

Some mathematical models from population genetics I. Classical models

Alison Etheridge University of Oxford

with thanks to numerous collaborators, especially Nick Barton, IST Austria

RIMS, September 2023

Darwin: Heritable traits that increase reproductive success will become more common in a population.

Darwin: Heritable traits that increase reproductive success will become more common in a population. Requires:

- Variation in population
- Offspring must be similar to parents

Darwin: Heritable traits that increase reproductive success will become more common in a population. Requires:

- Variation in population
- Offspring must be similar to parents

Mendel: Traits 'determined' by genes.

- Genes occur in different types (alleles)
- Offspring inherit genes from parents

Darwin: Heritable traits that increase reproductive success will become more common in a population. Requires:

- Variation in population
- Offspring must be similar to parents

Mendel: Traits 'determined' by genes.

- Genes occur in different types (alleles)
- Offspring inherit genes from parents

Darwin: Heritable traits that increase reproductive success will become more common in a population. Requires:

- Variation in population
- Offspring must be similar to

Mendel: Traits 'determined' by genes.

- Genes occur in different types (alleles)
- Offspring inherit genes from parents

At the beginning of the 20th Century, the modern evolutionary synthesis saw the theories of Darwin and Mendel united, but fundamental questions remained.

What is the relative importance of:

- natural selection;
- population structure (spatial and genetic);
- genetic drift (randomness due to reproduction in a finite population);

A mathematical challenge

The pioneers could only observe genetic variation indirectly through phenotype.

www.alamy.com

Modern geneticists use differences in DNA sequences to infer 'relatedness' between sampled individuals. We require consistent

- forwards in time models for the evolution of the population,
- and backwards in time models for the relatedness between individuals in a sample.

Jonathan Marchini

Family trees

To trace the ancestry of a human, we record parents, grandparents, great-grandparents

Family trees

To trace the ancestry of a human, we record parents, grandparents, great-grandparents

After just 9 generations, Mark Wallinger's 'Y' has 512 leaves.

Some individuals must occur multiple times in a family tree.

photo courtesy of Magdalen College

The Ancestry of King Charles II of Spain (1661-1700)

The diploid (neutral) Wright-Fisher model

Population of fixed size $N \gg 1$. (Hermaphrodite for simplicity)

- Evolves in discrete generations.
- Each offspring chooses two parents uniformly at random from previous generation.

The diploid (neutral) Wright-Fisher model

Population of fixed size $N \gg 1$. (Hermaphrodite for simplicity)

- Evolves in discrete generations.
- Each offspring chooses two parents uniformly at random from previous generation.

Slightly more biologically: During reproduction each individual produces an effectively infinite number of germ cells (same genotype as parent), which split into gametes (one copy of each gene), which combine to form a pool. Each offspring formed by fusing two randomly chosen gametes from the pool.

The diploid (neutral) Wright-Fisher model

Population of fixed size $N \gg 1$. (Hermaphrodite for simplicity)

- Evolves in discrete generations.
- Each offspring chooses two parents uniformly at random from previous generation.

Slightly more biologically: During reproduction each individual produces an effectively infinite number of germ cells (same genotype as parent), which split into gametes (one copy of each gene), which combine to form a pool. Each offspring formed by fusing two randomly chosen gametes from the pool.

In neutral model, all individuals make equal contribution to the pool of gametes.

A simple model of inheritance (diploid Wright-Fisher)

A simple model of inheritance (diploid Wright-Fisher)

The (diploid) Wright-Fisher model revisited

1. Label parents $\{1, \ldots, N\}$. Family sizes (ν_1, \ldots, ν_N) :

$$\mathbb{P}\left[(\nu_1,\ldots,\nu_N)=(k_1,\ldots,k_N)\right]=\frac{1}{N^{2N}}\binom{2N}{k_1,\ldots,k_N}\mathbf{1}_{\sum_{i=1}^N k_i=2N}$$

Distribution ν_i is $\operatorname{Binom}(2N, 1/N) \approx \operatorname{Poiss}(2)$

