Some mathematical models FROM POPULATION GENETICS

 III. Adding selection

 III. Adding selection}

Alison Etheridge

 University of Oxfordwith thanks to numerous collaborators, especially Nick Barton, IST Austria

RIMS, September 2023

The neutral (haploid) Wright-Fisher model

Population of fixed size N evolves in discrete generations.

- Each individual chooses parent uniformly at random from the previous generation;
- Offspring inherit the type of their parent.

The neutral (haploid) Wright-Fisher model

Population of fixed size N evolves in discrete generations.

- Each individual chooses parent uniformly at random from the previous generation;
- Offspring inherit the type of their parent.

Slightly more biologically: During reproduction each individual produces an effectively infinite number of gametes (same genotype as parent), which combine to form a pool. Each offspring is obtained by sampling a gamete uniformly at random from the pool.

The neutral (haploid) Wright-Fisher model

Population of fixed size N evolves in discrete generations.

- Each individual chooses parent uniformly at random from the previous generation;
- Offspring inherit the type of their parent.

Slightly more biologically: During reproduction each individual produces an effectively infinite number of gametes (same genotype as parent), which combine to form a pool. Each offspring is obtained by sampling a gamete uniformly at random from the pool.

In neutral model, all individuals make equal contribution to the pool of gametes.

Adding selection (Wright-Fisher setting)

Relative fitnesses:

$$
\begin{array}{c|c}
a & A \\
\hline 1-s_{N} & 1
\end{array}
$$

Adding selection (Wright-Fisher setting)

Relative fitnesses:

During reproduction each individual produces an effectively infinite number of gametes (same genotype as parent), which combine to form a pool. An individual carrying the type a-allele, produces $\left(1-s_{N}\right)$ times the number of gametes produced by an individual carrying the type A-allele. Each offspring is obtained by sampling a gamete uniformly at random from the pool.

Adding selection (Wright-Fisher setting)

Relative fitnesses:

- Each individual independently chooses parent; prob type a :

$$
\frac{\left(1-s_{N}\right) p}{\left(1-s_{N}\right) p+(1-p)}=\frac{\left(1-s_{N}\right) p}{1-s_{N} p}=\left(1-s_{N}\right) p+s_{N} p^{2}+\mathcal{O}\left(s_{N}^{2}\right)
$$

Adding selection (Wright-Fisher setting)

Relative fitnesses:

- Each individual independently chooses parent; prob type a :

$$
\frac{\left(1-s_{N}\right) p}{\left(1-s_{N}\right) p+(1-p)}=\frac{\left(1-s_{N}\right) p}{1-s_{N} p}=\left(1-s_{N}\right) p+s_{N} p^{2}+\mathcal{O}\left(s_{N}^{2}\right)
$$

Ignoring $\mathcal{O}\left(s_{N}^{2}\right)$ terms

- Number of a-offspring $\operatorname{Bin}\left(N, p-s_{N} p(1-p)\right)$.
- $\mathbb{E}[\Delta p]=-s_{N} p(1-p) ; \mathbb{E}\left[(\Delta p)^{2}\right]=\frac{1}{N} p(1-p)+\mathcal{O}\left(\frac{s_{N}}{N}\right)$.

Adding selection (Wright-Fisher setting)

Relative fitnesses:

- Each individual independently chooses parent; prob type a :

$$
\frac{\left(1-s_{N}\right) p}{\left(1-s_{N}\right) p+(1-p)}=\frac{\left(1-s_{N}\right) p}{1-s_{N} p}=\left(1-s_{N}\right) p+s_{N} p^{2}+\mathcal{O}\left(s_{N}^{2}\right)
$$

Ignoring $\mathcal{O}\left(s_{N}^{2}\right)$ terms

- Number of a-offspring $\operatorname{Bin}\left(N, p-s_{N} p(1-p)\right)$.
- $\mathbb{E}[\Delta p]=-s_{N} p(1-p) ; \mathbb{E}\left[(\Delta p)^{2}\right]=\frac{1}{N} p(1-p)+\mathcal{O}\left(\frac{s_{N}}{N}\right)$.

