure period—application to control of the
healthy worker survivor effect. Mathematical modelling, 7 (9-12),
1393–1512.
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Structural causal models

In machine learning it is common to use structural causal models
(SCMs) to represent causal models.

These originate with the work of Sewall Wright in the 1920s, and he
referred to them as structural equation models (SEMs).

Each variable (say Xv ) is written as a function of its parents and a noise
term:

Xv ← fv (Xpa(v), εv ).

Often the noise terms are assumed to be independent.

Note that we can also write this using potential outcome notation:

Xv = fv (Xpa(v), εv ) = Y (Xpa(v)).
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NPSEM-IEs

If the errors are independent, the model is referred to as a
non-parameteric SEM with independent errors (NPSEM-IE) by
Richardson and Robins (2013).

They note that it implicitly makes cross-world assumptions. For
example, in the graph below, we would have (e.g.)

A(x ′) ⊥⊥ Y (x , a), ∀x , x ′.

This is completely untestable using any randomized trial.

X

A Y

!{Y (x , a)}x,a∈X ,A{A(x)}x∈X
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Single-World Intervention Graphs

A

X

Y A a

X

Y (a)

Single-World Intervention Graphs (SWIGs) combine graphs and
potential outcomes so as to allow one to read off important conditions
(see Richardson and Robins, 2013).

Note we can see by d-separation that the ‘no unobserved confounding’
assumption holds under this SWIG:

Y (a) ⊥⊥ A | X .

Once nodes are split we can rearrange
them:

A

X

Y (a)

a
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Representing an intervention

A Y

P(A = a,Y = y) = P(A = a)P(Y = y | A = a)

⇒
G

A a Y (a)

G[a]

The graph says that Y (a) ⊥d A, and hence:

P(Y (a)) = P(Y (a) | A = a) =c P(Y | A = a), ∀a.

Notice that, for two distinct values a, a′ of A, we never observe Y (a) and
Y (a′) on the same graph.

In particular, SWIGs will never say that A ⊥⊥ {Y (a),Y (a′)} if a 6= a′.

This is what is meant by single-world in the name of the class of graphs.

This has important consequences for the identification of direct effects.
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Node-splitting

What happens when we intervene in a SWIG?

1. Split the node(s) VA being intervened on into VA and v∗A.

2. Replace all descendants of v∗A by V (v∗A).

3. In the factorization, replace every instance of vA with v∗A, and all
descendants of VA with V (v∗A).

A a∗

ZW X S

M(a∗)

Y (a∗)
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Node-splitting

A a∗

ZW X S

M(a∗)

Y (a∗)

Intervene to set A = a∗:

1. Add potential outcome to all descendants of A;

2. Remove any conditioning on A = a.

P(W ,Z ,X ,S ,A,M,Y ) = P(W ) · P(Z ) · P(X |Z ) · P(S)·
× P(A |W ,Z ) · P(M |A) · P(Y |S ,A,M)

P(W ,Z ,X ,S ,A,M(a∗),Y (a∗)) = P(W ) · P(Z ) · P(X |Z ) · P(S)

× P(A |W ,Z ) · P(M(a∗)) · P(Y (a∗) |S ,M(a∗)).

Note that we can replace all variables V with V (a∗), but only affects the
descendants of A.
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Intuition behind node splitting
Question
How could we identify whether someone would choose to take treatment,
i.e. have A = 1, and at the same time find out what happens to such a
person if they don’t take treatment Y (a = 0)?

Answer
Whenever a patient is observed to swallow the drug, we instantly
intervene by administering a safe ‘emetic’ that causes the pill to be
regurgitated before any drug can enter the bloodstream.

Since we assume the emetic has no side effects, the patient’s recorded
outcome is then Y (a = 0).

Hence the SWIG represents quantities that (at least in principle) are
causally identifiable by an experiment; e.g.

ETT := E[Y (1) | A = 1]− E[Y (0) | A = 1].

(Robins et al. 2007)
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Harder inferential problem

A Z

H B

Y
A

a
Z (a)

H
B(a)

b

Y (a, b)

Query

Does this causal graph imply:

Y (a, b) ⊥⊥ B(a) | Z (a),A ?

