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The neutral (haploid) Wright-Fisher model

Population of fixed size N evolves in discrete generations.

I Each individual chooses parent uniformly at random from the
previous generation;

I Offspring inherit the type of their parent.

Slightly more biologically: During reproduction each individual
produces an effectively infinite number of gametes (same genotype
as parent), which combine to form a pool. Each offspring is
obtained by sampling a gamete uniformly at random from the pool.

In neutral model, all individuals make equal contribution to the
pool of gametes.
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Adding selection (Wright-Fisher setting)

Relative fitnesses:
a A

1− sN 1

During reproduction each individual produces an effectively infinite
number of gametes (same genotype as parent), which combine to
form a pool. An individual carrying the type a-allele, produces
(1− sN ) times the number of gametes produced by an individual
carrying the type A-allele. Each offspring is obtained by sampling a
gamete uniformly at random from the pool.

I Each individual independently chooses parent; prob type a:

(1− sN )p

(1− sN )p+ (1− p)
=

(1− sN )p

1− sNp
= (1−sN )p+sNp

2+O(s2N )

Ignoring O(s2N ) terms

I Number of a-offspring Bin
(
N, p− sNp(1− p)

)
.

I E[∆p] = −sNp(1− p); E[(∆p)2] = 1
N p(1− p) +O( sNN ).

Time in units of N generations, N →∞,

NsN → s, dpt = −spt(1− pt)dt+
√
pt(1− pt)dWt
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Adding selection (Moran model)

Relative fitnesses:
a A

1− sN 1

I Events determined by Poisson Process intensity
(
N
2

)
dt;

I Pair chosen at random;
I If types a, A chosen, probability a reproduces 1

2(1− sN ).

P[type a reproduces]

= p2 + 2p(1− p)1

2
(1− sN ) = p− sNp(1− p).

c.f. in Wright-Fisher, probability parent of type a:

(1− sN )p

1− sNp
= (1− sN )p+ sNp

2 +O(s2N )
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Adding selection (alternative view)

Coalescent

Time for

Sample

Neutral events at rate (1− sN )
(
N
2

)
;

Selective events at rate sN
(
N
2

)
:

if {a,A} chosen, A reproduces.

P[type a parent]

= (1−sN )p+sNp
2 = p−sNp(1−p)

NsN → s,

dpt = −spt(1−pt)dt+
√
pt(1− pt)dWt

E[p(t)n(0)] = E[p(0)n(t)] where n(t) a
branching and coalescing dual.
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The ancestral selection graph

I nt 7→ nt − 1 rate
(
nt

2

)
I nt 7→ nt + 1 rate snt

dpt = −spt(1− pt)dt+
√
pt(1− pt)dWt

Sampling probabilities:

E[p(t)n(0)] = E[p(0)n(t)]

All individuals in sample are type a iff all their ancestors in the
ASG are type a.
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Establishment of a favourable allele (Fisher 1930)

While rare, No. offspring of a favoured individual
∼ Binom(N, (1 + s)/N) ≈ Poiss(1 + s).

Branching process approximation: probability extinction satisfies

x = exp(−(1 + s)(1− x)),

Survival probability, y = 1− x,

y = 1− exp(−(1 + s)y) = (1 + s)y − 1

2
(1 + s)2y2 +O(y3).

Rearranging:

1

2
(1 + s)2y2 = sy =⇒ y ≈ 2s.



Does space matter?

Maryuama (1970),

I subdivided population, demes (large) constant size;

I selection acts independently in each deme;

I contribution of each deme to next generation proportional to
size.

; Fixation probability independent of population subdivision.

Barton (1993), this is no longer true if one adds
extinction-recolonisation events to colonies.

Aim to investigate the interaction of natural selection and spatial
structure in the framework of the spatial Lambda-Fleming-Viot
process.



Does space matter?

Maryuama (1970),

I subdivided population, demes (large) constant size;

I selection acts independently in each deme;

I contribution of each deme to next generation proportional to
size.

; Fixation probability independent of population subdivision.

Barton (1993), this is no longer true if one adds
extinction-recolonisation events to colonies.

Aim to investigate the interaction of natural selection and spatial
structure in the framework of the spatial Lambda-Fleming-Viot
process.



Does space matter?

Maryuama (1970),

I subdivided population, demes (large) constant size;

I selection acts independently in each deme;

I contribution of each deme to next generation proportional to
size.

