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A model based on ‘interacting branching processes’

η(x) = ‘population density at x’

I A juvenile is born per capita rate γ(x, η(x))

I Dispersal distribution q(x, dy) (Gaussian)

I Establishment probability r(y, η(y))

I Death of mature individuals rate µ(x, η(x))

Assume maturity reached instantly
We only track mature individuals
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A cautionary tale

Simulations by Gilia Patterson, using SLiM

I death: µ = 0.3 per generation

I establishment: r = 0.7

I dispersal: Gaussian with SD σ

I local density: in circles radius ε = 1

I reproduction with K = 2, λ = 3,

γ =
λ

1 + (local density)/K

I non-spatial equilibrium density:

K
( λ

1− r
− 1
)



Large dispersal distance

I dispersal distance σ = 3

I interaction distance ε = 1

I mean number offspring ∝
(
1 + (density)/K

)−1



Small dispersal distance

I dispersal distance σ = 0.2

I interaction distance ε = 1

I mean number offspring ∝
(
1 + (density)/K

)−1

Low dispersal distance compared to distance over which negatively
influenced by presence of neighbours can lead to strong clumping.

True even in corresponding deterministic model
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Characterising the model

Birth-death process with dynamics:

I A juvenile is born per capita rate γ(x, η(x))

I Dispersal distribution q(x, dy) (Gaussian)

I (Instantaneous) establishment probability r(y, η(y))

I Death of mature individuals rate µ(x, η(x))

Think of population as a point measure, with atoms of mass 1/N .
Write

〈f, η〉 =
1

N

∑
f(Xi) =

∫
f(x)η(dx)

Unpacking the notation:

γ(x, η(x)) = γ
(
x, ργ ∗ η(x)

)
; ργ ∗ η(x) =

∫
ργ(x− y)η(dy)

ρr need not be the same as ργ
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Scaling the model Parameters N , θ

Birth-death process with dynamics:

I A juvenile is born per capita rate θγ(x, η(x))

I Dispersal distribution qθ(x, dz) (Gaussian mean and variance
order 1/θ))

I (Instantaneous) establishment probability r(z, η(z))

I Death of mature individuals rate µθ(x, η(x))

Assume: Typically B = ∆

∫
θ
(
r(z, η)f(z)−r(x, η)f(x)

)
qθ(x, dz)

θ→∞−→ B
(
r(·, η)f(·)

)
(x)

θ
(
r(x, η)γ(x, η)− µθ(x, η)

)
= F (x, η)

(Roughly, r sufficiently smooth, and net per capita growth rate ∝ 1/θ)
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Look for ‘local characteristics’

I Individual at x gives birth to single mature offspring at z rate
θγ(x, η)r(z, η)qθ(x, dz) increment 〈f, η〉 = 1

N f(z)

I Individual at x dies rate θµθ(x, η) increment 〈f, η〉 = − 1
N f(x)

PN 〈f, η〉 = lim
δt↓0

1

δt
E
[
〈f, ηδt〉 − 〈f, η〉

∣∣∣η0 = η
]

∫
qθ(x, dz) = 1

= θ

∫ ∫
f(z)r(z, η)qθ(x, dz)γ(x, η)η(dx)−θ

∫
f(x)µθ(x, η)η(dx).

=

∫ (∫
θ (f(z)r(z, η)− f(x)r(x, η)) qθ(x, dz)

)
γ(x, η)η(dx)

+

∫ ∫
f(x)θ

(
r(x, η)γ(x, η)− µθ(x, η)

)
η(dx).

θ→∞−→
∫
γ(x, η)B

(
f(·)r(·, η)

)
(x)η(dx) +

∫
f(x)F (x, η)η(dx)
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Quadratic variation

I Individual at x gives birth to single mature offspring at z rate
θγ(x, η)r(z, η)qθ(x, dz) increment 〈f, η〉 = 1

N f(z)

I Individual at x dies rate θµθ(x, η) increment 〈f, η〉 = − 1
N f(x)

Nθ
{〈
γ(x, η)

∫
1

N2
f2(z)r(z, η)qθ(x, dz), η(dx)

〉
+
〈 1

N2
f2(x)µθ(x, η), η(dx)

〉}
=

θ

N

〈
γ(x, η)

∫
f2(z)r(z, η)qθ(x, dz) + f2(x)µθ(x, η), η(dx)

〉

∫
f2(z)r(z, η)qθ(x, dz)→ f2(x)r(x, η), µθ = rγ − 1

θ
F → rγ

θ→∞−→ α
〈
2r(x, η)γ(x, η)f2(x), η(dx)

〉

α := lim
θ

N
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Martingale characterisation of limit

〈f(x), ηt(dx)〉 − 〈f(x), η0(dx)〉

−
∫ t

0

〈
γ(x, ηs)B

(
f(·)r(·, ηs)

)
(x) + F (x, ηs)f(x), ηs(dx)

〉
ds

is a martingale, Mf (·), with

〈Mf 〉t = α

∫ t

0

〈
2r(x, ηs)γ(x, ηs)f

2(x), ηs(x)
〉
ds

I α = 0, non-local PDE, can also recover ‘local’ PDEs

∂tη = rB∗(γη) + Fη
I α > 0, nonlinear superprocess

e.g. γ ≡ 1, r ≡ 1, F = 1− pε ∗ η, diffusion limit of Bolker-Pacala
model: spatial branching process; reproductive successs decreases
in crowded regions.
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What is needed to make this rigorous?

