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What we have so far

In time units of Ne generations,

I (Forwards time) The Wright-Fisher diffusion

dpt =
√
pt(1− pt)dWt;

I (Backwards time) The Kingman coalescent

nt 7→ nt − 1 at rate

(
nt
2

)
;

I Sampling probabilities

E[p(t)n(0)] = E[p(0)n(t)].

Stronger result holds. Kingman coalescent really describes
genealogy of random sample from (neutral) population.



Adding spatial structure: subdivided populations

Population subdivided into demes = islands = colonies

I Vertices of graph, i ∈ I;

I i ∼ j if i, j neighbours

I Ni = population size in deme i

Structured Wright-Fisher model
Reproduction in discrete generations

I neutral Wright-Fisher within each deme

I proportion mij of individuals in deme i migrate to deme j

Ni

∑
j∼i

mij =
∑
j∼i

Njmji



Genealogy of structured Wright-Fisher model
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Scaling limit: the structured coalescent

I Ni = O(N) I mij = O( 1
N ) I time unit = N generations

P
[
simultaneous migration and coalescence

]
= O(1/N2)

P
[
simultaneous or multiple mergers

]
= O(1/N2)

P
[
single lineage at i migrates

]
=
∑
j∼i

mjiNj

Ni
= O(1/N)

The structured coalescent n = (ni)i∈I :

I
{
ni 7→ ni − 1
nj 7→ nj + 1

at rate ni
Ne(j)
Ne(i)mji

I ni 7→ ni − 1 at rate 1
2Ne(i)ni (ni − 1)

Ancestral lineages
drawn into more
populous demes
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Forwards in time? Ni

∑
j∼imij =

∑
j∼imjiNj , mij = O(1/N)

Alleles a, A. pi(t) = proportion of type a in deme i at time t
∆pi change across single generation
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)
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As N →∞ recover a system of diffusions coupled through
migration
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Kimura’s stepping stone model
∑

j Ne(i)mij =
∑

j Ne(j)mji

dpi =
∑
j

Ne(j)

Ne(i)
mji(pj−pi)dt+

√
1

Ne(i)
pi(1− pi)dWi

{Wi}i∈I independent Brownian motions

System of W-F diffusions coupled through migration

The structured coalescent n:

I
{
ni 7→ ni − 1
nj 7→ nj + 1

at rate ni
Ne(j)
Ne(i)mji

I ni 7→ ni − 1 at rate 1
2Ne(i)ni (ni − 1)

pn :=
∏
i∈I p

ni
i .

E
[
pn0
t

]
= E

[
pnt

0

]
.



Kimura’s stepping stone model
∑

j Ne(i)mij =
∑

j Ne(j)mji

dpi =
∑
j

Ne(j)

Ne(i)
mji(pj−pi)dt+

√
1

Ne(i)
pi(1− pi)dWi

{Wi}i∈I independent Brownian motions

System of W-F diffusions coupled through migration

The structured coalescent n:

I
{
ni 7→ ni − 1
nj 7→ nj + 1

at rate ni
Ne(j)
Ne(i)mji

I ni 7→ ni − 1 at rate 1
2Ne(i)ni (ni − 1)

pn :=
∏
i∈I p

ni
i .

E
[
pn0
t

]
= E

[
pnt

0

]
.



Kimura’s stepping stone model
∑

j Ne(i)mij =
∑

j Ne(j)mji

dpi =
∑
j

Ne(j)

Ne(i)
mji(pj−pi)dt+

√
1

Ne(i)
pi(1− pi)dWi

{Wi}i∈I independent Brownian motions

System of W-F diffusions coupled through migration

The structured coalescent n:

I
{
ni 7→ ni − 1
nj 7→ nj + 1

at rate ni
Ne(j)
Ne(i)mji

I ni 7→ ni − 1 at rate 1
2Ne(i)ni (ni − 1)

pn :=
∏
i∈I p

ni
i .

E
[
pn0
t

]
= E

[
pnt

0

]
.



Interpretation

E
[
pn0
t

]
= E

[
pnt

0

]
.

I Sample ni(0) individuals from deme i at time t,∑
i ni(0) <∞,

I Probability all type a is E
[
p
nt
0

]

Example Suppose I = Z2 for simplicity Ni ≡ Ne

For any finite sample, eventually nt is a singleton, so all individuals
in the sample are of the same type.

Need to account for mutation in our model
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Adding mutation

Simplest example:

I Infinitely many alleles model of mutation: each individual in
each generation, independently, with small probability µ
mutates to a type never before seen in the population

I Probability of identity by descent of two individuals, F ,
= probability no mutation since time T of most recent
common ancestor (MRCA)

I Equivalently F = (1− 2µ)T ≈ exp(−2µT ) is the Laplace
transform of the distribution of the time to the MRCA.

The neutral mutation rate dictates the timescales over which we
can reconstruct information about genealogies.



Isolation by distance

In a population in which individuals typically migrate to
geographically close subpopulations, and new mutations
continuously accumulate, P[two individuals in same allelic state]
declines with increasing separation.

Isolation by distance (Wright 1943)

In Z with nearest neighbour migration there is an explicit
expression for the probability of identity under the stepping stone
model. It declines exponentially with distance. But the exact
formula is very special.