Time in units of N generations, $N \rightarrow \infty$,
$N s_{N} \rightarrow s$,

$$
d p_{t}=-s p_{t}\left(1-p_{t}\right) d t+\sqrt{p_{t}\left(1-p_{t}\right)} d W_{t}
$$

Adding selection (Moran model)

Relative fitnesses:

- Events determined by Poisson Process intensity $\binom{N}{2} d t$;
- Pair chosen at random;
- If types a, A chosen, probability a reproduces $\frac{1}{2}\left(1-s_{N}\right)$.

Adding selection (Moran model)

Relative fitnesses:

$$
\begin{array}{c|c}
a & A \\
\hline 1-s_{N} & 1
\end{array}
$$

- Events determined by Poisson Process intensity $\binom{N}{2} d t$;
- Pair chosen at random;
- If types a, A chosen, probability a reproduces $\frac{1}{2}\left(1-s_{N}\right)$.
\mathbb{P} [type a reproduces]

$$
=p^{2}+2 p(1-p) \frac{1}{2}\left(1-s_{N}\right)=p-s_{N} p(1-p)
$$

Adding selection (Moran model)

Relative fitnesses:

$$
\begin{array}{c|c}
a & A \\
\hline 1-s_{N} & 1
\end{array}
$$

- Events determined by Poisson Process intensity $\binom{N}{2} d t$;
- Pair chosen at random;
- If types a, A chosen, probability a reproduces $\frac{1}{2}\left(1-s_{N}\right)$.
\mathbb{P} [type a reproduces]

$$
=p^{2}+2 p(1-p) \frac{1}{2}\left(1-s_{N}\right)=p-s_{N} p(1-p)
$$

c.f. in Wright-Fisher, probability parent of type a :

$$
\frac{\left(1-s_{N}\right) p}{1-s_{N} p}=\left(1-s_{N}\right) p+s_{N} p^{2}+\mathcal{O}\left(s_{N}^{2}\right)
$$

Adding selection (alternative view)

Neutral events at rate $\left(1-s_{N}\right)\binom{N}{2}$;

Selective events at rate $s_{N}\binom{N}{2}$: if $\{a, A\}$ chosen, A reproduces.

$$
\begin{aligned}
& \mathbb{P}[\text { type } a \text { parent }] \\
= & \left(1-s_{N}\right) p+s_{N} p^{2}=p-s_{N} p(1-p) \\
& N s_{N} \rightarrow s
\end{aligned}
$$

$$
d p_{t}=-s p_{t}\left(1-p_{t}\right) d t+\sqrt{p_{t}\left(1-p_{t}\right)} d W_{t}
$$

Sample

Adding selection (alternative view)

Neutral events at rate $\left(1-s_{N}\right)\binom{N}{2}$;

Sample

Time for
Coalescent
Selective events at rate $s_{N}\binom{N}{2}$: if $\{a, A\}$ chosen, A reproduces.

$$
\begin{aligned}
& \mathbb{P}[\text { type } a \text { parent }] \\
= & \left(1-s_{N}\right) p+s_{N} p^{2}=p-s_{N} p(1-p)
\end{aligned}
$$

$N s_{N} \rightarrow s$,
$d p_{t}=-s p_{t}\left(1-p_{t}\right) d t+\sqrt{p_{t}\left(1-p_{t}\right)} d W_{t}$
$\mathbb{E}\left[p(t)^{n(0)}\right]=\mathbb{E}\left[p(0)^{n(t)}\right]$ where $n(t)$ a branching and coalescing dual.

The ancestral selection graph

- $n_{t} \mapsto n_{t}-1$ rate $\binom{n_{t}}{2}$
- $n_{t} \mapsto n_{t}+1$ rate $s n_{t}$

The ancestral selection graph

$$
\begin{aligned}
& -n_{t} \mapsto n_{t}-1 \text { rate }\binom{n_{t}}{2} \\
& n_{t} \mapsto n_{t}+1 \text { rate } s n_{t}
\end{aligned}
$$

$$
d p_{t}=-s p_{t}\left(1-p_{t}\right) d t+\sqrt{p_{t}\left(1-p_{t}\right)} d W_{t}
$$

The ancestral selection graph

$\rightarrow n_{t} \mapsto n_{t}-1$ rate $\binom{n_{t}}{2}$
$\rightarrow n_{t} \mapsto n_{t}+1$ rate $s n_{t}$

$$
d p_{t}=-s p_{t}\left(1-p_{t}\right) d t+\sqrt{p_{t}\left(1-p_{t}\right)} d W_{t}
$$

