SOME MATHEMATICAL MODELS FROM POPULATION GENETICS
 I. Classical models

Alison Etheridge

 University of Oxfordwith thanks to numerous collaborators, especially Nick Barton, IST Austria

RIMS, September 2023

The Modern Evolutionary Synthesis

The Modern Evolutionary Synthesis

Darwin: Heritable traits that increase reproductive success will
become more common in a population.

The Modern Evolutionary Synthesis

Darwin: Heritable traits that increase reproductive success will
become more common in a population. Requires:

- Variation in population
- Offspring must be similar to parents

The Modern Evolutionary Synthesis

Darwin: Heritable traits that increase reproductive success will
become more common in a population. Requires:

- Variation in population
- Offspring must be similar to parents

Mendel: Traits 'determined' by
 genes.

- Genes occur in different types (alleles)
- Offspring inherit genes from parents

The Modern Evolutionary Synthesis

Darwin: Heritable traits that increase reproductive success will become more common in a population. Requires:

- Variation in population
- Offspring must be similar to parents

Mendel: Traits 'determined' by
 genes.

- Genes occur in different types (alleles)
- Offspring inherit genes from parents

The Modern Evolutionary Synthesis

Darwin: Heritable traits that increase reproductive success will become more common in a population. Requires:

- Variation in population
- Offspring must be similar to parents

Mendel: Traits 'determined' by genes.

- Genes occur in different types (alleles)
- Offspring inherit genes from parents

A fundamental question

At the beginning of the 20th Century, the modern evolutionary synthesis saw the theories of Darwin and Mendel united, but fundamental questions remained.

What is the relative importance of:

- natural selection;
- population structure (spatial and genetic);
- genetic drift (randomness due to reproduction in a finite population);

A mathematical challenge

The pioneers could only observe genetic variation indirectly through phenotype.

www.alamy.com
Modern geneticists use differences in DNA sequences to infer 'relatedness' between sampled individuals.
We require consistent

- forwards in time models for the evolution of the population,
- and backwards in time models for the relatedness between individuals in a sample.

Family trees

To trace the ancestry of a human, we record parents, grandparents, great-grandparents

Family trees

To trace the ancestry of a human, we record parents, grandparents, great-grandparents

After just 9 generations, Mark Wallinger's ' Y ' has 512 leaves.

Some individuals must occur multiple times in a family tree.

The Ancestry of King Charles II of Spain (1661-1700)

A simple model of inheritance

The diploid (neutral) Wright-Fisher model

Population of fixed size $N \gg 1$. (Hermaphrodite for simplicity)

- Evolves in discrete generations.
- Each offspring chooses two parents uniformly at random from previous generation.

A simple model of inheritance

The diploid (neutral) Wright-Fisher model

Population of fixed size $N \gg 1$. (Hermaphrodite for simplicity)

- Evolves in discrete generations.
- Each offspring chooses two parents uniformly at random from previous generation.

Slightly more biologically: During reproduction each individual produces an effectively infinite number of germ cells (same genotype as parent), which split into gametes (one copy of each gene), which combine to form a pool. Each offspring formed by fusing two randomly chosen gametes from the pool.

A simple model of inheritance

The diploid (neutral) Wright-Fisher model

Population of fixed size $N \gg 1$. (Hermaphrodite for simplicity)

- Evolves in discrete generations.
- Each offspring chooses two parents uniformly at random from previous generation.

Slightly more biologically: During reproduction each individual produces an effectively infinite number of germ cells (same genotype as parent), which split into gametes (one copy of each gene), which combine to form a pool. Each offspring formed by fusing two randomly chosen gametes from the pool.

In neutral model, all individuals make equal contribution to the pool of gametes.

A simple model of inheritance (diploid Wright-Fisher)

A simple model of inheritance (diploid Wright-Fisher)

The (diploid) Wright-Fisher model revisited

1. Label parents $\{1, \ldots, N\}$. Family sizes $\left(\nu_{1}, \ldots, \nu_{N}\right)$:
$\mathbb{P}\left[\left(\nu_{1}, \ldots, \nu_{N}\right)=\left(k_{1}, \ldots, k_{N}\right)\right]=\frac{1}{N^{2 N}}\binom{2 N}{k_{1}, \ldots, k_{N}} \mathbf{1}_{\sum_{i=1}^{N} k_{i}=2 N}$
Distribution ν_{i} is $\operatorname{Binom}(2 N, 1 / N) \approx \operatorname{Poiss}(2)$