In Z2, approximate dispersal by Gaussian with variance σ2,

(∗) F (x) = Ex[e−2µT ] ≈
K0

(
|x|/lµ

)
N + log(lµ/κ)

|x| > κ

K0 modified Bessel function of second kind of degree zero,
lµ = σ/2µ, N = 2Neπσ

2 is Wright’s neighbourhood size, κ is a
local scale.

(∗) is known as the Wright-Malécot formula.
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Wright-Malécot approximation for the stepping stone
model

F = P[identity]

1 2 3 4 5 6 7

0.5
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An obvious challenge



Modelling a spatial continuum: the Wright-Malécot model

I Individuals are scattered
across a two-dimensional
space.

I In each generation, each
individual produces a
Poisson number of offspring
(average one).

I Offspring are scattered in a
Gaussian distribution around
their parent.
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The pain in the torus (Felsenstein, 1975)

With thanks to Jerome Kelleher
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Mathematical problems

Felsenstein (1975). The pain in the torus: In d = 1, 2, independent
reproduction =⇒ clumping;

Local regulation =⇒ correlated reproduction.

What about modifying the stepping stone model?

dpt(x) =
1

2
∆pt(x) +

√
1

Ne
pt(x)(1− pt(x))dW (t, x)

In 2D the diffusion limit fails over small scales . . . and so does the
obvious backwards model.
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Biological problems

Genetic diversity much lower than expected from census numbers

Allele frequencies correlated over long distances

Demographic history of many
species dominated by large scale
extinction-recolonisation events
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Small neighbourhood size

In a spatial continuum, a single individual can be parent to a
significant proportion of the local population.



An individual based model

I Start with Poisson intensity λdx.
Events rate dt⊗ dx⊗ ξ(dr, du).
Throw down ball B(x, r).

I If region empty, do nothing,
otherwise:

I Choose parent from B(x, r),

I Each individual in region dies with
probability u,

I New individuals born according to
Poisson intensity λu1Br(x).
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λ→∞ limit (no space)

Start from Poiss(λ)

If first reproduction event has ‘impact’ u

I Poiss((1− u)λ) ‘survivors’;

I Poiss(uλ) offspring.

As λ→∞ proportion u of individuals die and are replaced by
offspring of the type of the parent.



The Λ-Fleming-Viot process

State {ρ(t, ·) ∈M1(K), t ≥ 0}. K space of genetic types.

I Poisson Point Process Π intensity dt⊗ F (du)

I if (t, u) ∈ Π, individual sampled at random from population at
time t− (i.e. choose k ∼ ρ(t−))

I proportion u of population replaced by offspring of chosen
individual

ρ(t, ·) = (1− u)ρ(t−, ·) + uδk.

F (du) = Λ(du)
u2

, Λ finite measure on [0, 1].

Donnelly & Kurtz (1999)

(‘Generalised Fleming-Viot process’, Bertoin & Le Gall 2003)



The Λ-Fleming-Viot process
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Λ-coalescents

Donnelly & Kurtz (1999), Pitman (1999), Sagitov (1999)

If there are currently n ancestral lineages, each transition involving
j of them merging happens at rate

βn,j =

∫ 1

0
uj(1− u)n−j

Λ(du)

u2

I Λ a finite measure on [0, 1]

I Kingman’s coalescent, Λ = δ0



The spatial Λ-Fleming-Viot process Barton - E - Véber and friends

State {ρ(t, x, ·) ∈M1(K), x ∈ R2, t ≥ 0}.

Π Poisson point
process rate dt⊗ dx⊗ ξ(dr, du) on [0,∞)× R2 × [0,∞)× [0, 1].

Dynamics: for each (t, x, r, u) ∈ Π,

I z ∼ U(Br(x))

I k ∼ ρ(t−, z, ·).

For all y ∈ Br(x),

ρ(t, y, ·) = (1− u)ρ(t−, y, ·) + uδk.
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Backwards in time

I A single ancestral lineage evolves in series of jumps with
intensity

dt⊗
∫

(|x|/2,∞)

∫
[0,1]

Lr(x)

πr2
u ξ(dr, du)dx

on R+ × R2 where Lr(x) = |Br(0) ∩Br(x)|.

I Lineages can coalesce when hit by
same ‘event’.

Note: If ξ(dr, du) = µ(dr)⊗ δu, rate of
jumps ∝ u.
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Duality

Suppose K = {a,A}. Define w(t, x) = ρ(t, x, {a}) to be the
proportion of the population at site x at time t that are of type a.

(Only really defined up to a set of Lebesgue measure zero)

I Sample N0 individuals from locations {Xi(0)}N0
i=1 from the

present day population;
I Let {Xi(t)}Nt

i=1 denote the positions of the random number of
individuals ancestral to the sample at time t before the present

E

[
N0∏
i=1

w
(
t,Xi(0)

)]
= E

[
Nt∏
i=1

w
(
0, Xi(t)

)]
.

(actually have to sample from random positions and integrate to
circumvent issues with sets of Lebesgue measure zero)

Direct analogue of our duality in the stepping stone model
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A framework for modelling

I Different spaces,

I Different shapes of event,

I Non-uniform replacement,

I Non-constant density,

I Multiple parents,

I Selection,

I Recombination,

Robust results? ; Scaling limits.
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Example: Wright and Malécot again

Evol, Volume 64, Issue 9, 1 September 2010, Pages 2701–2715, https://doi.org/10.1111/j.1558-5646.2010.01019.x

The content of this slide may be subject to copyright: please see the slide notes for details.

The effect of mixed events on F(x, μ). A mixture of rare large events 

and frequent small events