Sampling probabilities:

$$
\mathbb{E}\left[p(t)^{n(0)}\right]=\mathbb{E}\left[p(0)^{n(t)}\right]
$$

The ancestral selection graph

$\rightarrow n_{t} \mapsto n_{t}-1$ rate $\binom{n_{t}}{2}$

- $n_{t} \mapsto n_{t}+1$ rate $s n_{t}$

$$
d p_{t}=-s p_{t}\left(1-p_{t}\right) d t+\sqrt{p_{t}\left(1-p_{t}\right)} d W_{t}
$$

Sampling probabilities:

$$
\mathbb{E}\left[p(t)^{n(0)}\right]=\mathbb{E}\left[p(0)^{n(t)}\right]
$$

All individuals in sample are type a iff all their ancestors in the ASG are type a.

Establishment of a favourable allele (Fisher 1930)

While rare, No. offspring of a favoured individual
$\sim \operatorname{Binom}(N,(1+s) / N) \approx \operatorname{Poiss}(1+s)$.
Branching process approximation: probability extinction satisfies

$$
x=\exp (-(1+s)(1-x)),
$$

Survival probability, $y=1-x$,

$$
y=1-\exp (-(1+s) y)=(1+s) y-\frac{1}{2}(1+s)^{2} y^{2}+\mathcal{O}\left(y^{3}\right)
$$

Rearranging:

$$
\frac{1}{2}(1+s)^{2} y^{2}=s y \quad \Longrightarrow \quad y \approx 2 s
$$

Does space matter?

Maryuama (1970),

- subdivided population, demes (large) constant size;
- selection acts independently in each deme;
- contribution of each deme to next generation proportional to size.
\leadsto Fixation probability independent of population subdivision.

Does space matter?

Maryuama (1970),

- subdivided population, demes (large) constant size;
- selection acts independently in each deme;
- contribution of each deme to next generation proportional to size.
\leadsto Fixation probability independent of population subdivision.
Barton (1993), this is no longer true if one adds extinction-recolonisation events to colonies.

Does space matter?

Maryuama (1970),

- subdivided population, demes (large) constant size;
- selection acts independently in each deme;
- contribution of each deme to next generation proportional to size.
\leadsto Fixation probability independent of population subdivision.

Barton (1993), this is no longer true if one adds extinction-recolonisation events to colonies.

Aim to investigate the interaction of natural selection and spatial structure in the framework of the spatial Lambda-Fleming-Viot process.

Recap: The spatial Λ-Fleming-Viot process

State $\left\{\rho(t, x, \cdot) \in \mathcal{M}_{1}(K), x \in \mathbb{R}^{2}, t \geq 0\right\}$. П Poisson point process rate $d t \otimes d x \otimes \xi(d r, d u)$ on $[0, \infty) \times \mathbb{R}^{2} \times[0, \infty) \times[0,1]$.

Dynamics: for each $(t, x, r, u) \in \Pi$,

- $z \sim U\left(B_{r}(x)\right)$
- $k \sim \rho(t-, z, \cdot)$.

For all $y \in B_{r}(x)$,

$$
\rho(t, y, \cdot)=(1-u) \rho(t-, y, \cdot)+u \delta_{k} .
$$

Recap: The spatial Λ-Fleming-Viot process

State $\left\{\rho(t, x, \cdot) \in \mathcal{M}_{1}(K), x \in \mathbb{R}^{2}, t \geq 0\right\}$. Π Poisson point process rate $d t \otimes d x \otimes \xi(d r, d u)$ on $[0, \infty) \times \mathbb{R}^{2} \times[0, \infty) \times[0,1]$.

Dynamics: for each $(t, x, r, u) \in \Pi$,

- $z \sim U\left(B_{r}(x)\right)$
- $k \sim \rho(t-, z, \cdot)$.