The (diploid) Wright-Fisher model revisited

1. Label parents $\{1, \ldots, N\}$. Family sizes $\left(\nu_{1}, \ldots, \nu_{N}\right)$:

$$
\mathbb{P}\left[\left(\nu_{1}, \ldots, \nu_{N}\right)=\left(k_{1}, \ldots, k_{N}\right)\right]=\frac{1}{N^{2 N}}\binom{2 N}{k_{1}, \ldots, k_{N}} \mathbf{1}_{\sum_{i=1}^{N} k_{i}=2 N}
$$

Distribution ν_{i} is $\operatorname{Binom}(2 N, 1 / N) \approx \operatorname{Poiss}(2)$
2. Each individual has Poiss(2) offspring and condition on total number offspring $N_{1}=2 N$.

$$
\begin{aligned}
\mathbb{P}\left[\left(\nu_{1}, \ldots, \nu_{N}\right)=\left(k_{1}, \ldots, k_{N}\right)\right] & =\frac{(2 N)!}{(2 N)^{2 N} e^{-2 N}} \prod_{i=1}^{N} \frac{2^{k_{i}} e^{-2}}{k_{i}!} \mathbf{1}_{N_{1}=2 N} \\
& =\frac{1}{N^{2 N}} \frac{(2 N)!}{k_{1}!\cdots k_{N}!} \mathbf{1}_{i=1}^{N} k_{i}=2 N
\end{aligned}
$$

The (diploid) Wright-Fisher model revisited

1. Label parents $\{1, \ldots, N\}$. Family sizes $\left(\nu_{1}, \ldots, \nu_{N}\right)$:
$\mathbb{P}\left[\left(\nu_{1}, \ldots, \nu_{N}\right)=\left(k_{1}, \ldots, k_{N}\right)\right]=\frac{1}{N^{2 N}}\binom{2 N}{k_{1}, \ldots, k_{N}} \mathbf{1}_{\sum_{i=1}^{N} k_{i}=2 N}$
Distribution ν_{i} is $\operatorname{Binom}(2 N, 1 / N) \approx \operatorname{Poiss}(2)$
2. Each individual has Poiss(2) offspring and condition on total number offspring $N_{1}=2 N$.

$$
\begin{aligned}
\mathbb{P}\left[\left(\nu_{1}, \ldots, \nu_{N}\right)=\left(k_{1}, \ldots, k_{N}\right)\right] & =\frac{(2 N)!}{(2 N)^{2 N} e^{-2 N}} \prod_{i=1}^{N} \frac{2^{k_{i}} e^{-2}}{k_{i}!} \mathbf{1}_{N_{1}=2 N} \\
& =\frac{1}{N^{2 N}} \frac{(2 N)!}{k_{1}!\cdots k_{N}!} \mathbf{1}_{i=1}^{N} k_{i}=2 N
\end{aligned}
$$

If N large, marginal prob first $n \ll N$ individuals have family sizes k_{1}, \ldots, k_{N} well approximated by independent Poisson probabilities \leadsto branching process approximation

Ancestry under diploid Wright-Fisher

Lemma For large N, \mathbb{P} rrandomly chosen individual from population at time 0 is ancestral to given individual in generation $t] \approx 0.8$ as $t \rightarrow \infty$.

Ancestral individual has $\operatorname{Binom}(2 N, 1 / N) \approx \operatorname{Poiss}(2)$ direct descendants.
$P(t)=$ prob individual \notin pedigree.
$P(t+1) \approx \exp (-2+2 P(t)) \quad$ (p.g.f. Poisson evaluated at $P(t))$
Fixed point $p \approx 0.2$, so $1-p \approx 0.8$.
(used branching process approximation)

More precise results (Chang, 1999)

With probability $\rightarrow 1$ as $N \rightarrow \infty, \log _{2} N$ generations before the present \exists individual in pedigree ancestral to everyone in present population.

More precise results (Chang, 1999)

With probability $\rightarrow 1$ as $N \rightarrow \infty, \log _{2} N$ generations before the present \exists individual in pedigree ancestral to everyone in present population.

With probability $\rightarrow 1$ as $N \rightarrow \infty, \approx 1.77 \log _{2} N$ generations before the present everyone in population ancestral to everyone or to no-one in present population.