The (diploid) Wright-Fisher model revisited

1. Label parents $\{1, \ldots, N\}$. Family sizes (ν_1, \ldots, ν_N) :

$$\mathbb{P}[(\nu_1, \dots, \nu_N) = (k_1, \dots, k_N)] = \frac{1}{N^{2N}} \binom{2N}{k_1, \dots, k_N} \mathbf{1}_{\sum_{i=1}^N k_i = 2N}$$

Distribution ν_i is Binom $(2N, 1/N) \approx \text{Poiss}(2)$ 2. Each individual has Poiss(2) offspring and condition on total number offspring $N_1 = 2N$.

$$\mathbb{P}[(\nu_1, \dots, \nu_N) = (k_1, \dots, k_N)] = \frac{(2N)!}{(2N)^{2N}e^{-2N}} \prod_{i=1}^N \frac{2^{k_i}e^{-2}}{k_i!} \mathbf{1}_{N_1 = 2N}$$
$$= \frac{1}{N^{2N}} \frac{(2N)!}{k_1! \cdots k_N!} \mathbf{1}_{\sum_{i=1}^N k_i = 2N}$$

The (diploid) Wright-Fisher model revisited

1. Label parents $\{1, \ldots, N\}$. Family sizes (ν_1, \ldots, ν_N) :

$$\mathbb{P}\big[(\nu_1,\ldots,\nu_N)=(k_1,\ldots,k_N)\big]=\frac{1}{N^{2N}}\binom{2N}{k_1,\ldots,k_N}\mathbf{1}_{\sum_{i=1}^Nk_i=2N}$$

Distribution ν_i is Binom $(2N, 1/N) \approx \text{Poiss}(2)$ 2. Each individual has Poiss(2) offspring and condition on total number offspring $N_1 = 2N$.

$$\mathbb{P}[(\nu_1, \dots, \nu_N) = (k_1, \dots, k_N)] = \frac{(2N)!}{(2N)^{2N}e^{-2N}} \prod_{i=1}^N \frac{2^{k_i}e^{-2}}{k_i!} \mathbf{1}_{N_1 = 2N}$$
$$= \frac{1}{N^{2N}} \frac{(2N)!}{k_1! \cdots k_N!} \mathbf{1}_{\sum_{i=1}^N k_i = 2N}$$

If N large, marginal prob first $n \ll N$ individuals have family sizes k_1, \ldots, k_N well approximated by independent Poisson probabilities \rightsquigarrow branching process approximation

Lemma For large N, $\mathbb{P}[randomly chosen individual from population at time 0 is ancestral to given individual in generation <math>t] \approx 0.8$ as $t \to \infty$.

Ancestral individual has $\texttt{Binom}(2N,1/N)\approx\texttt{Poiss}(2)$ direct descendants.

 $P(t) = \text{prob individual} \notin \text{pedigree.}$

 $P(t+1) \approx \exp(-2 + 2P(t))$ (p.g.f. Poisson evaluated at P(t))

Fixed point $p \approx 0.2$, so $1 - p \approx 0.8$.

(used branching process approximation)

With probability $\rightarrow 1$ as $N \rightarrow \infty$, $\approx 1.77 \log_2 N$ generations before the present everyone in population ancestral to everyone or to no-one in present population.

With probability $\rightarrow 1$ as $N \rightarrow \infty$, $\approx 1.77 \log_2 N$ generations before the present everyone in population ancestral to everyone or to no-one in present population.

But at a particular genetic locus, an individual can have at most two genetic ancestors.

With probability $\rightarrow 1$ as $N \rightarrow \infty$, $\approx 1.77 \log_2 N$ generations before the present everyone in population ancestral to everyone or to no-one in present population.

But at a particular genetic locus, an individual can have at most two genetic ancestors.

Under the diploid Wright-Fisher model, ancestry at a single genetic locus is not adequately captured by the pedigree

The past

The haploid Wright-Fisher model: each offspring (gene) chooses a single parent, uniformly at random to ease notation, 2N genes

The haploid Wright-Fisher model: each offspring (gene) chooses a single parent, uniformly at random to ease notation, 2N genes

Kingman 1982

The haploid Wright-Fisher model: each offspring (gene) chooses a single parent, uniformly at random to ease notation, 2N genes

 $\mathbb{P}[2 \text{ lineages coalesce in previous generation}] \approx \frac{1}{N}$

Time in units of N generations, $N\to\infty,$ \sim time to coalescence pair of lineages $\sim \mathrm{Exp}(1)$

The haploid Wright-Fisher model: each offspring (gene) chooses a single parent, uniformly at random to ease notation, 2N genes

 $\mathbb{P}[2 \text{ lineages coalesce in previous generation}] \approx \frac{1}{N}$

The most recent common ancestor in the pedigree was $\approx \log_2 N$ generations in the past. The most recent common *genetic* ancestor was $\approx 2N$ generations ago.