For all $y \in B_{r}(x)$,
$\rho(t, y, \cdot)=(1-u) \rho(t-, y, \cdot)+u \delta_{k}$.
Special case: $K=\{a, A\}, w(t, x):=\rho(t, x,\{a\})$. If proportion of type a in ball before event is \bar{w},

$$
w(t, y)=\left\{\begin{array}{cl}
(1-u) w(t-, y)+u & \text { with probability } \bar{w} \\
(1-u) w(t-, y) & \text { with probability } 1-\bar{w}
\end{array}\right.
$$

Backwards in time

- A single ancestral lineage evolves in series of jumps with intensity

$$
d t \otimes \int_{(|x| / 2, \infty)} \int_{[0,1]} \frac{L_{r}(x)}{\pi r^{2}} u \xi(d r, d u) d x
$$

on $\mathbb{R}_{+} \times \mathbb{R}^{2}$ where $L_{r}(x)=\left|B_{r}(0) \cap B_{r}(x)\right|$.

- Lineages can coalesce when hit by same 'event'.

Note: If $\xi(d r, d u)=\mu(d r) \otimes \delta_{u}$, rate of jumps $\propto u$.

Introducing selection to the SLFV

WARNING: There are lots of ways to do this.
Here we mimic what we did for the Wright-Fisher/Moran models.

Introducing selection to the SLFV

$K=\{a, A\}, w(t, x)=\rho(t, x,\{a\})$ proportion of type a

- (i) Weight type a by $(1-s)$. If a reproduction event affects a region $B(x, r)$ in which current proportion of a-alleles is \bar{w}, then probability offspring are type a is

$$
\frac{(1-s) \bar{w}}{1-s \bar{w}}=\bar{w}(1-s)+s \bar{w}^{2}+\mathcal{O}\left(s^{2}\right) .
$$

c.f. what we did for Wright-Fisher model

Introducing selection to the SLFV

$$
K=\{a, A\}, w(t, x)=\rho(t, x,\{a\}) \text { proportion of type } a
$$

- (i) Weight type a by $(1-s)$. If a reproduction event affects a region $B(x, r)$ in which current proportion of a-alleles is \bar{w}, then probability offspring are type a is

$$
\frac{(1-s) \bar{w}}{1-s \bar{w}}=\bar{w}(1-s)+s \bar{w}^{2}+\mathcal{O}\left(s^{2}\right) .
$$

c.f. what we did for Wright-Fisher model

- (ii) Neutral events rate $\propto(1-s)$, selective events rate $\propto s$. At selective reproduction events, sample two potential parents. If types $a a$, then an a reproduces, otherwise an A does.
c.f. what we did for Moran model

(Spatial) Ancestral selection graph

Evolution of ancestry due to neutral events as before:

- lineages evolve in a series of jumps;
- they can coalesce when covered by same event.

At selective events

- Two 'potential' parents must be traced;
- Lineages can coalesce when hit by same 'event'.

A sampled individual is type a iff all lineages in the corresponding ASG are type a at any previous time.

Zooming out: recovering classical models

The spread of a favoured allele is classically modelled through the (stochastic) Fisher-KPP equation:

$$
d u=\left(\frac{1}{2} \Delta u+s u(1-u)\right) d t+\mathbf{1}_{d=1} \epsilon \sqrt{u(1-u)} W(d t, d x)
$$

Over sufficiently large spatial and temporal scales, does the proportion of favoured alleles in the SLFV with selection look like a solution to the (stochastic) Fisher-KPP equation?

Key tool: ancestral selection graph.
Stochastic Fisher-KPP is dual to branching and coalescing Brownian motion

Branching Brownian motion and the Fisher-KPP equation

Binary branching BM

$$
\mathbf{X}_{t}=\left\{X_{t}^{1}, \ldots, X_{t}^{N_{t}}\right\}
$$

- Individuals follow independent Brownian motions
- Individual lifetime $\operatorname{Exp}(s)$
- Replaced (at location where die) by two offspring

Branching Brownian motion and the Fisher-KPP equation

Binary branching BM

$$
\mathbf{X}_{t}=\left\{X_{t}^{1}, \ldots, X_{t}^{N_{t}}\right\}
$$

- Individuals follow independent Brownian motions
- Individual lifetime $\operatorname{Exp}(s)$
- Replaced (at location where die) by two offspring

$$
w(t, x)=\mathbb{E}_{x}\left[\prod_{i=1}^{N_{t}} w\left(0, X_{t}^{i}\right)\right], \quad \frac{\partial w}{\partial t}=\frac{1}{2} \Delta w+s\left(w^{2}-w\right)
$$