Answer
Yes! Applying d-separation to the SWIG on the right we see that there is
no d-connecting path from Y (a, b) given Z (a).
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Summary Adding Counterfactual Distributions to DAGs

Factorization of counterfactual variables: P(V (a)) factorizes with
respect to the SWIG G[a] (ignoring fixed nodes):

P (V (a)) =
∏

Y (a)∈V (a)

P
(
Y (a)

∣∣∣ paG[a](Y (a)) \ a
)
.
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Example

A Y

X

A a Y (a)

X

Suppose we want to identify the distribution of Y (a) using these two
SWIGs, but that we only observe P(X ,A,Y ).

The previous slide tells us that

P(X ,A,Y (a)) = P(X ) · P(A |X ) · P(Y (a) |X )

= P(X ) · P(A |X ) · P(Y (a) |X ,A = a)

= P(X ) · P(A |X ) · P(Y |X ,A = a),

and therefore

P(Y (a)) =
∑
X

P(X )

{∑
A

P(A |X )

}
P(Y |X ,A = a)

=
∑
X

P(X ) · P(Y |X ,A = a).
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Applying d-separation to the graph G[a]
We extend the definition of d-separation to SWIGs as follows:

• A fixed node is always blocked if it occurs as a non-endpoint on a
path;

• A path on which one endpoint is a fixed node can d-connect that
node to a random node if it satisfies the usual conditions on colliders
and non-colliders;

In G[ã] if subsets B(ã) and C (ã) of random nodes are d-separated by
D(ã), then B(ã) and C (ã) are conditionally independent given D(ã) in
the associated distribution P(V (ã)).

B(ã) is d-separated from C (ã) given D(ã) in G[ã] (∗)

⇒ B(ã) ⊥⊥ C (ã) | D(ã) [P(V (ã))].
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Applying d-separation to the graph G[a]

We extend the definition of d-connection to SWIGs as follows:

• A fixed node is always blocked if it occurs as a non-endpoint on a
path;

• A path on which one endpoint is a fixed node can d-connect that
node to a random node if it satisfies the usual conditions on colliders
and non-colliders.

In G[a, d ], if fixed node d is d-separated from B(a, d) given C (a, d) then

P(B(a, d) | C (a, d)) = P(B(a, d ′) | C (a, d ′)).

In other words, the conditional distribution of B given C after
intervening on A and D does not depend on the value assigned to D.
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Example of d-separation from fixed nodes

A B C G

⇒ A a B(a) C (a) G[a]

The fixed node a is d-separated from C (a) given B(a). Consequently it
follows that

P(C (ã) | B(ã)) = P(C (a∗) | B(a∗))

for any values ã, a∗. This may alternatively be derived:

P(C (ã) | B(ã)) =d,G[a] P(C (ã) | B(ã),A = ã)

=c P(C | B,A = ã) =d,G P(C | B,A = a∗)

=c P(C (a∗) | B(a∗),A = a∗) =d,G[a] P(C (a∗) | B(a∗))

via consistency and d-separation in G[a] and G.
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Another Example

A Y

X

H

A a Y (a)

X

H

Here again we can read directly from the graph that

A ⊥⊥ Y (a) | X .

Hence
P(Y (a)) =

∑
x

P(X = x) · P(Y | A = a,X = x).
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Exercise

A Y

X

G H

A a Y (a)

X

G

H

Is it still the case that A ⊥⊥ Y (a) | X?

No! There is a d-open ‘M’-path:

A← G → X ← H → Y (a).
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Summary

• SWIGs provide a simple way to unify graphs and counterfactuals via
node-splitting

• The approach works via linking the factorizations associated with
the SWIG to the distribution in the original DAG.

• The new graph represents a counterfactual distribution that is
identified from the original joint distribution.

• (Not covered) Can combine information on the absence of individual
and population level direct effects.

• (Not covered) Permits formulation of models where interventions on
only some variables are well-defined.
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Causal estimation

Given a particular causal effect there are myriad ways to estimate it!

Selecting the best one requires:

• experience and judgement of which causal methods work best in
particular situations (e.g. data types, number of samples, number of
variables);

• expert knowledge about the system.

We can classify some of the standard approaches into
three groups:

• outcome regression / standardization /
adjustment;

• propensity scores / inverse weighting /
stratification / matching;

• hybrid approaches / doubly robust methods.

