

Some mathematical models from population genetics III. Adding selection

Alison Etheridge University of Oxford

with thanks to numerous collaborators, especially Nick Barton, IST Austria

RIMS, September 2023

The neutral (haploid) Wright-Fisher model

Population of fixed size N evolves in discrete generations.

- Each individual chooses parent uniformly at random from the previous generation;
- Offspring inherit the type of their parent.

The neutral (haploid) Wright-Fisher model

Population of fixed size N evolves in discrete generations.

- Each individual chooses parent uniformly at random from the previous generation;
- Offspring inherit the type of their parent.

Slightly more biologically: During reproduction each individual produces an effectively infinite number of gametes (same genotype as parent), which combine to form a pool. Each offspring is obtained by sampling a gamete uniformly at random from the pool.

The neutral (haploid) Wright-Fisher model

Population of fixed size N evolves in discrete generations.

- Each individual chooses parent uniformly at random from the previous generation;
- Offspring inherit the type of their parent.

Slightly more biologically: During reproduction each individual produces an effectively infinite number of gametes (same genotype as parent), which combine to form a pool. Each offspring is obtained by sampling a gamete uniformly at random from the pool.

In neutral model, all individuals make equal contribution to the pool of gametes.

Relative fitnesses:

$$\begin{array}{c|c} a & A \\ \hline 1 - s_N & 1 \end{array}$$

Relative fitnesses:

$$\frac{a}{1-s_N} \frac{A}{1}$$

During reproduction each individual produces an effectively infinite number of gametes (same genotype as parent), which combine to form a pool. An individual carrying the type *a*-allele, produces $(1 - s_N)$ times the number of gametes produced by an individual carrying the type *A*-allele. Each offspring is obtained by sampling a gamete uniformly at random from the pool.

Relative fitnesses:

$$\begin{array}{c|c} a & A \\ \hline 1 - s_N & 1 \end{array}$$

Each individual independently chooses parent; prob type *a*:

$$\frac{(1-s_N)p}{(1-s_N)p+(1-p)} = \frac{(1-s_N)p}{1-s_Np} = (1-s_N)p + s_Np^2 + \mathcal{O}(s_N^2)$$

Relative fitnesses:

$$\begin{array}{c|c} a & A \\ \hline 1 - s_N & 1 \end{array}$$

► Each individual independently chooses parent; prob type *a*:

$$\frac{(1-s_N)p}{(1-s_N)p+(1-p)} = \frac{(1-s_N)p}{1-s_Np} = (1-s_N)p + s_N p^2 + \mathcal{O}(s_N^2)$$

Ignoring $\mathcal{O}(s_N^2)$ terms

- Number of *a*-offspring $Bin(N, p s_N p(1-p))$.
- $\blacktriangleright \mathbb{E}[\Delta p] = -s_N p(1-p); \mathbb{E}[(\Delta p)^2] = \frac{1}{N} p(1-p) + \mathcal{O}(\frac{s_N}{N}).$

Relative fitnesses:

$$\begin{array}{c|c} a & A \\ \hline 1 - s_N & 1 \end{array}$$

Each individual independently chooses parent; prob type a:

$$\frac{(1-s_N)p}{(1-s_N)p+(1-p)} = \frac{(1-s_N)p}{1-s_Np} = (1-s_N)p + s_Np^2 + \mathcal{O}(s_N^2)$$

Ignoring $\mathcal{O}(s_N^2)$ terms

- Number of *a*-offspring $Bin(N, p s_N p(1-p))$.
- $\blacktriangleright \mathbb{E}[\Delta p] = -s_N p(1-p); \mathbb{E}[(\Delta p)^2] = \frac{1}{N} p(1-p) + \mathcal{O}(\frac{s_N}{N}).$

Time in units of N generations, $N \to \infty$,

$$Ns_N \rightarrow s$$
, $dp_t = -sp_t(1-p_t)dt + \sqrt{p_t(1-p_t)}dW_t$

Adding selection (Moran model)

Relative fitnesses:

$$\begin{array}{c|c} a & A \\ \hline 1 - s_N & 1 \end{array}$$

- Events determined by Poisson Process intensity ^N₂dt;
 Pair chosen at random;
- If types a, A chosen, probability a reproduces $\frac{1}{2}(1-s_N)$.