Branching Brownian motion and the Fisher-KPP equation

Binary branching BM

$$
\mathbf{X}_{t}=\left\{X_{t}^{1}, \ldots, X_{t}^{N_{t}}\right\}
$$

- Individuals follow independent Brownian motions
- Individual lifetime $\operatorname{Exp}(s)$
- Replaced (at location where die) by two offspring

$$
w(t, x)=\mathbb{E}_{x}\left[\prod_{i=1}^{N_{t}} w\left(0, X_{t}^{i}\right)\right], \quad \frac{\partial w}{\partial t}=\frac{1}{2} \Delta w+s\left(w^{2}-w\right)
$$

$$
u(t, x)=1-w(t, x) \text { solves } \frac{\partial u}{\partial t}=\frac{1}{2} \Delta u+s u(1-u)
$$

Convergence of SLFV with selection

- SLFV dual to system of branching and coalescing random walks
- Fisher-KPP equation dual to binary branching Brownian motion

Convergence of SLFV with selection

- SLFV dual to system of branching and coalescing random walks
- Fisher-KPP equation dual to binary branching Brownian motion

Recall Wright-Fisher diffusion (genetic drift) dual to Kingman coalescent
In spatial setting, Wright-Fisher noise reflected in coalescence in dual - lineages coalesce at rate determined by local time they spend together, but only makes sense in $d=1$

Convergence of SLFV with selection

- SLFV dual to system of branching and coalescing random walks
- Fisher-KPP equation dual to binary branching Brownian motion

Recall Wright-Fisher diffusion (genetic drift) dual to Kingman coalescent
In spatial setting, Wright-Fisher noise reflected in coalescence in dual - lineages coalesce at rate determined by local time they spend together, but only makes sense in $d=1$

To identify convergence to (stochastic) Fisher-KPP, show convergence of the dual processes

Brief aside on random walk

Suppose X is simple random walk on \mathbb{Z}.
Write τ for hitting time of $\{0, N\}$
Take $X_{0}=1$. Doob's Optional Stopping Theorem says $\mathbb{E}\left[X_{\tau}\right]=X_{0}$.

Thus $\mathbb{P}\left[X_{\tau}=N\right]=1 / N$.

Brief aside on random walk

Suppose X is simple random walk on \mathbb{Z}.
Write τ for hitting time of $\{0, N\}$

Take $X_{0}=1$. Doob's Optional Stopping Theorem says $\mathbb{E}\left[X_{\tau}\right]=X_{0}$.

Thus $\mathbb{P}\left[X_{\tau}=N\right]=1 / N$.
Now reflect the random walk at 0 . The number of excursions the walk makes away from zero before one reaches N is Geometric with mean N.

Brief aside on random walk

Suppose X is simple random walk on \mathbb{Z}.
Write τ for hitting time of $\{0, N\}$

Take $X_{0}=1$. Doob's Optional Stopping Theorem says $\mathbb{E}\left[X_{\tau}\right]=X_{0}$.

Thus $\mathbb{P}\left[X_{\tau}=N\right]=1 / N$.
Now reflect the random walk at 0 . The number of excursions the walk makes away from zero before one reaches N is Geometric with mean N.

In $d=2$, corresponding quantity has mean $\propto \log N$.

Reminder: parameters in SLFV with selection

- Events driven by Poisson Point Process Π that specifies
- centre and radius event
- impact event
- selection coefficient determines proportion of selective events

Reminder: parameters in SLFV with selection

- Events driven by Poisson Point Process Π that specifies
- centre and radius event
- impact event
- selection coefficient determines proportion of selective events

For simplicity suppose r, u, s fixed

Reminder: parameters in SLFV with selection

- Events driven by Poisson Point Process Π that specifies
- centre and radius event
- impact event
- selection coefficient determines proportion of selective events

For simplicity suppose r, u, s fixed

Dual lineages make jumps of length $O(r)$ at rate proportional to $u r^{d}$, and branch at rate proportional to $s u r^{d}$
lineages can only coalesce when at separation less than $4 r$