If currently j ancestral lineages:

Probability two pairs of lineages merge into separate parents

$$\binom{j}{2}\binom{j-2}{2}\frac{1}{N}\frac{1}{N-1} \approx 6\binom{j}{4}\frac{1}{N^2}$$

Probability three-merger

$$\approx \binom{j}{3} \frac{1}{N^2}$$

Probability one of these events before single pairwise merger

$$\approx \frac{N}{\binom{j}{2}}\binom{j}{2}\binom{j-2}{2}\frac{1}{N^2} \approx \frac{j^2}{2N}$$

If currently j ancestral lineages:

Probability two pairs of lineages merge into separate parents

$$\binom{j}{2}\binom{j-2}{2}\frac{1}{N}\frac{1}{N-1} \approx 6\binom{j}{4}\frac{1}{N^2}$$

Probability three-merger

$$\approx \binom{j}{3} \frac{1}{N^2}$$

Probability such an event somewhere in the genealogical tree

$$\approx \sum_{j=1}^{k} \frac{j^2}{N} \approx \frac{k^3}{3N}$$

If currently j ancestral lineages:

Probability two pairs of lineages merge into separate parents

$$\binom{j}{2}\binom{j-2}{2}\frac{1}{N}\frac{1}{N-1} \approx 6\binom{j}{4}\frac{1}{N^2}$$

Probability three-merger

$$\approx \binom{j}{3} \frac{1}{N^2}$$

Probability such an event somewhere in the genealogical tree

$$\approx \sum_{j=1}^{k} \frac{j^2}{N} \approx \frac{k^3}{3N}$$

Sample size $k \ll N^{1/3}$, pair of lineages coalesces rate $\approx \frac{1}{N} {k \choose 2}$

Melfi & Viswanath (2018)

If currently j ancestral lineages:

Probability two pairs of lineages merge into separate parents

$$\binom{j}{2}\binom{j-2}{2}\frac{1}{N}\frac{1}{N-1} \approx 6\binom{j}{4}\frac{1}{N^2}$$

Probability three-merger

$$\approx \binom{j}{3} \frac{1}{N^2}$$

Probability such an event somewhere in the genealogical tree

$$\approx \sum_{j=1}^{k} \frac{j^2}{N} \approx \frac{k^3}{3N}$$

Sample size $k \ll N^{1/3}$, pair of lineages coalesces rate $\approx \frac{1}{N} {k \choose 2}$

Melfi & Viswanath (2018)

but, Wakeley & Takahashi (2003)

Some formal definitions

- Ξ_k = eqivalence relations on $[k] = \{1, \dots, k\}$
- A k-coalescent is a continuous time Markov chain on ξ_k with transition rates q_{ξ,η} = 1 if η obtained by coalescing two equiv classes of ξ, 0 otherwise
- ► The Kingman coalescent on equiv classes of N is such that ∀k, restriction to [k] is a k-coalescent.

Label individuals in sample $\{1, \ldots, k\}$

block coalescent \iff ancestral lineage elements of block \iff descendants of that ancestor

Sampling consistency: the restriction of the (k+l)-coalescent to [k] is the k-coalescent

Tracing back in time, if there are currently k ancestral lineages, the next event will occur after an exponentially distributed time with parameter $\binom{k}{2}$, when a pair of lineages (chosen at random) will coalesce.

For a vast array of models in which

- population size large and constant;
- all individuals are equally fit;
- there is no spatial structure;

measuring time in units of N_e generations, the genealogy of a sample is well approximated by the Kingman coalescent.

Overlapping generations: the Moran Model

Genealogies under the Moran model

Forwards in time: scaling the Wright-Fisher model

Population of fixed size N evolves in discrete generations.