More precise results (Chang, 1999)

With probability $\rightarrow 1$ as $N \rightarrow \infty, \log _{2} N$ generations before the present \exists individual in pedigree ancestral to everyone in present population.

With probability $\rightarrow 1$ as $N \rightarrow \infty, \approx 1.77 \log _{2} N$ generations before the present everyone in population ancestral to everyone or to no-one in present population.

But at a particular genetic locus, an individual can have at most two genetic ancestors.

More precise results (Chang, 1999)

With probability $\rightarrow 1$ as $N \rightarrow \infty, \log _{2} N$ generations before the present \exists individual in pedigree ancestral to everyone in present population.

With probability $\rightarrow 1$ as $N \rightarrow \infty, \approx 1.77 \log _{2} N$ generations before the present everyone in population ancestral to everyone or to no-one in present population.

But at a particular genetic locus, an individual can have at most two genetic ancestors.

Under the diploid Wright-Fisher model, ancestry at a single genetic locus is not adequately captured by the pedigree

A simple model of inheritance

A simple model of inheritance

The simplest imaginable model of inheritance

The haploid Wright-Fisher model: each offspring (gene) chooses a single parent, uniformly at random to ease notation, $2 \mathrm{~N} N$ genes

The simplest imaginable model of inheritance

The haploid Wright-Fisher model: each offspring (gene) chooses a single parent, uniformly at random to ease notation, $2 N$ genes

Kingman 1982

The simplest imaginable model of inheritance

The haploid Wright-Fisher model: each offspring (gene) chooses a single parent, uniformly at random
to ease notation, $2 N$ genes

$\mathbb{P}[2$ lineages coalesce in previous generation $] \approx \frac{1}{N}$
Time in units of N generations, $N \rightarrow \infty, \sim$ time to coalescence pair of lineages $\sim \operatorname{Exp}(1)$

The simplest imaginable model of inheritance

The haploid Wright-Fisher model: each offspring (gene) chooses a single parent, uniformly at random
to ease notation, $2 N$ genes

$\mathbb{P}[2$ lineages coalesce in previous generation $] \approx \frac{1}{N}$
The most recent common ancestor in the pedigree was $\approx \log _{2} N$ generations in the past. The most recent common genetic ancestor was $\approx 2 N$ generations ago.

Sample size k

If currently j ancestral lineages:

- Probability two pairs of lineages merge into separate parents

$$
\binom{j}{2}\binom{j-2}{2} \frac{1}{N} \frac{1}{N-1} \approx 6\binom{j}{4} \frac{1}{N^{2}}
$$

- Probability three-merger

$$
\approx\binom{j}{3} \frac{1}{N^{2}}
$$

Probability one of these events before single pairwise merger

$$
\approx \frac{N}{\binom{j}{2}}\binom{j}{2}\binom{j-2}{2} \frac{1}{N^{2}} \approx \frac{j^{2}}{2 N}
$$

Sample size k

If currently j ancestral lineages:

- Probability two pairs of lineages merge into separate parents

$$
\binom{j}{2}\binom{j-2}{2} \frac{1}{N} \frac{1}{N-1} \approx 6\binom{j}{4} \frac{1}{N^{2}}
$$

- Probability three-merger

$$
\approx\binom{j}{3} \frac{1}{N^{2}}
$$

Probability such an event somewhere in the genealogical tree

$$
\approx \sum_{j=1}^{k} \frac{j^{2}}{N} \approx \frac{k^{3}}{3 N}
$$

Sample size k

If currently j ancestral lineages:

- Probability two pairs of lineages merge into separate parents

$$
\binom{j}{2}\binom{j-2}{2} \frac{1}{N} \frac{1}{N-1} \approx 6\binom{j}{4} \frac{1}{N^{2}}
$$

- Probability three-merger

$$
\approx\binom{j}{3} \frac{1}{N^{2}}
$$

Probability such an event somewhere in the genealogical tree

$$
\approx \sum_{j=1}^{k} \frac{j^{2}}{N} \approx \frac{k^{3}}{3 N}
$$

Sample size $k \ll N^{1 / 3}$, pair of lineages coalesces rate $\approx \frac{1}{N}\binom{k}{2}$

Sample size k

If currently j ancestral lineages:

- Probability two pairs of lineages merge into separate parents

$$
\binom{j}{2}\binom{j-2}{2} \frac{1}{N} \frac{1}{N-1} \approx 6\binom{j}{4} \frac{1}{N^{2}}
$$