Adding selection (Moran model)

Relative fitnesses:

$$\begin{array}{c|c} a & A \\ \hline 1 - s_N & 1 \end{array}$$

- Events determined by Poisson Process intensity (^N₂)dt;
 Pair chosen at random;
- lf types a, A chosen, probability a reproduces $\frac{1}{2}(1-s_N)$.

 $\mathbb{P}[\mathsf{type}\ a\ \mathsf{reproduces}]$

$$= p^{2} + 2p(1-p)\frac{1}{2}(1-s_{N}) = p - s_{N}p(1-p).$$

Adding selection (Moran model)

Relative fitnesses:

$$\begin{array}{c|c} a & A \\ \hline 1 - s_N & 1 \end{array}$$

- Events determined by Poisson Process intensity (^N₂)dt;
 Pair chosen at random;
- lf types a, A chosen, probability a reproduces $\frac{1}{2}(1-s_N)$.

 $\mathbb{P}[\mathsf{type}\ a\ \mathsf{reproduces}]$

$$= p^{2} + 2p(1-p)\frac{1}{2}(1-s_{N}) = p - s_{N}p(1-p).$$

c.f. in Wright-Fisher, probability parent of type a:

$$\frac{(1-s_N)p}{1-s_Np} = (1-s_N)p + s_Np^2 + \mathcal{O}(s_N^2)$$

Adding selection (alternative view)

Time for Coalescent

Neutral events at rate $(1 - s_N)\binom{N}{2}$;

Selective events at rate $s_N\binom{N}{2}$: if $\{a, A\}$ chosen, A reproduces.

 $\mathbb{P}[\text{type } a \text{ parent}] \\ = (1 - s_N)p + s_N p^2 = p - s_N p(1 - p) \\ Ns_N \to s,$

$$dp_t = -sp_t(1-p_t)dt + \sqrt{p_t(1-p_t)}dW_t$$

Sample

Adding selection (alternative view)

Neutral events at rate $(1 - s_N)\binom{N}{2}$;

Selective events at rate $s_N\binom{N}{2}$: if $\{a, A\}$ chosen, A reproduces.

 $\mathbb{P}[\text{type } a \text{ parent}]$ = $(1 - s_N)p + s_N p^2 = p - s_N p(1 - p)$ $Ns_N \rightarrow s_N$

 $dp_t = -sp_t(1-p_t)dt + \sqrt{p_t(1-p_t)}dW_t$

 $\mathbb{E}[p(t)^{n(0)}] = \mathbb{E}[p(0)^{n(t)}]$ where n(t) a branching and coalescing dual.

$$\blacktriangleright n_t \mapsto n_t - 1 \text{ rate } \binom{n_t}{2}$$

 \blacktriangleright $n_t \mapsto n_t + 1$ rate sn_t

$$n_t \mapsto n_t - 1 \text{ rate } \binom{n_t}{2}$$
$$n_t \mapsto n_t + 1 \text{ rate } sn_t$$

 $dp_t = -sp_t(1-p_t)dt + \sqrt{p_t(1-p_t)}dW_t$

$$n_t \mapsto n_t - 1 \text{ rate } \binom{n_t}{2}$$
$$n_t \mapsto n_t + 1 \text{ rate } sn_t$$

$$dp_t = -sp_t(1-p_t)dt + \sqrt{p_t(1-p_t)}dW_t$$

Sampling probabilities:

 $\mathbb{E}[p(t)^{n(0)}] = \mathbb{E}[p(0)^{n(t)}]$

$$n_t \mapsto n_t - 1 \text{ rate } \binom{n_t}{2}$$
$$n_t \mapsto n_t + 1 \text{ rate } sn_t$$

$$dp_t = -sp_t(1-p_t)dt + \sqrt{p_t(1-p_t)}dW_t$$

Sampling probabilities:

$$\mathbb{E}[p(t)^{n(0)}] = \mathbb{E}[p(0)^{n(t)}]$$

All individuals in sample are type a iff all their ancestors in the ASG are type a.

Establishment of a favourable allele (Fisher 1930)

While rare, No. offspring of a favoured individual $\sim \text{Binom}(N, (1+s)/N) \approx \text{Poiss}(1+s).$

Branching process approximation: probability extinction satisfies

 $x = \exp(-(1+s)(1-x)),$

Survival probability, y = 1 - x,

$$y = 1 - \exp(-(1+s)y) = (1+s)y - \frac{1}{2}(1+s)^2y^2 + \mathcal{O}(y^3).$$

Rearranging:

$$\frac{1}{2}(1+s)^2y^2 = sy \quad \Longrightarrow \quad y \approx 2s.$$

Does space matter?