A a

X

Y (a)
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Assumptions

Recall the three basic assumptions needed for estimation in this context:

1. SUTVA: no interference and consistency;

2. positivity: i.e. that P(A = a | X = x) > 0 for suitable a, x ;

3. conditional exchangeability: i.e. that Y (a) ⊥⊥ A | X .

Of these, 1 and 3 are not testable without additional information. Expert
perspectives on the subject matter are crucial.

For 2, we can test this statistically by looking at estimates of p(a | x).

There are also methods to characterize which ‘areas’ of X have good
overlap.
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Assumptions

Positivity can be assessed by estimating the propensity score. That is
π(x) := P(A = 1 | X = x).
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Outcome Regression
The simplest approach to using a propensity score is simply to add it to
your regression model:

E[Y | A, π(X )] = βA + γπ(X ).

Then the least squares estimator β̂ will be consistent for the average
causal effect.

Note that this relies on the form of E[Y | A, π(X )] being linear in both A
and π(X ), which may not be the case.

It also relies on you specifying the propensity score model correctly,
because what you usually fit is:

arg minβ,γ
∑
i

(Yi − βai − γπ̂(xi ))2 ,

where π̂ is an estimate of π.
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Inverse Probability of Treatment Weighting (IPTW)

An alternative is to reweight observations by the reciprocal of the
propensity of the treatment actually received.

That is, by π(x) if they were treated, and 1− π(x) if they were not.

This creates a pseudo-population in which individuals are assigned
treatment independently of any confounding variables.

We can choose to stabilize the weights by also multiplying by some
arbitrary marginal distribution p∗(a) (e.g. Bernoulli(1/2)). This is
particularly useful for a continuous treatment.
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Pseudo-Population

Here is an illustration.

untreated treated

⇓ ⇓
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Pseudo-Population

But beware of extreme weights!

untreated treated

⇓ ⇓
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Pseudo-Population
Take a simple example, with X , A and Y all being binary.

Suppose that A | X ∼ Bernoulli(0.4 + 0.3X ).

Then:

X A Y p(A |X )−1

0 0 1 5/3
1 1 1 10/7
1 0 0 10/3
1 0 1 10/3
0 1 0 5/2

...

Note that:

• rarer combinations (e.g. X = 1 and A = 0) are upweighted more;

• Y has no effect on the weight.
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IPTW
Note that, in the pseudo-population, the distribution is given by

p∗(z , a, y) = p(z , a, y) · p∗(a)

p(a | z)

= p(z) · p(a | z) · p(y | z , a) · p∗(a)

p(a | z)

= p(z) · p∗(a) · p(y | z , a),

so now X ⊥⊥ A marginally.

Exercise

Check that the marginal distribution for A under p∗ is indeed p∗(a).

p∗(y | a) =
∑
z

p(z) · p(y | z , a);

so p∗ is the distribution of the model after we intervene to change the
distribution of A given X to be p∗(a).
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Assumptions for IPTW

To actually perform the reweighting, we need an additional assumption.

• Positivity. We need 0 < π(x) < 1 for every x .

If this doesn’t hold, then reweighting is hopeless.

Positivity violations may happen for statistical or structural reasons:

statistical (e.g.) there are too many categories among your
covariates;

structural (e.g.) amputees can’t have a surgical procedure.
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Horvitz-Thompson Estimators
Suppose we consider the following estimator for EY (1):

1

n

n∑
i=1

AiYi

π(Xi )
.

Note that (if π is correctly specified) then this has mean

E
[

AY

π(X )

]
= E

[
E
[
AY (1)

π(X )

∣∣∣∣Y (1),X
]]

= E
[
Y (1)

π(X )
E[A | Y (1),X ]

]
= E

[
Y (1)

π(X )
E[A | X ]

]
= E

[
Y (1)

π(X )
π(X )

]
= EY (1).

Note, however, that this estimator may be outside valid range for Y !
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Horvitz-Thompson Estimators

If we can estimate π(x) (and it is bounded away from 0 and 1) then
previous slide suggests that the Horvitz-Thompson estimator is a sensible
way to estimate EY (1) (and similarly for EY (0)).