Scaling limits I: High neighbourhood size

Set $u_{n}=u / n^{\gamma}, s_{n}=s / n^{\delta}, w^{(n)}(t, x)=w\left(n t, n^{\beta} x\right)$, Jump rate $n u_{n}$, jump size $1 / n^{\beta}$. Diffusive scaling: $2 \beta=1-\gamma$

- At 'branching' event, two lineages at separation $\mathcal{O}\left(1 / n^{\beta}\right)$.
- Probability separate to $\mathcal{O}(1)$ before come back together is $\mathcal{O}\left(1 / n^{\beta}\right),(d=1) ; \mathcal{O}(1 / \log n),(d=2) ; \mathcal{O}(1),(d \geq 3)$.
- If two lineages hit by same event, given one jumps, they coalesce with probability $\mathcal{O}\left(1 / n^{\gamma}\right)$.
$d \geq 2$: Probability 'long' excursion before coalesce $\mathcal{O}(1)$;
$d=1$: Number attempts to reach separation $\mathcal{O}(1)$
\sim number of attempts to coalesce: $\beta=\gamma$;
Selection events rate $n u_{n} s_{n} \mathcal{O}(1): 1-\gamma-\delta=0$.

$$
\leadsto \beta=\gamma=1 / 3, \quad \delta=2 / 3
$$

Scaling limits I: High neighbourhood size

Fixed impact u and event radius r, selection coefficient s

- Set $u_{n}=u / n^{1 / 3}, s_{n}=s / n^{2 / 3}, w^{(n)}(t, x)=w\left(n t, n^{1 / 3} x\right)$,

$$
d w=\frac{1}{2} \Delta w d t+s w(1-w) d t+\mathbf{1}_{d=1} \epsilon \sqrt{w(1-w)} W(d t, d x)
$$

E. Véber, Yu.

Scaling limits I: High neighbourhood size

Fixed impact u and event radius r, selection coefficient s

- Set $u_{n}=u / n^{1 / 3}, s_{n}=s / n^{2 / 3}, w^{(n)}(t, x)=w\left(n t, n^{1 / 3} x\right)$,

$$
d w=\frac{1}{2} \Delta w d t+s w(1-w) d t+\mathbf{1}_{d=1} \epsilon \sqrt{w(1-w)} W(d t, d x)
$$

E. Véber, Yu.

Here, $u_{n} \rightarrow 0$, corresponding to high neighbourhood size.

Scaling limits I: High neighbourhood size

Fixed impact u and event radius r, selection coefficient s

- Set $u_{n}=u / n^{1 / 3}, s_{n}=s / n^{2 / 3}, w^{(n)}(t, x)=w\left(n t, n^{1 / 3} x\right)$,

$$
d w=\frac{1}{2} \Delta w d t+s w(1-w) d t+\mathbf{1}_{d=1} \epsilon \sqrt{w(1-w)} W(d t, d x)
$$

E. Véber, Yu.

Here, $u_{n} \rightarrow 0$, corresponding to high neighbourhood size.
$\gamma>\beta$ (even bigger neighbourhood size) \leadsto deterministic equation in all dimensions

Establishment probability: high neighbourhood size

$$
d w=\frac{1}{2} \Delta w d t+s w(1-w) d t+\epsilon \sqrt{w(1-w)} W(d t, d x) .
$$

While rare,

$$
d w \approx \frac{1}{2} \Delta w d t+s w d t+\epsilon \sqrt{w} W(d t, d x)
$$

Establishment probability: high neighbourhood size

$$
d w=\frac{1}{2} \Delta w d t+s w(1-w) d t+\epsilon \sqrt{w(1-w)} W(d t, d x) .
$$

While rare,

$$
d w \approx \frac{1}{2} \Delta w d t+s w d t+\epsilon \sqrt{w} W(d t, d x)
$$

Writing X for total mass rare allele,

$$
d X \approx s X d t+\epsilon \sqrt{X} d B_{t}
$$

a continuous state branching process.

Establishment probability: high neighbourhood size

$$
d w=\frac{1}{2} \Delta w d t+s w(1-w) d t+\epsilon \sqrt{w(1-w)} W(d t, d x) .
$$

While rare,

$$
d w \approx \frac{1}{2} \Delta w d t+s w d t+\epsilon \sqrt{w} W(d t, d x)
$$

Writing X for total mass rare allele,

$$
d X \approx s X d t+\epsilon \sqrt{X} d B_{t}
$$

a continuous state branching process. Establishment probability is independent of spatial structure.