Maryuama (1970),

- subdivided population, demes (large) constant size;
- selection acts independently in each deme;
- contribution of each deme to next generation proportional to size.
- \rightsquigarrow Fixation probability independent of population subdivision.

Does space matter?

Maryuama (1970),

- subdivided population, demes (large) constant size;
- selection acts independently in each deme;
- contribution of each deme to next generation proportional to size.
- \rightsquigarrow Fixation probability independent of population subdivision.

Barton (1993), this is no longer true if one adds extinction-recolonisation events to colonies.

Does space matter?

Maryuama (1970),

- subdivided population, demes (large) constant size;
- selection acts independently in each deme;
- contribution of each deme to next generation proportional to size.
- \rightsquigarrow Fixation probability independent of population subdivision.

Barton (1993), this is no longer true if one adds extinction-recolonisation events to colonies.

Aim to investigate the interaction of natural selection and spatial structure in the framework of the spatial Lambda-Fleming-Viot process.

Recap: The spatial Λ -Fleming-Viot process

State $\{\rho(t, x, \cdot) \in \mathcal{M}_1(K), x \in \mathbb{R}^2, t \ge 0\}$. If Poisson point process rate $dt \otimes dx \otimes \xi(dr, du)$ on $[0, \infty) \times \mathbb{R}^2 \times [0, \infty) \times [0, 1]$.

Dynamics: for each $(t, x, r, u) \in \Pi$, $\triangleright z \sim U(B_r(x))$ $\triangleright k \sim \rho(t-, z, \cdot).$ For all $y \in B_r(x)$, $\rho(t, y, \cdot) = (1-u)\rho(t-, y, \cdot) + u\delta_k.$

Recap: The spatial Λ -Fleming-Viot process

State $\{\rho(t, x, \cdot) \in \mathcal{M}_1(K), x \in \mathbb{R}^2, t \ge 0\}$. If Poisson point process rate $dt \otimes dx \otimes \xi(dr, du)$ on $[0, \infty) \times \mathbb{R}^2 \times [0, \infty) \times [0, 1]$.

$$w(t,y) = \begin{cases} (1-u)w(t-,y) + u & \text{with probability } \overline{w} \\ (1-u)w(t-,y) & \text{with probability } 1 - \overline{w} \end{cases}$$

Backwards in time

 A single ancestral lineage evolves in series of jumps with intensity

$$dt \otimes \int_{(|x|/2,\infty)} \int_{[0,1]} \frac{L_r(x)}{\pi r^2} u \,\xi(dr, du) dx$$

on $\mathbb{R}_+ \times \mathbb{R}^2$ where $L_r(x) = |B_r(0) \cap B_r(x)|$.

 Lineages can coalesce when hit by same 'event'.

Note: If $\xi(dr, du) = \mu(dr) \otimes \delta_u$, rate of jumps $\propto u$.

0

Introducing selection to the SLFV

WARNING: There are lots of ways to do this.

Here we mimic what we did for the Wright-Fisher/Moran models.

Introducing selection to the SLFV

 $K = \{a, A\}$, $w(t, x) = \rho(t, x, \{a\})$ proportion of type a

► (i) Weight type a by (1 - s). If a reproduction event affects a region B(x, r) in which current proportion of a-alleles is w, then probability offspring are type a is

$$\frac{(1-s)\overline{w}}{1-s\overline{w}} = \overline{w}(1-s) + s\overline{w}^2 + \mathcal{O}(s^2).$$

c.f. what we did for Wright-Fisher model

Introducing selection to the SLFV

 $K = \{a, A\}$, $w(t, x) = \rho(t, x, \{a\})$ proportion of type a

► (i) Weight type a by (1 - s). If a reproduction event affects a region B(x, r) in which current proportion of a-alleles is w, then probability offspring are type a is

$$\frac{(1-s)\overline{w}}{1-s\overline{w}} = \overline{w}(1-s) + s\overline{w}^2 + \mathcal{O}(s^2).$$

c.f. what we did for Wright-Fisher model

 (ii) Neutral events rate ∝ (1 − s), selective events rate ∝ s. At selective reproduction events, sample two potential parents. If types aa, then an a reproduces, otherwise an A does.

c.f. what we did for Moran model

(Spatial) Ancestral selection graph

Evolution of ancestry due to neutral events as before:

- lineages evolve in a series of jumps;
- they can coalesce when covered by same event.