Theorem
Given the correct family of distributions for π, we will have√
n(π̂(Xi )− π(Xi )) = Op(1), so then

√
n

∣∣∣∣∣1n∑
i

AiYi

π̂(Xi )
− EY (1)

∣∣∣∣∣ = Op(1).

Both the limiting distributions are Gaussian.
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Regression IPTW
Suppose that we believe a regression formulation for the potential
outcomes: e.g.

E[Y (a) |W ] = βa + γTW .

Inverse Probability Weighting

Then we can solve a weighted least squares formulation:

arg minβ,γ

n∑
i=1

1

wi
(Yi − βai − γWi )

2
,

where wi = p(ai |Xi ).

This can be achieved using the weights argument in R’s lm/glm
functions.

Warning: standard errors are computed näıvely!
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Simulations
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Demonstrations
The R package causl∗ allows one to simulate data from a parametrically
specified causal model.

Suppose we want to have:

Z ∼ Exponential(λ)

A | Z = z ∼ Bernoulli (logit(α0 + α1z))

Y | do(A = a) ∼ N(βa, σ2)

with λ = 2, α0 = 0, α1 = 1 and β = 1/2.

library(causl)

forms <- list(Z ~ 1,

A ~ Z,

Y ~ A,

~ 1) ## for the copula

pars <- list(Z = list(beta = -log(2), phi=1), ## we use log-link

A = list(beta = c(0,1)),

Y = list(beta = c(0,0.5), phi = 1),

cop = list(beta = 1))

fam <- list(3,5,1,1) # distributions: 1=normal, 3=Gamma, 5=binomial
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Demonstrations
We can then use the rfrugalParam function to simulate our data:

set.seed(123)

dat <- rfrugalParam(1e4, formulas=forms, pars=pars, family=fam)

0 1 2 3 4

−3
−2

−1
0

1
2

3
4

The plot shows the first 2000 data points.
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Propensity Scores
Fit a binomial GLM to estimate the parameters in π(Z ).

## fit GLM to test conditional distribution of X

modX <- glm(A ~ Z, family=binomial, data=dat)

summary(modX)$coef[,1:2]

Estimate Std. Error

(Intercept) 0.0258 0.0307

Z 1.0340 0.0540

We can obtain the estimated propensity scores using these fitted values.

ps <- fitted(modX)

head(ps)

1 2 3 4 5 6

0.530 0.711 0.703 0.784 0.618 0.803

dat <- dplyr::mutate(dat, ps = ps) # add est. propensity score
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Outcome Regression
Given the manner in which we specified our model, it is hard to write
down the ‘correct’ form for E[Y | A,Z ], but we can try adding the
propensity score instead:

## naive model as a baseline comparison

summary(lm(Y ~ A, data=dat))$coef[,1:2]

Estimate Std. Error

(Intercept) -0.115 0.0162

A 0.670 0.0205

## now add in propensity score

summary(lm(Y ~ A + ps, data=dat))$coef[,1:2]

Estimate Std. Error

(Intercept) -2.780 0.0575

A 0.487 0.0189

ps 4.473 0.0933

Recall that the true value was 0.5, so this works quite well.
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Horvitz-Thompson

We can similarly obtain the Horvitz-Thompson estimator.

dat <- dplyr::mutate(dat, wts=A/ps + (1-A)/(1-ps)) # add weights

EY1 <- with(dat, mean(Y*A*wts))

EY1

[1] 0.485

EY0 <- with(dat, mean(Y*(1-A)*wts))

EY0

[1] -0.00513

EY1 - EY0

[1] 0.491
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IPW
We can also implement IPW with regression to estimate the causal effect.

library(survey) ## package that gives correct standard errors with weights

## fit weighted model

mod_w <- svyglm(Y ~ A, design=svydesign(~ 1, weights = ~ wts, data = dat))

summary(mod_w)$coef[,1:2]

Estimate Std. Error

(Intercept) -0.00515 0.0176

A 0.49050 0.0218

Recall the näıve model for comparison.

## can compare to naive model

summary(glm(Y ~ A, data=dat))$coef[,1:2]

Estimate Std. Error

(Intercept) -0.115 0.0162

A 0.670 0.0205
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When is the näıve estimate correct?
We know that, if X are sufficient to control for confounding, then

P(Y (a)) =
∑
x

P(x) · P(Y | x ,A = a).

