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The Modern Evolutionary Synthesis

Darwin: Heritable traits that
increase reproductive success will
become more common in a
population. Requires:

I Variation in population

I Offspring must be similar to
parents

Mendel: Traits ‘determined’ by
genes.

I Genes occur in different
types (alleles)

I Offspring inherit genes from
parents
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A fundamental question

At the beginning of the 20th Century, the modern evolutionary
synthesis saw the theories of Darwin and Mendel united, but
fundamental questions remained.

What is the relative importance of:

I natural selection;

I population structure (spatial and genetic);

I genetic drift (randomness due to reproduction in a finite
population);

I . . .



A mathematical challenge

The pioneers could only observe genetic variation indirectly
through phenotype.

www.alamy.com

Modern geneticists use differences in DNA sequences
to infer ‘relatedness’ between sampled individuals.
We require consistent

I forwards in time models for the evolution of the
population,

I and backwards in time models for the
relatedness between individuals in a sample. Jonathan Marchini



Family trees

To trace the ancestry of a human, we record parents,
grandparents, great-grandparents . . ..

After just 9 generations, Mark
Wallinger’s ‘Y’ has 512 leaves.

Some individuals must occur
multiple times in a family tree.

photo courtesy of Magdalen College
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A simple model of inheritance

The diploid (neutral) Wright-Fisher model

Population of fixed size N � 1. (Hermaphrodite for simplicity)

I Evolves in discrete generations.

I Each offspring chooses two parents uniformly at random from
previous generation.

Slightly more biologically: During reproduction each individual
produces an effectively infinite number of germ cells (same
genotype as parent), which split into gametes (one copy of each
gene), which combine to form a pool. Each offspring formed by
fusing two randomly chosen gametes from the pool.

In neutral model, all individuals make equal contribution to the
pool of gametes.
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The (diploid) Wright-Fisher model revisited

1. Label parents {1, . . . , N}. Family sizes (ν1, . . . , νN ):

P
[
(ν1, . . . , νN ) = (k1, . . . , kN )

]
=

1

N2N

(
2N

k1, . . . , kN

)
1∑N

i=1 ki=2N

Distribution νi is Binom
(
2N, 1/N

)
≈ Poiss(2)

2. Each individual has Poiss(2) offspring and condition on total
number offspring N1 = 2N .

P
[
(ν1, . . . , νN ) = (k1, . . . , kN )

]
=

(2N)!

(2N)2Ne−2N

N∏
i=1

2kie−2

ki!
1N1=2N

=
1

N2N

(2N)!

k1! · · · kN !
1∑N

i=1 ki=2N

If N large, marginal prob first n� N individuals have family sizes
k1, . . . , kN well approximated by independent Poisson probabilities

; branching process approximation
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Ancestry under diploid Wright-Fisher

Lemma For large N , P[randomly chosen individual from
population at time 0 is ancestral to given individual in generation
t] ≈ 0.8 as t→∞.

Ancestral individual has Binom(2N, 1/N) ≈ Poiss(2) direct
descendants.

P (t) = prob individual /∈ pedigree.

P (t+ 1) ≈ exp(−2 + 2P (t)) (p.g.f. Poisson evaluated at P (t))

Fixed point p ≈ 0.2, so 1− p ≈ 0.8.

(used branching process approximation)



More precise results (Chang, 1999)

With probability → 1 as N →∞, log2N generations before the
present ∃ individual in pedigree ancestral to everyone in present
population.

With probability → 1 as N →∞, ≈ 1.77 log2N generations
before the present everyone in population ancestral to everyone or
to no-one in present population.

But at a particular genetic locus, an individual can have at most
two genetic ancestors.

Under the diploid Wright-Fisher model, ancestry at a single genetic
locus is not adequately captured by the pedigree
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The simplest imaginable model of inheritance

The haploid Wright-Fisher model: each offspring (gene) chooses a
single parent, uniformly at random to ease notation, �2N genes

N=10
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Kingman 1982

P[2 lineages coalesce in previous generation] ≈ 1
N

Time in units of N generations, N →∞, ; time to coalescence
pair of lineages ∼ Exp(1)

The most recent common ancestor in the pedigree was ≈ log2N
generations in the past. The most recent common genetic ancestor
was ≈ 2N generations ago.
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Sample size k

If currently j ancestral lineages:

I Probability two pairs of lineages merge into separate parents(
j

2

)(
j − 2

2

)
1

N

1

N − 1
≈ 6

(
j

4

)
1

N2

I Probability three-merger

≈
(
j

3

)
1

N2

Probability one of these events before single pairwise merger

≈ N(
j
2

)(j
2

)(
j − 2

2

)
1

N2
≈ j2

2N

Probability such an event somewhere in the genealogical tree

≈
k∑
j=1

j2

N
≈ k3

3N

Sample size k � N1/3, pair of lineages coalesces rate ≈ 1
N

(
k
2

)
Melfi & Viswanath (2018) but, Wakeley & Takahashi (2003)



Sample size k

If currently j ancestral lineages:

I Probability two pairs of lineages merge into separate parents(
j

2

)(
j − 2

2

)
1

N

1

N − 1
≈ 6

(
j

4

)
1

N2

I Probability three-merger

≈
(
j

3

)
1

N2

Probability one of these events before single pairwise merger

≈ N(
j
2

)(j
2

)(
j − 2

2

)
1

N2
≈ j2

2N

Probability such an event somewhere in the genealogical tree

≈
k∑
j=1

j2

N
≈ k3

3N

Sample size k � N1/3, pair of lineages coalesces rate ≈ 1
N

(
k
2

)
Melfi & Viswanath (2018) but, Wakeley & Takahashi (2003)