At selective events

- Two 'potential' parents must be traced;
- Lineages can coalesce when hit by same 'event'.

A sampled individual is type a iff all lineages in the corresponding ASG are type a at any previous time.

The spread of a *favoured* allele is classically modelled through the (stochastic) Fisher-KPP equation:

$$du = \left(\frac{1}{2}\Delta u + su(1-u)\right)dt + \mathbf{1}_{d=1}\epsilon\sqrt{u(1-u)}W(dt, dx).$$

Over sufficiently large spatial and temporal scales, does the proportion of favoured alleles in the SLFV with selection look like a solution to the (stochastic) Fisher-KPP equation?

Key tool: ancestral selection graph.

Stochastic Fisher-KPP is dual to branching and coalescing Brownian motion

Branching Brownian motion and the Fisher-KPP equation

Binary branching BM

$$\mathbf{X}_t = \{X_t^1, \dots, X_t^{N_t}\}$$

- Individuals follow independent Brownian motions
- lifetime Exp(s)
- Replaced (at location where die) by two offspring

Branching Brownian motion and the Fisher-KPP equation

Binary branching BM

$$\mathbf{X}_t = \{X_t^1, \dots, X_t^{N_t}\}$$

- Individuals follow independent Brownian motions
- lifetime Exp(s)
- Replaced (at location where die) by two offspring

$$w(t,x) = \mathbb{E}_x \left[\prod_{i=1}^{N_t} w(0, X_t^i)\right], \quad \frac{\partial w}{\partial t} = \frac{1}{2}\Delta w + s(w^2 - w)$$

Branching Brownian motion and the Fisher-KPP equation

Binary branching BM

$$\mathbf{X}_t = \{X_t^1, \dots, X_t^{N_t}\}$$

- Individuals follow independent Brownian motions
- Individual lifetime Exp(s)
- Replaced (at location where die) by two offspring

$$w(t,x) = \mathbb{E}_x \left[\prod_{i=1}^{N_t} w(0, X_t^i)\right], \quad \frac{\partial w}{\partial t} = \frac{1}{2}\Delta w + s(w^2 - w)$$

u(t,x) = 1 - w(t,x) solves $\frac{\partial u}{\partial t} = \frac{1}{2}\Delta u + su(1-u)$

Convergence of SLFV with selection

- SLFV dual to system of branching and coalescing random walks
- Fisher-KPP equation dual to binary branching Brownian motion

Convergence of SLFV with selection

- SLFV dual to system of branching and coalescing random walks
- Fisher-KPP equation dual to binary branching Brownian motion

Recall Wright-Fisher diffusion (genetic drift) dual to Kingman coalescent In spatial setting, Wright-Fisher noise reflected in coalescence in dual - lineages coalesce at rate determined by *local time* they spend together, but only makes sense in d = 1

Convergence of SLFV with selection

- SLFV dual to system of branching and coalescing random walks
- Fisher-KPP equation dual to binary branching Brownian motion

Recall Wright-Fisher diffusion (genetic drift) dual to Kingman coalescent In spatial setting, Wright-Fisher noise reflected in coalescence in dual - lineages coalesce at rate determined by *local time* they spend together, but only makes sense in d = 1

To identify convergence to (stochastic) Fisher-KPP, show convergence of the dual processes

Suppose X is simple random walk on \mathbb{Z} .

Write τ for hitting time of $\{0, N\}$

Take $X_0 = 1$. Doob's Optional Stopping Theorem says $\mathbb{E}[X_{\tau}] = X_0$.

Thus $\mathbb{P}[X_{\tau} = N] = 1/N$.

Suppose X is simple random walk on \mathbb{Z} .

Write τ for hitting time of $\{0, N\}$

Take $X_0 = 1$. Doob's Optional Stopping Theorem says $\mathbb{E}[X_{\tau}] = X_0$.

Thus $\mathbb{P}[X_{\tau} = N] = 1/N$.

Now reflect the random walk at 0. The number of excursions the walk makes away from zero before one reaches N is Geometric with mean N.

Suppose X is simple random walk on \mathbb{Z} .

Write τ for hitting time of $\{0, N\}$

Take $X_0 = 1$. Doob's Optional Stopping Theorem says $\mathbb{E}[X_{\tau}] = X_0$.