When does
P(Y (a)) = P(Y |A = a) ?

Suppose that A ⊥⊥ X . Then:

P(Y |A = a) =
∑
x

P(X ,Y |A = a)

=
∑
x

P(X |A = a) · P(Y |X ,A = a)

=
∑
x

P(X ) · P(Y |X ,A = a)

= P(Y (a)).
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When is the näıve estimate correct?

We know that, if X are sufficient to control for confounding, then

P(Y (a)) =
∑
x

P(x) · P(Y | x ,A = a).

When does
P(Y (a)) = P(Y |A = a) ?

Or suppose that Y ⊥⊥ X | A. Then

P(Y |A = a) =
∑
x

P(X = x) · P(Y |A = a)

=
∑
x

P(X = x) · P(Y |X = x ,A = a)

= P(Y (a)).
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When is the näıve estimate correct?

We know that, if X are sufficient to control for confounding, then

P(Y (a)) =
∑
x

P(x) · P(Y | x ,A = a).

When does
P(Y (a)) = P(Y |A = a) ?

In summary, if either A ⊥⊥ X or Y ⊥⊥ X | A then Y (a) and Y | A = a
have the same distributions.

This is perhaps unsurprising, given that in either of those cases, X is not
really a confounder at all!
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Doubly Robust Approaches
Note we’ve seen that if we specify

• the outcome model (i.e. Y | A,X ) correctly, we can obtain a
consistent estimate of the ACE by averaging over the empirical X
values;

• the propensity score model (i.e. A | X ) correctly, we can use the
Horvitz-Thompson estimator which is also consistent.

Is there an estimator that uses both of these models, but only requires
one of them to be correct?

Yes!

We can use the following approach: suppose we believe that

E[Y | a, x ] = Qa(x ;β, γ) and π(x) = π(x ; η)

for parametric models Q0, Q1, and π.

These are sometimes called working models.
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Doubly Robust Methods
Notice that the following function has expectation Y (1) if either Q1 or π
is specified correctly:

µdr
1 (O) = Q1(X ) +

A

π(X )
{Y − Q1(X )}

=
AY

π(X )
+

{
1− A

π(X )

}
Q1(X ).

So fit ‘nuisance’ models Q and π to the data (e.g. by maximum
likelihood). This gives parameter estimates β̂, γ̂ and η̂.

Then consider the following estimator of EY (1):

µ̂dr
1 =

1

n

n∑
i=1

{
Ai{Yi − QAi (Xi ; β̂, γ̂)}

π(Xi ; η̂)
+ Q1(Xi ; β̂, γ̂)

}
.

If either model is correctly specified, then by the above we can see that
the estimate will be consistent.

This property is called double robustness.

114



Doubly Robust Methods
We can do something similar for µ̂dr

0 , and then

β̂dr := µ̂dr
1 − µ̂dr

0 . (†)

We call this the augmented inverse probability weighted estimator
(AIPW).

In addition, each µ̂dr
a is semi-parametric efficient if both parametric

models are correct, so it achieves the same rate (asymptotically) as
maximum likelihood estimation.

If Qa is wrong then MLEs will be difficult to interpret.

In practice, even under moderate misspecifications of both models, the
doubly robust estimator mostly performs well in practice.
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Doubly Robust Methods
Let us suppose that EY is linear in A and X separately, so

E[Y | A = a,X = x ] = βAa + βXx .

# get propensity score

ps <- fitted(glm(A ~ Z, data=dat, family="binomial"))

dat <- dplyr::mutate(dat, ps = ps) # add est. propensity score

# outcome model

modY <- lm(Y ~ A + Z, data=dat)

dat0 <- dat1 <- dat ## set 0 and 1 in mock datasets

dat0$A <- 0; dat1$A <- 1

## compute mu_x for x = {0,1}
mu1 <- mean(dat$A*(dat$Y - predict(modY))/dat$ps

+ predict(modY, dat1))

mu0 <- mean((1-dat$A)*(dat$Y - predict(modY))/(1-dat$ps)

+ predict(modY, dat0))

mu1 - mu0

[1] 0.481
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