; Fixation probability independent of population subdivision.

Barton (1993), this is no longer true if one adds
extinction-recolonisation events to colonies.

Aim to investigate the interaction of natural selection and spatial
structure in the framework of the spatial Lambda-Fleming-Viot
process.



Recap: The spatial Λ-Fleming-Viot process

State {ρ(t, x, ·) ∈M1(K), x ∈ R2, t ≥ 0}. Π Poisson point
process rate dt⊗ dx⊗ ξ(dr, du) on [0,∞)× R2 × [0,∞)× [0, 1].

Dynamics: for each (t, x, r, u) ∈ Π,

I z ∼ U(Br(x))

I k ∼ ρ(t−, z, ·).

For all y ∈ Br(x),

ρ(t, y, ·) = (1− u)ρ(t−, y, ·) + uδk.

r

x

z

Special case: K = {a,A}, w(t, x) := ρ(t, x, {a}). If proportion of
type a in ball before event is w,

w(t, y) =

{
(1− u)w(t−, y) + u with probability w

(1− u)w(t−, y) with probability 1− w
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Backwards in time

I A single ancestral lineage evolves in series of jumps with
intensity

dt⊗
∫
(|x|/2,∞)

∫
[0,1]

Lr(x)

πr2
u ξ(dr, du)dx

on R+ × R2 where Lr(x) = |Br(0) ∩Br(x)|.

I Lineages can coalesce when hit by
same ‘event’.

Note: If ξ(dr, du) = µ(dr)⊗ δu, rate of
jumps ∝ u.

x

r



Introducing selection to the SLFV

WARNING: There are lots of ways to do this.

Here we mimic what we did for the Wright-Fisher/Moran models.



Introducing selection to the SLFV

K = {a,A}, w(t, x) = ρ(t, x, {a}) proportion of type a

I (i) Weight type a by (1− s). If a reproduction event affects a
region B(x, r) in which current proportion of a-alleles is w,
then probability offspring are type a is

(1− s)w
1− sw

= w(1− s) + sw2 +O(s2).

c.f. what we did for Wright-Fisher model

I (ii) Neutral events rate ∝ (1− s), selective events rate ∝ s.
At selective reproduction events, sample two potential parents.
If types aa, then an a reproduces, otherwise an A does.

c.f. what we did for Moran model
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(Spatial) Ancestral selection graph

Evolution of ancestry due to neutral events as before:

I lineages evolve in a series of jumps;

I they can coalesce when covered by same event.

At selective events

I Two ‘potential’ parents must be
traced;

I Lineages can coalesce when hit by
same ‘event’.

x

r

A sampled individual is type a iff all lineages in the corresponding
ASG are type a at any previous time.



Zooming out: recovering classical models

The spread of a favoured allele is classically modelled through the
(stochastic) Fisher-KPP equation:

du =
(1

2
∆u+ su(1− u)

)
dt+1d=1ε

√
u(1− u)W (dt, dx).

Over sufficiently large spatial and temporal scales, does the
proportion of favoured alleles in the SLFV with selection look like a
solution to the (stochastic) Fisher-KPP equation?

Key tool: ancestral selection graph.

Stochastic Fisher-KPP is dual to branching and coalescing
Brownian motion



Branching Brownian motion and the Fisher-KPP equation

Binary branching BM Xt = {X1
t , . . . , X

Nt
t }

I Individuals follow independent Brownian motions

I Individual lifetime Exp(s)

I Replaced (at location where die) by two offspring

w(t, x) = Ex
[ Nt∏
i=1

w(0, Xi
t)
]
,

∂w

∂t
=

1

2
∆w + s(w2 − w)

u(t, x) = 1− w(t, x) solves ∂u
∂t = 1

2∆u+ su(1− u)
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Convergence of SLFV with selection

I SLFV dual to system of branching and coalescing random
walks

I Fisher-KPP equation dual to binary branching Brownian
motion

Recall Wright-Fisher diffusion (genetic drift) dual to Kingman
coalescent
In spatial setting, Wright-Fisher noise reflected in coalescence in
dual - lineages coalesce at rate determined by local time they
spend together, but only makes sense in d = 1

To identify convergence to (stochastic) Fisher-KPP, show
convergence of the dual processes
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Brief aside on random walk

Suppose X is simple random walk on Z.