Thus $\mathbb{P}[X_{\tau} = N] = 1/N$.

Now reflect the random walk at 0. The number of excursions the walk makes away from zero before one reaches N is Geometric with mean N.

In d = 2, corresponding quantity has mean $\propto \log N$.

Reminder: parameters in SLFV with selection

• Events driven by Poisson Point Process Π that specifies

- centre and radius event
- impact event

selection coefficient determines proportion of selective events

Reminder: parameters in SLFV with selection

• Events driven by Poisson Point Process Π that specifies

- centre and radius event
- impact event

selection coefficient determines proportion of selective events

For simplicity suppose r, u, s fixed

Reminder: parameters in SLFV with selection

• Events driven by Poisson Point Process Π that specifies

- centre and radius event
- impact event

selection coefficient determines proportion of selective events

For simplicity suppose r, u, s fixed

Dual lineages make jumps of length ${\cal O}(r)$ at rate proportional to $ur^d,$ and branch at rate proportional to sur^d

lineages can only coalesce when at separation less than 4r

Set $u_n = u/n^{\gamma}$, $s_n = s/n^{\delta}$, $w^{(n)}(t, x) = w(nt, n^{\beta}x)$, Jump rate nu_n , jump size $1/n^{\beta}$. Diffusive scaling: $2\beta = 1 - \gamma$

• At 'branching' event, two lineages at separation $\mathcal{O}(1/n^{\beta})$.

- ▶ Probability separate to $\mathcal{O}(1)$ before come back together is $\mathcal{O}(1/n^{\beta})$, (d = 1); $\mathcal{O}(1/\log n)$, (d = 2); $\mathcal{O}(1)$, $(d \ge 3)$.
- If two lineages hit by same event, given one jumps, they coalesce with probability O(1/n^γ).

 $d \geq 2$: Probability 'long' excursion before coalesce $\mathcal{O}(1)$;

d = 1: Number attempts to reach separation $\mathcal{O}(1)$ ~ number of attempts to coalesce: $\beta = \gamma$;

Selection events rate $nu_n s_n \mathcal{O}(1)$: $1 - \gamma - \delta = 0$.

 $\rightsquigarrow \beta = \gamma = 1/3, \quad \delta = 2/3.$

Fixed impact u and event radius r, selection coefficient s

▶ Set
$$u_n = u/n^{1/3}$$
, $s_n = s/n^{2/3}$, $w^{(n)}(t,x) = w(nt,n^{1/3}x)$,

$$dw = \frac{1}{2}\Delta w dt + sw(1-w)dt + \mathbf{1}_{d=1}\epsilon \sqrt{w(1-w)}W(dt, dx)$$

E. Véber, Yu.

Fixed impact u and event radius r, selection coefficient s

▶ Set
$$u_n = u/n^{1/3}$$
, $s_n = s/n^{2/3}$, $w^{(n)}(t,x) = w(nt,n^{1/3}x)$,

$$dw = \frac{1}{2}\Delta w dt + sw(1-w)dt + \mathbf{1}_{d=1}\epsilon \sqrt{w(1-w)}W(dt,dx)$$

E. Véber, Yu.

Here, $u_n \rightarrow 0$, corresponding to high *neighbourhood size*.

Fixed impact u and event radius r, selection coefficient s

▶ Set
$$u_n = u/n^{1/3}$$
, $s_n = s/n^{2/3}$, $w^{(n)}(t, x) = w(nt, n^{1/3}x)$,

$$dw = \frac{1}{2}\Delta w dt + sw(1-w)dt + \mathbf{1}_{d=1}\epsilon \sqrt{w(1-w)}W(dt, dx)$$

E. Véber, Yu.

Here, $u_n \rightarrow 0$, corresponding to high *neighbourhood size*.

 $\gamma > \beta$ (even bigger neighbourhood size) \rightsquigarrow deterministic equation in all dimensions

$$dw = \frac{1}{2}\Delta w dt + sw(1-w)dt + \epsilon \sqrt{w(1-w)}W(dt, dx).$$

While rare,

$$dw \approx \frac{1}{2}\Delta w dt + sw dt + \epsilon \sqrt{w} W(dt, dx).$$

$$dw = \frac{1}{2}\Delta w dt + sw(1-w)dt + \epsilon \sqrt{w(1-w)}W(dt, dx).$$

While rare,

$$dw \approx \frac{1}{2}\Delta w dt + sw dt + \epsilon \sqrt{w} W(dt, dx).$$

Writing X for total mass rare allele,

$$dX \approx sXdt + \epsilon \sqrt{X}dB_t,$$

a continuous state branching process.