- Probability three-merger

$$
\approx\binom{j}{3} \frac{1}{N^{2}}
$$

Probability such an event somewhere in the genealogical tree

$$
\approx \sum_{j=1}^{k} \frac{j^{2}}{N} \approx \frac{k^{3}}{3 N}
$$

Sample size $k \ll N^{1 / 3}$, pair of lineages coalesces rate $\approx \frac{1}{N}\binom{k}{2}$

Some formal definitions

- $\Xi_{k}=$ eqivalence relations on $[k]=\{1, \ldots, k\}$
- A k-coalescent is a continuous time Markov chain on ξ_{k} with transition rates $q_{\xi, \eta}=1$ if η obtained by coalescing two equiv classes of $\xi, 0$ otherwise
- The Kingman coalescent on equiv classes of \mathbb{N} is such that $\forall k$, restriction to $[k]$ is a k-coalescent.

Label individuals in sample $\{1, \ldots, k\}$
block coalescent \longleftrightarrow ancestral lineage
elements of block \longleftrightarrow descendants of that ancestor

Sampling consistency: the restriction of the $(k+l)$-coalescent to [k] is the k-coalescent

The Kingman coalescent

Tracing back in time, if there are currently k ancestral lineages, the next event will occur after an exponentially distributed time with parameter $\binom{k}{2}$, when a pair of lineages (chosen at random) will coalesce.

For a vast array of models in which

- population size large and constant;
- all individuals are equally fit;
- there is no spatial structure; measuring time in units of N_{e} generations, the genealogy of a sample is well approximated by the Kingman coalescent.

Overlapping generations: the Moran Model

Time for Moran model

- Events determined by Poisson Process intensity $\binom{N}{2} d t$;
- Pair chosen at random;
- One reproduces, the other dies.

Genealogies under the Moran model

Time for
Moran
model

Sample

Forwards in time: scaling the Wright-Fisher model

Population of fixed size N evolves in discrete generations.

- Each individual chooses parent uniformly at random from the previous generation;
- Offspring inherit the type of their parent.

Forwards in time: scaling the Wright-Fisher model

Population of fixed size N evolves in discrete generations.

- Each individual chooses parent uniformly at random from the previous generation;
- Offspring inherit the type of their parent.
'Alleles' a, A.
Proportion p of a alleles among parents.
$\Delta p=$ increment
- Number of a-offspring $\operatorname{Bin}(N, p)$.
- $\mathbb{E}[\Delta p]=0$ (neutral); $\mathbb{E}\left[(\Delta p)^{2}\right]=\frac{1}{N} p(1-p)$.

Forwards in time: scaling the Wright-Fisher model

Population of fixed size N evolves in discrete generations.

- Each individual chooses parent uniformly at random from the previous generation;
- Offspring inherit the type of their parent.
'Alleles' a, A. Proportion p of a alleles among parents.
$\Delta p=$ increment
- Number of a-offspring $\operatorname{Bin}(N, p)$.
- $\mathbb{E}[\Delta p]=0$ (neutral); $\mathbb{E}\left[(\Delta p)^{2}\right]=\frac{1}{N} p(1-p)$.
\sim changes in p over timescales $\mathcal{O}(N)$ generations.

Drift (large population limit)

Time in units of N generations, $\quad h=\frac{1}{N}, \quad N \rightarrow \infty$

Drift (large population limit)

Time in units of N generations, $\quad h=\frac{1}{N}, \quad N \rightarrow \infty$
Forwards in time,
$\Delta p=p_{t+h}-p_{t}$,

- $\mathbb{E}[\Delta p]=0$ (neutrality)
- $\mathbb{E}\left[(\Delta p)^{2}\right]=h p(1-p)$
- $\mathbb{E}\left[(\Delta p)^{4}\right]=O\left(h^{2}\right)$

$$
d p_{t}=\sqrt{p_{t}\left(1-p_{t}\right)} d W_{t}
$$

Drift (large population limit)

Time in units of N generations, $\quad h=\frac{1}{N}, \quad N \rightarrow \infty$

Forwards in time,
$\Delta p=p_{t+h}-p_{t}$,

- $\mathbb{E}[\Delta p]=0$ (neutrality)
- $\mathbb{E}\left[(\Delta p)^{2}\right]=h p(1-p)$
- $\mathbb{E}\left[(\Delta p)^{4}\right]=O\left(h^{2}\right)$

$$
d p_{t}=\sqrt{p_{t}\left(1-p_{t}\right)} d W_{t}
$$

Backwards in time

Coalescence rate $\binom{k}{2}$.