Write τ for hitting time of {0, N}

Take X0 = 1. Doob’s Optional Stopping Theorem says
E[Xτ ] = X0.

Thus P[Xτ = N ] = 1/N .

Now reflect the random walk at 0. The number of excursions the
walk makes away from zero before one reaches N is Geometric
with mean N .

In d = 2, corresponding quantity has mean ∝ logN .
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Reminder: parameters in SLFV with selection

I Events driven by Poisson Point Process Π that specifies
I centre and radius event
I impact event

I selection coefficient determines proportion of selective events

For simplicity suppose r, u, s fixed

Dual lineages make jumps of length O(r) at rate proportional to
urd, and branch at rate proportional to surd

lineages can only coalesce when at separation less than 4r
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Scaling limits I: High neighbourhood size

Set un = u/nγ , sn = s/nδ, w(n)(t, x) = w(nt, nβx),
Jump rate nun, jump size 1/nβ. Diffusive scaling: 2β = 1− γ

I At ‘branching’ event, two lineages at separation O(1/nβ).

I Probability separate to O(1) before come back together is
O(1/nβ), (d = 1); O(1/ log n), (d = 2); O(1), (d ≥ 3).

I If two lineages hit by same event, given one jumps, they
coalesce with probability O(1/nγ).

d ≥ 2: Probability ‘long’ excursion before coalesce O(1);

d = 1: Number attempts to reach separation O(1)
∼ number of attempts to coalesce: β = γ;

Selection events rate nunsn O(1): 1− γ − δ = 0.
; β = γ = 1/3, δ = 2/3.



Scaling limits I: High neighbourhood size

Fixed impact u and event radius r, selection coefficient s

I Set un = u/n1/3, sn = s/n2/3, w(n)(t, x) = w(nt, n1/3x),

dw =
1

2
∆wdt+ sw(1− w)dt+ 1d=1ε

√
w(1− w)W (dt, dx)

E. Véber, Yu.

Here, un → 0, corresponding to high neighbourhood size.

γ > β (even bigger neighbourhood size) ; deterministic equation
in all dimensions
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E. Véber, Yu.

Here, un → 0, corresponding to high neighbourhood size.

γ > β (even bigger neighbourhood size) ; deterministic equation
in all dimensions



Establishment probability: high neighbourhood size

dw =
1

2
∆wdt+ sw(1− w)dt+ ε

√
w(1− w)W (dt, dx).

While rare,

dw ≈ 1

2
∆wdt+ swdt+ ε

√
wW (dt, dx).

Writing X for total mass rare allele,

dX ≈ sXdt+ ε
√
XdBt,

a continuous state branching process.

Establishment probability is
independent of spatial structure.

When neighbourhood size is high, spatial structure hardly perturbs
establishment probability. . . . but in a spatial continuum,
neighbourhood size can be small.
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Small neighbourhood size: Why rescale?

Neutral mutation rate, µ, sets timescale

I Mutation rates are low;

Natural question:
When will we see a signature of a favourable allele in data?



Scaling limits II: Small neighbourhood size:

Fix u ∈ (0, 1). Fix radius events.

Set n = 1/µ and rescale: w(nt,
√
nx).

Heuristics:

I At a ‘branching’ event in ASG, two lineages born at separation
O(1/

√
n).

I Probability they separate to O(1) before coalescing is
I d = 1: O(1/

√
n),

I d = 2: O(1/ log n),
I d ≥ 3: O(1).

I Selection will only be visible if expect to see at least one pair
‘separate’ by time 1.

I Order one coalescence probability when meet, so in low
dimensions need lots of branches.

Ability to detect selection depends on dimension:

I d = 1, selection only visible if s = O(1/
√
n),

if u = 1 limiting ASG embedded in Brownian net;

I d = 2, selection only visible if s = O(log n/n),
limiting ASG ‘Branching BM’;

I d ≥ 3, selection only visible if s = O(1/n),
limiting ASG Branching BM.

Technical challenges because nsn →∞.
Straulino (2015); E., Freeman, Straulino (2017); E., Freeman,

Penington, Straulino (2017). SPACE MATTERS!
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Spread of a favoured allele

Two types, a, A, relative fitnesses 1 : 1 + s. If a reproduction
event affects a region B(x, r) in which current proportion of
a-alleles is w, then probability offspring are type a is w

1+s(1−w) .

Alternative interpretation: strong selection ∼ range expansion
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What’s really happening?