$$dw = \frac{1}{2}\Delta w dt + sw(1-w)dt + \epsilon \sqrt{w(1-w)}W(dt, dx).$$

While rare,

$$dw \approx \frac{1}{2}\Delta w dt + sw dt + \epsilon \sqrt{w} W(dt, dx).$$

Writing X for total mass rare allele,

$$dX \approx sXdt + \epsilon \sqrt{X}dB_t,$$

a continuous state branching process. Establishment probability is independent of spatial structure.

$$dw = \frac{1}{2}\Delta w dt + sw(1-w)dt + \epsilon \sqrt{w(1-w)}W(dt, dx).$$

While rare,

$$dw \approx \frac{1}{2}\Delta w dt + sw dt + \epsilon \sqrt{w} W(dt, dx).$$

Writing X for total mass rare allele,

$$dX \approx sXdt + \epsilon \sqrt{X}dB_t,$$

a continuous state branching process. Establishment probability is independent of spatial structure.

When neighbourhood size is high, spatial structure hardly perturbs establishment probability.

$$dw = \frac{1}{2}\Delta w dt + sw(1-w)dt + \epsilon \sqrt{w(1-w)}W(dt, dx).$$

While rare,

$$dw \approx \frac{1}{2}\Delta w dt + sw dt + \epsilon \sqrt{w} W(dt, dx).$$

Writing X for total mass rare allele,

 $dX \approx sXdt + \epsilon \sqrt{X}dB_t,$

a continuous state branching process. Establishment probability is independent of spatial structure.

When neighbourhood size is high, spatial structure hardly perturbs establishment probability. ... but in a spatial continuum, neighbourhood size can be small.

Small neighbourhood size: Why rescale?

Neutral mutation rate, μ , sets timescale

Mutation rates are low;

Natural question: When will we see a signature of a favourable allele in data?

Fix $u \in (0,1)$.

Fix radius events.

Fix $u \in (0,1)$.

Fix radius events.

Set $n = 1/\mu$ and rescale: $w(nt, \sqrt{nx})$.

Fix $u \in (0,1)$. Fix radius events.

```
Set n = 1/\mu and rescale: w(nt, \sqrt{nx}).
```

Heuristics:

- At a 'branching' event in ASG, two lineages born at separation $\mathcal{O}(1/\sqrt{n}).$
- ▶ Probability they separate to $\mathcal{O}(1)$ before coalescing is

$$d = 1: \ \mathcal{O}(1/\sqrt{n}),$$

 $\blacktriangleright \quad d = 2: \ \mathcal{O}(1/\log n),$

$$\blacktriangleright \quad d \ge 3: \ \mathcal{O}(1).$$

- Selection will only be visible if expect to see at least one pair 'separate' by time 1.
- Order one coalescence probability when meet, so in low dimensions need lots of branches.

Fix $u \in (0, 1)$. Fix radius events.

```
Set n = 1/\mu and rescale: w(nt, \sqrt{nx}).
```

Ability to detect selection depends on dimension:

- ► d = 1, selection only visible if s = O(1/√n), if u = 1 limiting ASG embedded in Brownian net;
- ► d = 2, selection only visible if s = O(log n/n), limiting ASG 'Branching BM';
- ▶ $d \ge 3$, selection only visible if s = O(1/n), *limiting ASG Branching BM*.

Technical challenges because $ns_n \to \infty$.Straulino (2015); E., Freeman, Straulino (2017); E., Freeman,Penington, Straulino (2017).SPACE MATTERS!

Spread of a favoured allele

Two types, a, A, relative fitnesses 1: 1 + s. If a reproduction event affects a region B(x, r) in which current proportion of a-alleles is w, then probability offspring are type a is $\frac{w}{1+s(1-w)}$.

Spread of a favoured allele

Two types, *a*, *A*, relative fitnesses 1: 1 + s. If a reproduction event affects a region B(x, r) in which current proportion of *a*-alleles is *w*, then probability offspring are type *a* is $\frac{w}{1+s(1-w)}$.

Alternative interpretation: strong selection \sim range expansion

Range expansion

Pseudomanas aeruginosa (Kevin Foster)

Range expansion

Pseudomanas aeruginosa (Kevin Foster)

What's really happening?