D([0,∞), S) càdlàg paths in S
Theorem (S, d) complete and separable. {XN}N≥1 family of
processes with sample paths in D([0,∞), S). Suppose

I For every ε > 0, and T > 0, ∃ compact Γε,T s.t.

inf
N

P
[
XN
t ∈ Γε,T for 0 ≤ t ≤ T

]
≥ 1− ε

I For Θ a dense subset of the set of bounded continuous
functions in topology of uniform convergence on compacts, for
each f ∈ Θ, {f(XN

· )}N≥1 is relatively compact as family of
processes in D([0,∞),R).

Then {XN
· }N≥1 is relatively compact.

Any infinite subsequence has a convergent subsequence.
If limit point unique have convergence.
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Application to {ηN· }N≥1

{ηN· }N≥1 sequence of D
(
[0,∞),MF (Rd)

)
-valued processes.

; Previous result does not apply directly

I Take Rd, the one-point compactification of Rd

I Prove relative compactness in MF (Rd)
I Show ‘no mass escaped to infinity’, so limit points actually
D
(
[0,∞),MF (Rd)

)
-valued processes.

{η : 〈1, η〉 ≤ K} is compact in MF (Rd)

(We have already done the work in identifying the limit points)
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Conditions on our parameters?

〈f(x), ηNt (dx)〉 − 〈f(x), ηN0 (dx)〉

−
∫ t

0

〈
γ(x, ηs)

(
θ

∫ (
f(z)r(z, ηs)− f(x)r(x, ηs)

)
qθ(x, dz)

)
+ F (x, ηs)f(x), ηs(dx)

〉
ds

is a martingale, MN
f (·), with

〈MN
f 〉t =

θ

N

∫ t

0

〈
γ(x, ηs)

∫
f2(y)r(y, ηs)qθ(x, dy)

+ f2(x)
(
r(x, ηs)γ(x, ηs)−

1

θ
F (x, ηs)

)
, ηs(x)

〉
ds

I γ bounded above
I F bounded above but not necessarily below,

c.f. Bolker-Pacala example
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Compact containment of {ηN· }N≥1

〈1, ηNt (dx)〉 = 〈1, ηN0 (dx)〉

+

∫ t

0

〈
γ(x, ηs)

(
θ

∫ (
r(z, ηs)− r(x, ηs)

)
qθ(x, dz)

)
+ F (x, ηs), ηs(dx)

〉
ds+MN

1 (t)

≤ 〈1, ηN0 〉+ C

∫ t

0
〈1, ηNs 〉ds+MN

1 (t)

Grönwall’s inequality =⇒ for all t ∈ [0, T ],

E
[
〈1, ηNt 〉

]
≤ CTE

[
〈1, ηN0 〉

]

For compact containment we’d like to bound E
[

sup0≤t≤T 〈1, ηNt 〉
]
.

Taking suprema above, need to control sup0≤t≤T M
N
1 (t)
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Compact containment of {ηN· }N≥1

Combining boundedness of E
[
〈1, ηNt 〉

]
and the calculation above,

E[〈MN
1 〉T ] < C ′T

I Burkholder-Davis-Gundy =⇒ E
[

sup0≤t≤T M
N
1 (t)

]
< C ′′T

I From which E
[

sup0≤t≤T 〈1, ηNt 〉
]
< C ′′′T .

I Markov inequality ; compact containment of {ηN· }N≥1

Still need to show that for suitable test functions, the sequence of
real-valued processes {f(ηN· )}N≥1 is relatively compact
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The Aldous-Rebolledo criterion

For each T > 0, for each fixed 0 ≤ t ≤ T , the sequence
{〈f, ηNt 〉}N≥1 is tight, and for any sequence of stopping times τN
bounded by T , and each ν > 0, there exist δ > 0, N0 > 0 s.t.

sup
N>N0

sup
t∈[0,δ]

P
{∣∣∣ ∫ τ+t

τ

∫
Rd

{
γ(x, ηNs )Bf (x, ηNs )

+ f(x)F (x, ηNs )
}
ηNs (dx)ds

∣∣∣ > ν
}
< ν,

and sup
N>N0

sup
t∈[0,δ]

P
{∣∣〈MN (f)〉τ+t − 〈MN (f)〉τ

∣∣ > ν
}
< ν.