- Each individual chooses parent uniformly at random from the previous generation;
- Offspring inherit the type of their parent.

Forwards in time: scaling the Wright-Fisher model

Population of fixed size N evolves in discrete generations.

- Each individual chooses parent uniformly at random from the previous generation;
- Offspring inherit the type of their parent.

'Alleles' a, A. Proportion p of a alleles among parents. $\Delta p = \text{increment}$

- Number of *a*-offspring Bin(N, p).
- $\blacktriangleright \mathbb{E}[\Delta p] = 0 \text{ (neutral)}; \mathbb{E}[(\Delta p)^2] = \frac{1}{N}p(1-p).$

Population of fixed size N evolves in discrete generations.

- Each individual chooses parent uniformly at random from the previous generation;
- Offspring inherit the type of their parent.

'Alleles' a, A. Proportion p of a alleles among parents. $\Delta p = \text{increment}$

- Number of *a*-offspring Bin(N, p).
- $\blacktriangleright \mathbb{E}[\Delta p] = 0 \text{ (neutral)}; \mathbb{E}[(\Delta p)^2] = \frac{1}{N}p(1-p).$

 \rightsquigarrow changes in p over timescales $\mathcal{O}(N)$ generations.

Time in units of N generations, $h = \frac{1}{N}$, $N \to \infty$

Time in units of N generations, $h = \frac{1}{N}$, $N \to \infty$

Forwards in time,

 $\Delta p = p_{t+h} - p_t,$

▶ E[Δp] = 0 (neutrality)
▶ E[(Δp)²] = hp(1 − p)
▶ E[(Δp)⁴] = O(h²)

$$dp_t = \sqrt{p_t(1-p_t)}dW_t$$

Time in units of N generations, $h = \frac{1}{N}$, $N \to \infty$

Forwards in time,

 $\Delta p = p_{t+h} - p_t,$

- $\blacktriangleright \mathbb{E}[\Delta p] = 0 \text{ (neutrality)}$
- $\mathbb{E}[(\Delta p)^2] = hp(1-p)$ $\mathbb{E}[(\Delta p)^4] = O(h^2)$

$$dp_t = \sqrt{p_t(1-p_t)}dW_t$$

Time in units of N generations,

Forwards in time,

 $\Delta p = p_{t+h} - p_t,$

• $\mathbb{E}[\Delta p] = 0$ (neutrality) • $\mathbb{E}[(\Delta p)^2] = hp(1-p)$ • $\mathbb{E}[(\Delta p)^4] = O(h^2)$

$$dp_t = \sqrt{p_t(1-p_t)}dW_t$$

$$dp_{\tau} = \sqrt{\frac{1}{N_e} p_{\tau} (1 - p_{\tau})} dW_{\tau}$$

Time in units of N generations,

Forwards in time,

 $\Delta p = p_{t+h} - p_t,$

• $\mathbb{E}[\Delta p] = 0$ (neutrality) • $\mathbb{E}[(\Delta p)^2] = hp(1-p)$ • $\mathbb{E}[(\Delta p)^4] = O(h^2)$

$$dp_t = \sqrt{p_t(1-p_t)}dW_t$$

$$dp_{\tau} = \sqrt{\frac{1}{N_e} p_{\tau} (1 - p_{\tau})} dW_{\tau}$$

Kingman coalescent = genealogy *random* sample

Gene that affects eye colour (but not fitness). Two alleles, a, A.

 ~ 100 populations, 8 males, 8 females. Each started with proportion p=0.5 type a.

Gene that affects eye colour (but not fitness). Two alleles, a, A.

 ~ 100 populations, 8 males, 8 females. Each started with proportion p=0.5 type a.

$$dp_t = \sqrt{\frac{1}{N_e}} p_t (1 - p_t) dW_t,$$

$$\frac{d}{dt}\mathbb{E}[p_t(1-p_t)] = -\frac{1}{N_e}\mathbb{E}[p_t(1-p_t)]$$

Variance across populations

$$V_t = p_0(1 - p_0) \left(1 - e^{-t/N_e} \right)$$

Gene that affects eye colour (but not fitness). Two alleles, a, A.

 ~ 100 populations, 8 males, 8 females. Each started with proportion p=0.5 type a.