Drift (large population limit)

Time in units of N generations, $\quad h=\frac{1}{N}, \quad N \rightarrow \infty$

Forwards in time,

$$
\Delta p=p_{t+h}-p_{t}
$$

- $\mathbb{E}[\Delta p]=0$ (neutrality)
- $\mathbb{E}\left[(\Delta p)^{2}\right]=h p(1-p)$
- $\mathbb{E}\left[(\Delta p)^{4}\right]=O\left(h^{2}\right)$

$$
d p_{t}=\sqrt{p_{t}\left(1-p_{t}\right)} d W_{t}
$$

$$
d p_{\tau}=\sqrt{\frac{1}{N_{e}} p_{\tau}\left(1-p_{\tau}\right)} d W_{\tau}
$$

Backwards in time

Coalescence rate $\binom{k}{2}$.

Coalescence rate $\frac{1}{N_{e}}\binom{k}{2}$

Drift (large population limit)

Time in units of N generations, $\quad h=\frac{1}{N}, \quad N \rightarrow \infty$

Forwards in time,

$$
\Delta p=p_{t+h}-p_{t}
$$

- $\mathbb{E}[\Delta p]=0$ (neutrality)
- $\mathbb{E}\left[(\Delta p)^{2}\right]=h p(1-p)$
- $\mathbb{E}\left[(\Delta p)^{4}\right]=O\left(h^{2}\right)$

$$
d p_{t}=\sqrt{p_{t}\left(1-p_{t}\right)} d W_{t}
$$

$$
d p_{\tau}=\sqrt{\frac{1}{N_{e}} p_{\tau}\left(1-p_{\tau}\right)} d W_{\tau}
$$

Backwards in time

Coalescence rate $\binom{k}{2}$.

Kingman coalescent $=$ genealogy random sample

Buri's experiment

Gene that affects eye colour (but not fitness). Two alleles, a, A.
~ 100 populations, 8 males, 8 females.
Each started with proportion $p=0.5$ type a.

Buri's experiment

Gene that affects eye colour (but not fitness). Two alleles, a, A.
~ 100 populations, 8 males, 8 females.
Each started with proportion $p=0.5$ type a.
$d p_{t}=\sqrt{\frac{1}{N_{e}} p_{t}\left(1-p_{t}\right)} d W_{t}$,
$\frac{d}{d t} \mathbb{E}\left[p_{t}\left(1-p_{t}\right)\right]=-\frac{1}{N_{e}} \mathbb{E}\left[p_{t}\left(1-p_{t}\right)\right]$
Variance across populations

$$
V_{t}=p_{0}\left(1-p_{0}\right)\left(1-e^{-t / N_{e}}\right)
$$

Buri's experiment

Gene that affects eye colour (but not fitness). Two alleles, a, A.
~ 100 populations, 8 males, 8 females.
Each started with proportion $p=0.5$ type a.

Eventually, each population will be entirely one type (with equal probabilities).

Under Wright-Fisher model, variance in p across populations increases from 0 to $1 / 4$ over time.

Buri's experiment

Gene that affects eye colour (but not fitness). Two alleles, a, A.
~ 100 populations, 8 males, 8 females.
Each started with proportion $p=0.5$ type a.

Eventually, each population will be entirely one type (with equal probabilities).

Under Wright-Fisher model, variance in p across populations increases from 0 to $1 / 4$ over time.

Adding mutation (heritable change of genetic material)

Reconstruct tree using differences in DNA sequences in sample.
Extend Wright-Fisher model: constant probability, μ, per individual per generation of mutation.

Time until first mutation along single ancestral lineage $\sim \operatorname{Geom}(\mu)$

Assume $\theta:=2 N_{e} \mu=\mathcal{O}(1)$, (coalescence/mutation on same timescale)
\leadsto Poisson process along branches.

Note individuals 1 and 2 must have same type

Patterns in data reflect evolution over timescales dictated by the neutral mutation rate

Another relationship between Kingman and Wright-Fisher

Method of duality: Express distribution of one random variable \underline{p} in terms of another (simpler) random variable \underline{n}.