Follow easily from our calculations above

I When limit points deterministic, can scale again to get
classical pde

I Can also go direct to deterministic pde in some circumstances
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Some remarks about our model

I Classical models emerge as special cases of our scaling limits.

I Fisher KPP equation, Allen-Cahn equation, Bolker-Pacala
model, spatial branching processes . . .

The two stages of reproduction can result in nonlinear
diffusion term even in the scaling limit

I Information about population history recovered from patterns
of genetic variation. By using a lookdown construction, we
can retain information about genealogies as we pass to our
scaling limit.

Consider a single ancestral lineage

Lt =
(
location of the genetic ancestor at time t ago

)
.

For the purpose of this talk, work in classical PDE limit
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Reaction diffusion equations and range expansion (d = 1)

∂u

k

∂t = ∂2u

k

∂x2
+ u

k

(1− u)

2(u− ρ), ρ ∈ (0, 1/2) u =
∑

k uk

Roques et al. PNAS (2012)

Fisher (1937)
Kolmogorov, Petrovskii, Piskunov
(1937)
Individuals in front descended
from individuals in front at
previous time

Individuals in front can be
descended from individuals in
bulk.

When add noise, ; different
genealogies
(c.f. E-Penington 2022)



Reaction diffusion equations and range expansion (d = 1)

∂u

k

∂t = ∂2u

k

∂x2
+ u

k

(1− u)

2(u− ρ), ρ ∈ (0, 1/2) u =
∑

k uk

Roques et al. PNAS (2012)

Fisher (1937)

Kolmogorov, Petrovskii, Piskunov
(1937)
Individuals in front descended
from individuals in front at
previous time

Individuals in front can be
descended from individuals in
bulk.

When add noise, ; different
genealogies
(c.f. E-Penington 2022)



Reaction diffusion equations and range expansion (d = 1)

∂u

k

∂t = ∂2u

k

∂x2
+ u

k

(1− u)2

(u− ρ), ρ ∈ (0, 1/2) u =
∑

k uk

Roques et al. PNAS (2012)

Fisher (1937)
Kolmogorov, Petrovskii, Piskunov
(1937)

Individuals in front descended
from individuals in front at
previous time

Individuals in front can be
descended from individuals in
bulk.

When add noise, ; different
genealogies
(c.f. E-Penington 2022)



Reaction diffusion equations and range expansion (d = 1)

∂uk
∂t = ∂2uk

∂x2
+ uk(1− u)

2(u− ρ), ρ ∈ (0, 1/2)

u =
∑

k uk

Roques et al. PNAS (2012)

Fisher (1937)
Kolmogorov, Petrovskii, Piskunov
(1937)

Individuals in front descended
from individuals in front at
previous time

Individuals in front can be
descended from individuals in
bulk.

When add noise, ; different
genealogies
(c.f. E-Penington 2022)



Reaction diffusion equations and range expansion (d = 1)

∂uk
∂t = ∂2uk

∂x2
+ uk(1− u)

2

(u− ρ), ρ ∈ (0, 1/2) u =
∑

k uk

Roques et al. PNAS (2012)

Fisher (1937)
Kolmogorov, Petrovskii, Piskunov
(1937)

Individuals in front descended
from individuals in front at
previous time

Individuals in front can be
descended from individuals in
bulk.

When add noise, ; different
genealogies
(c.f. E-Penington 2022)



Reaction diffusion equations and range expansion (d = 1)

∂uk
∂t = ∂2uk

∂x2
+ uk(1− u)

2

(u− ρ), ρ ∈ (0, 1/2) u =
∑

k uk

Roques et al. PNAS (2012)

Fisher (1937)
Kolmogorov, Petrovskii, Piskunov
(1937)

Individuals in front descended
from individuals in front at
previous time

Individuals in front can be
descended from individuals in
bulk.

When add noise, ; different
genealogies
(c.f. E-Penington 2022)



A less classical example γ ∝ pop density, logistic control

∂u

∂t
=

∂2

∂x2
(u2) + u(1− u),

u(t, x) =

(
1− exp

(
1

2
(x− t)

))
+

‘Effective’ density dependent dispersal

Ancestral lineage has stationary
distribution π(x) ∝ ex

(
1− ex/2

)
for x < 0 . . ., in contrast to the
Fisher-KPP equation

; When add noise can expect
genealogy to be quite different
from that under Fisher-KPP,
∼ Allee effect
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Closing remarks

I In spite of complexity, some mathematical tractability;

I A trace of the two-step reproduction mechanism persists over
large temporal and spatial scales;

I Readily simulated in SLiM;

I Readily extended (but the paper is already over 100 pages
long);
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I Noise matters

I Space matters

I Local interactions matter, even over large scales
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