Eventually, each population will be entirely one type (with equal probabilities).

Under Wright-Fisher model, variance in p across populations increases from 0 to 1/4 over time.

Gene that affects eye colour (but not fitness). Two alleles, a, A.

 ~ 100 populations, 8 males, 8 females. Each started with proportion p=0.5 type a.

Eventually, each population will be entirely one type (with equal probabilities).

Under Wright-Fisher model, variance in p across populations increases from 0 to 1/4 over time.

Adding mutation (heritable change of genetic material)

Reconstruct tree using *differences* in DNA sequences in sample.

Extend Wright-Fisher model: constant probability, μ , per individual per generation of mutation.

Time until first mutation along single ancestral lineage $\sim \texttt{Geom}(\mu)$

Assume $\theta := 2N_e\mu = \mathcal{O}(1)$, (coalescence/mutation on same timescale) \sim Poisson process along branches.

Patterns in data reflect evolution over timescales dictated by the neutral mutation rate

$$\frac{d}{du}\mathbb{E}\left[f\left(\underline{p}(u),\underline{n}(t-u)\right)\right] = 0, \quad 0 \le u \le t. \quad (*)$$

.

 dp_t

$$\begin{split} & \frac{d}{du} \mathbb{E}\left[f\left(\underline{p}(u), \underline{n}(t-u)\right)\right] = 0, \quad 0 \le u \le t. \quad (*) \\ &= \sqrt{p_t(1-p_t)} dW_t, \quad n_t \mapsto n_t - 1 \text{ rate } \binom{n_t}{2}, \quad f(p,n) = p^n \end{split}$$

$$\begin{split} & \frac{d}{du} \mathbb{E}\left[f\left(\underline{p}(u), \underline{n}(t-u)\right)\right] = 0, \quad 0 \le u \le t. \quad (*) \\ & dp_t = \sqrt{p_t(1-p_t)} dW_t, \quad n_t \mapsto n_t - 1 \text{ rate } \binom{n_t}{2}, \quad f(p,n) = p^n \end{split}$$

$$dp_u^{n(t-u)} = n(t-u)p_u^{n(t-u)-1}\sqrt{p_u(1-p_u)}dW_u + \binom{n(t-u)}{2}p_u^{n(t-u)-2}p_u(1-p_u)du - \binom{n(t-u)}{2}\left(p_u^{n(t-u)-1} - p_u^{n(t-u)}\right)$$

$$\begin{split} &\frac{d}{du} \mathbb{E}\left[f\left(\underline{p}(u), \underline{n}(t-u)\right)\right] = 0, \quad 0 \le u \le t. \quad (*) \\ &dp_t = \sqrt{p_t(1-p_t)} dW_t, \quad n_t \mapsto n_t - 1 \text{ rate } \binom{n_t}{2}, \quad f(p,n) = p^n \end{split}$$

Sampling probabilities:

 $\mathbb{E}[p(t)^{n(0)}] = \mathbb{E}[p(0)^{n(t)}]$

$$\begin{split} & \frac{d}{du} \mathbb{E}\left[f\left(\underline{p}(u), \underline{n}(t-u)\right)\right] = 0, \quad 0 \le u \le t. \quad (*) \\ &= \sqrt{p_t(1-p_t)} dW_t, \quad n_t \mapsto n_t - 1 \text{ rate } \binom{n_t}{2}, \quad f(p,n) = p^n \end{split}$$

Sampling probabilities:

 dp_t

 $\mathbb{E}[p(t)^{n(0)}] = \mathbb{E}[p(0)^{n(t)}]$

Weaker than saying genealogy given by Kingman coalescent

What we have so far

In time units of N_e generations,

(Forwards time) The Wright-Fisher diffusion

$$dp_t = \sqrt{p_t(1-p_t)}dW_t;$$

(Backwards time) The Kingman coalescent

$$n_t \mapsto n_t - 1$$
 at rate $\binom{n_t}{2};$

Sampling probabilities

$$\mathbb{E}[p(t)^{n(0)}] = \mathbb{E}[p(0)^{n(t)}].$$

Stronger result holds. Kingman coalescent really describes genealogy of random sample from (neutral) population.