Another relationship between Kingman and Wright-Fisher

Method of duality: Express distribution of one random variable \underline{p} in terms of another (simpler) random variable \underline{n}.

$$
\begin{equation*}
\frac{d}{d u} \mathbb{E}[f(\underline{p}(u), \underline{n}(t-u))]=0, \quad 0 \leq u \leq t \tag{*}
\end{equation*}
$$

Another relationship between Kingman and Wright-Fisher

Method of duality: Express distribution of one random variable \underline{p} in terms of another (simpler) random variable \underline{n}.

$$
\begin{gathered}
\frac{d}{d u} \mathbb{E}[f(\underline{p}(u), \underline{n}(t-u))]=0, \quad 0 \leq u \leq t . \quad(*) \\
d p_{t}=\sqrt{p_{t}\left(1-p_{t}\right)} d W_{t}, \quad n_{t} \mapsto n_{t}-1 \text { rate }\binom{n_{t}}{2}, \quad f(p, n)=p^{n}
\end{gathered}
$$

Another relationship between Kingman and Wright-Fisher

Method of duality: Express distribution of one random variable \underline{p} in terms of another (simpler) random variable \underline{n}.

$$
\begin{gathered}
\frac{d}{d u} \mathbb{E}[f(\underline{p}(u), \underline{n}(t-u))]=0, \quad 0 \leq u \leq t . \quad(*) \\
d p_{t}=\sqrt{p_{t}\left(1-p_{t}\right)} d W_{t}, \quad n_{t} \mapsto n_{t}-1 \text { rate }\binom{n_{t}}{2}, \quad f(p, n)=p^{n} \\
d p_{u}^{n(t-u)}=n(t-u) p_{u}^{n(t-u)-1} \sqrt{p_{u}\left(1-p_{u}\right)} d W_{u} \\
+\binom{n(t-u)}{2} p_{u}^{n(t-u)-2} p_{u}\left(1-p_{u}\right) d u \\
-\binom{n(t-u)}{2}\left(p_{u}^{n(t-u)-1}-p_{u}^{n(t-u)}\right)
\end{gathered}
$$

Another relationship between Kingman and Wright-Fisher

Method of duality: Express distribution of one random variable \underline{p} in terms of another (simpler) random variable \underline{n}.

$$
\begin{gathered}
\frac{d}{d u} \mathbb{E}[f(\underline{p}(u), \underline{n}(t-u))]=0, \quad 0 \leq u \leq t . \quad(*) \\
d p_{t}=\sqrt{p_{t}\left(1-p_{t}\right)} d W_{t}, \quad n_{t} \mapsto n_{t}-1 \text { rate }\binom{n_{t}}{2}, \quad f(p, n)=p^{n}
\end{gathered}
$$

Sampling probabilities:

$$
\mathbb{E}\left[p(t)^{n(0)}\right]=\mathbb{E}\left[p(0)^{n(t)}\right]
$$

Another relationship between Kingman and Wright-Fisher

Method of duality: Express distribution of one random variable \underline{p} in terms of another (simpler) random variable \underline{n}.

$$
\begin{gathered}
\frac{d}{d u} \mathbb{E}[f(\underline{p}(u), \underline{n}(t-u))]=0, \quad 0 \leq u \leq t . \quad(*) \\
d p_{t}=\sqrt{p_{t}\left(1-p_{t}\right)} d W_{t}, \quad n_{t} \mapsto n_{t}-1 \operatorname{rate}\binom{n_{t}}{2}, \quad f(p, n)=p^{n}
\end{gathered}
$$

Sampling probabilities:

$$
\mathbb{E}\left[p(t)^{n(0)}\right]=\mathbb{E}\left[p(0)^{n(t)}\right]
$$

Weaker than saying genealogy given by Kingman coalescent

What we have so far

In time units of N_{e} generations,

- (Forwards time) The Wright-Fisher diffusion

$$
d p_{t}=\sqrt{p_{t}\left(1-p_{t}\right)} d W_{t}
$$

- (Backwards time) The Kingman coalescent

$$
n_{t} \mapsto n_{t}-1 \text { at rate }\binom{n_{t}}{2}
$$

- Sampling probabilities

$$
\mathbb{E}\left[p(t)^{n(0)}\right]=\mathbb{E}\left[p(0)^{n(t)}\right]
$$

Stronger result holds. Kingman coalescent really describes genealogy of random sample from (neutral) population.