Sample size k

If currently j ancestral lineages:

I Probability two pairs of lineages merge into separate parents(
j

2

)(
j − 2

2

)
1

N

1

N − 1
≈ 6

(
j

4

)
1

N2

I Probability three-merger

≈
(
j

3

)
1

N2

Probability one of these events before single pairwise merger

≈ N(
j
2

)(j
2

)(
j − 2

2

)
1

N2
≈ j2

2N

Probability such an event somewhere in the genealogical tree

≈
k∑
j=1

j2

N
≈ k3

3N

Sample size k � N1/3, pair of lineages coalesces rate ≈ 1
N

(
k
2

)
Melfi & Viswanath (2018)

but, Wakeley & Takahashi (2003)



Sample size k

If currently j ancestral lineages:

I Probability two pairs of lineages merge into separate parents(
j

2

)(
j − 2

2

)
1

N

1

N − 1
≈ 6

(
j

4

)
1

N2

I Probability three-merger

≈
(
j

3

)
1

N2

Probability one of these events before single pairwise merger

≈ N(
j
2

)(j
2

)(
j − 2

2

)
1

N2
≈ j2

2N

Probability such an event somewhere in the genealogical tree

≈
k∑
j=1

j2

N
≈ k3

3N

Sample size k � N1/3, pair of lineages coalesces rate ≈ 1
N

(
k
2

)
Melfi & Viswanath (2018) but, Wakeley & Takahashi (2003)



Some formal definitions

I Ξk= eqivalence relations on [k] = {1, . . . , k}
I A k-coalescent is a continuous time Markov chain on ξk with

transition rates qξ,η = 1 if η obtained by coalescing two equiv
classes of ξ, 0 otherwise

I The Kingman coalescent on equiv classes of N is such that
∀k, restriction to [k] is a k-coalescent.

Label individuals in sample {1, . . . , k}

block coalescent ←→ ancestral lineage

elements of block ←→ descendants of that ancestor

Sampling consistency: the restriction of the (k + l)-coalescent to
[k] is the k-coalescent



The Kingman coalescent

Tracing back in time, if there are currently k ancestral lineages, the
next event will occur after an exponentially distributed time with
parameter

(
k
2

)
, when a pair of lineages (chosen at random) will

coalesce.

For a vast array of models in which

I population size large and constant;

I all individuals are equally fit;

I there is no spatial structure;

measuring time in units of Ne generations, the genealogy of a
sample is well approximated by the Kingman coalescent.



Overlapping generations: the Moran Model

model

Time for

Moran

I Events determined by
Poisson Process intensity(
N
2

)
dt;

I Pair chosen at random;

I One reproduces, the
other dies.



Genealogies under the Moran model

model

Time for

Moran Coalescent

Time for

Sample



Forwards in time: scaling the Wright-Fisher model

Population of fixed size N evolves in discrete generations.

I Each individual chooses parent uniformly at random from the
previous generation;

I Offspring inherit the type of their parent.

‘Alleles’ a, A. Proportion p of a alleles among parents.
∆p = increment

I Number of a-offspring Bin(N, p).

I E[∆p] = 0 (neutral); E[(∆p)2] = 1
N p(1− p).

; changes in p over timescales O(N) generations.
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Drift (large population limit)

Time in units of N generations, h = 1
N , N →∞

Forwards in time,
∆p = pt+h − pt,

I E[∆p] = 0 (neutrality)

I E[(∆p)2] = hp(1− p)
I E[(∆p)4] = O(h2)

dpt =
√
pt(1− pt)dWt

dpτ =

√
1

Ne
pτ (1− pτ )dWτ

Backwards in time

Wright−Fisher   
Coalesent time

MRCA

time

Coalescence rate
(
k
2

)
.

Coalescence rate
1

Ne

(
k

2

)
Kingman coalescent = genealogy random sample
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Buri’s experiment

Gene that affects eye colour (but not
fitness). Two alleles, a, A.

∼ 100 populations, 8 males, 8 females.
Each started with proportion p = 0.5 type
a.

dpt =
√

1
Ne
pt(1− pt)dWt,

d

dt
E[pt(1−pt)] = − 1

Ne
E[pt(1−pt)]

Variance across populations

Vt = p0(1− p0)
(

1− e−t/Ne

)

Eventually, each population will
be entirely one type (with equal
probabilities).

Under Wright-Fisher model,
variance in p across populations
increases from 0 to 1/4 over
time.
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Adding mutation (heritable change of genetic material)

Reconstruct tree using differences in DNA sequences in sample.

Extend Wright-Fisher model: constant
probability, µ, per individual per
generation of mutation.

Time until first mutation along single
ancestral lineage ∼ Geom(µ)

Assume θ := 2Neµ = O(1),
(coalescence/mutation on same
timescale)
; Poisson process along branches.

1 2 3 4 5

Note individuals 1 and 2
must have same type

Patterns in data reflect evolution over timescales dictated by the
neutral mutation rate



Another relationship between Kingman and Wright-Fisher

Method of duality: Express distribution of one random variable p
in terms of another (simpler) random variable n.
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Sampling probabilities:

E[p(t)n(0)] = E[p(0)n(t)]

Weaker than saying genealogy given by Kingman coalescent
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What we have so far

In time units of Ne generations,

I (Forwards time) The Wright-Fisher diffusion

dpt =
√
pt(1− pt)dWt;

I (Backwards time) The Kingman coalescent

nt 7→ nt − 1 at rate

(
nt
2

)
;

I Sampling probabilities

E[p(t)n(0)] = E[p(0)n(t)].

Stronger result holds. Kingman coalescent really describes
genealogy of random sample from (neutral) population.