Establishment probability: high neighbourhood size

$$
d w=\frac{1}{2} \Delta w d t+s w(1-w) d t+\epsilon \sqrt{w(1-w)} W(d t, d x) .
$$

While rare,

$$
d w \approx \frac{1}{2} \Delta w d t+s w d t+\epsilon \sqrt{w} W(d t, d x)
$$

Writing X for total mass rare allele,

$$
d X \approx s X d t+\epsilon \sqrt{X} d B_{t}
$$

a continuous state branching process. Establishment probability is independent of spatial structure.
When neighbourhood size is high, spatial structure hardly perturbs establishment probability.

Establishment probability: high neighbourhood size

$$
d w=\frac{1}{2} \Delta w d t+s w(1-w) d t+\epsilon \sqrt{w(1-w)} W(d t, d x) .
$$

While rare,

$$
d w \approx \frac{1}{2} \Delta w d t+s w d t+\epsilon \sqrt{w} W(d t, d x)
$$

Writing X for total mass rare allele,

$$
d X \approx s X d t+\epsilon \sqrt{X} d B_{t}
$$

a continuous state branching process. Establishment probability is independent of spatial structure.
When neighbourhood size is high, spatial structure hardly perturbs establishment probability. ... but in a spatial continuum, neighbourhood size can be small.

Small neighbourhood size: Why rescale?

Neutral mutation rate, μ, sets timescale

- Mutation rates are low;

Natural question:
When will we see a signature of a favourable allele in data?

Scaling limits II: Small neighbourhood size:

Fix $u \in(0,1)$.
Fix radius events.

Scaling limits II: Small neighbourhood size:

Fix $u \in(0,1)$.
Fix radius events.
Set $n=1 / \mu$ and rescale: $w(n t, \sqrt{n} x)$.

Scaling limits II: Small neighbourhood size:

Fix $u \in(0,1)$.
Fix radius events.
Set $n=1 / \mu$ and rescale: $w(n t, \sqrt{n} x)$.

Heuristics:

- At a 'branching' event in ASG, two lineages born at separation $\mathcal{O}(1 / \sqrt{n})$.
- Probability they separate to $\mathcal{O}(1)$ before coalescing is
- $d=1: \mathcal{O}(1 / \sqrt{n})$,
- $d=2: \mathcal{O}(1 / \log n)$,
- $d \geq 3: \mathcal{O}(1)$.
- Selection will only be visible if expect to see at least one pair 'separate' by time 1.
- Order one coalescence probability when meet, so in low dimensions need lots of branches.

Scaling limits II: Small neighbourhood size:

Fix $u \in(0,1)$.
Fix radius events.

Set $n=1 / \mu$ and rescale: $w(n t, \sqrt{n} x)$.

Ability to detect selection depends on dimension:

- $d=1$, selection only visible if $s=\mathcal{O}(1 / \sqrt{n})$, if $u=1$ limiting ASG embedded in Brownian net;
- $d=2$, selection only visible if $s=\mathcal{O}(\log n / n)$, limiting ASG 'Branching BM';
- $d \geq 3$, selection only visible if $s=\mathcal{O}(1 / n)$, limiting ASG Branching BM.
Technical challenges because $n s_{n} \rightarrow \infty$.
Straulino (2015); E., Freeman, Straulino (2017); E., Freeman,
Penington, Straulino (2017).

Spread of a favoured allele

Two types, a, A, relative fitnesses $1: 1+s$. If a reproduction event affects a region $B(x, r)$ in which current proportion of a-alleles is w, then probability offspring are type a is $\frac{w}{1+s(1-w)}$.

Spread of a favoured allele

Two types, a, A, relative fitnesses $1: 1+s$. If a reproduction event affects a region $B(x, r)$ in which current proportion of a-alleles is w, then probability offspring are type a is $\frac{w}{1+s(1-w)}$.

Alternative interpretation: strong selection \sim range expansion

Range expansion

Pseudomanas aeruginosa (Kevin Foster)

Range expansion

Pseudomanas aeruginosa (Kevin Foster)

What's really happening?

