
Chapter 1

Subgaussian Random Variables
and Concentration

1.1 The law of large numbers and the central limit theorem

The law of large numbers is possibly one of the most celebrated results in probability,
second probably only to the central limit theorem. Let us see what each of them says and
where their limitations lie.

Theorem 1 (Strong Law of large numbers). Suppose that {Xi : i ≥ N} is an i.i.d.
collection of random variables such that E[Xi] = µ. Then we have that

1
n

n∑
i=1

Xi → µ, almost surely,

as n→∞.

We also have the Weak Law of Large numbers.

Theorem 2 (Weak Law of large numbers). Suppose that {Xi : i ≥ N} is an i.i.d.
collection of random variables such that E[Xi] = µ. Then we have that

1
n

n∑
i=1

Xi
P→ µ, almost surely,

as n→∞.

Here P→ denotes convergence in probability.
Before we move on let us briefly recall two of the three basic modes of convergence of

random variables.

Definition 1 (Convergence in probability). a sequence of random variables {Xi : i ∈ N}
defined on a common probability space (Ω,F ,P) is said to converge to a random variable
X, also on (Ω,F ,P) if for any ε > 0 we have

P [|Xn −X| > ε]→ 0,

as n→∞.

Contrast this with almost sure convergence.
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Definition 2 (Convergence in probability). a sequence of random variables {Xi : i ∈ N}
defined on a common probability space (Ω,F ,P) is said to converge almost surely to a
random variable X, also on (Ω,F ,P), denoted Xn → X, if for any ε > 0 we have

P

[
lim
n→∞

Xn → X
]

= 1.

The difference in the two definitions is the order of the limit operation and the prob-
ability operator.
Example 1. Let Ω = [0, 1), F be the Borel σ-algebra, the one generated by open sets,
and P = Leb, the standard Lebesgue measure on [0, 1). Define the sequence of random
variables {Xn : n ∈ N} as follows:

X0(ω) ≡ 1 for all ω ∈ [0, 1],
X1(ω) = 1[0,1/2)(ω),
X2(ω) = 1[1/2,1)(ω),
X3(ω) = 1[0,1/3)(ω),
X4(ω) = 1[1/3,2/3)(ω),
X5(ω) = 1[2/3,1)(ω),

and so on. Take a moment to visualise what is happening and to convince yourselves that
Xn

P→ 0 but Xn 9 X almost surely.
The strong law of large numbers can be proven using Ergodic theory or a clever

application of truncation and analysis and is beyond our scope. Under additional moment
assumptions it can also be proven from the weak law combined with the Borel-Cantelli
lemma.

The weak law however, at least with additional assumptions, is easily within our grasp
using only elementary probability.

Suppose for now that X1, X2, . . . , are i.i.d. with mean µ and finite variance var(Xi) <
∞. We may assume w.l.o.g. that var(X1) = 1. Then a simple application of Markov’s
inequality, or Chebyshev in this case, shows that for any ε > 0

P

ñ∣∣∣∣∣ n∑
i=1

Xi − nµ
∣∣∣∣∣ > nε

ô
≤ var (

∑
Xi)

ε2n2

≤ n var(X1)
ε2n2 ≤ 1

ε2n
,

where we used that for independent variables the variance of the sum is the sum of the
variance.

Clearly this vanishes as n → ∞ for any ε > 0, and we have proven the w.l.l.n. under
finite second moments. In other words we have proven that the difference between the
average of i.i.d. r.v.s and their mean vanishes in probability.

The central limit theorem, probably the most distinctive result of probability theory,
quantifies the fluctuations of the average from its mean. First we need the following
definition.
Definition 3 (Convergence in distribution, weak convergence). A sequence of random
variables {Xi : i ∈ N} is said to converge weakly, or in distribution, to the random variable
X, denoted Xn

D→ X, if

P[Xn ≤ t]→ P[X ≤ t], as n→∞,

for all continuity points t of the distribution function of X, t 7→ P[X ≤ t].
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Now we are ready to state the C.L.T.

Theorem 3 (Central Limit Theorem). Suppose that {Xi : i ≥ N} is an i.i.d. collection
of random variables such that E[Xi] = µ and var(Xi) = σ2. Then

√
n

ñ
1
n

n∑
i=1

Xi − µ
ô

D→ N (0, σ2).

In other words
1
n

n∑
i=1

Xi ≈ µ+ ξ√
n
, ξ ∼ N (0, σ2).

Based on this one would then expect that

P

ñ∣∣∣∣∣ 1n n∑
i=1

Xi − µ
∣∣∣∣∣ ≥ t

ô
. e−nt2/2σ2

, (1.1) {eq:gaussian_concentration}{eq:gaussian_concentration}

but in fact the CLT only provides us information at a coarser scale:

P

ñ
√
n

∣∣∣∣∣ 1n n∑
i=1

Xi − µ
∣∣∣∣∣ ≥ t

ô
≈ e−t2/2σ2

.

To get (1.2) one could attempt to replace t with
√
ny, but this is quite different to the

conclusion of the C.L.T.
Moreover, we cannot expect (1.2) to hold in general under just finite second moments,

as the above inequality directly implies existence of infinite moments, and even existence
of all exponential moments.

In fact assuming just second moments the best we can do is use Chebyshev’s inequality,
that is if var(Y ) <∞,

P [|Y − EY | ≥ t] ≤ var(Y )
t2

,

which decays much more slowly that e−ct2 . To see that in general Chebyshev’s inequality
is sharp, at least up to logarithmic terms, consider Y ∼ fY (·), where for c > 0 and
δ ∈ (0, 1),

f(±y) = c

y3 log(y)1+δ , |y| > 1.

Obviously Y is symmetric so that EY = 0 and it can be verified that Y has finite second
moments, but E |Y |3 =∞. An easy calculation shows that

P(|Y | > t) ≥ c′

t2 log(t)1+δ ,

so that the polynomial order of the bound achieved by Chebyshev’s inequality is sharp.
On the other hand (1.2) is true for Gaussian random variables. We will now see that

it also holds much more generally, under appropriate moment conditions.

1.2 Chernoff bounds

As we saw, assuming just two finite moments, we cannot hope in general to obtain tails
decaying faster than 1/t2. We can however, if we assume existence of higher moments.
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Suppose for example that E[|X|k] < ∞, for k ≥ 1, then we automatically get using
Markov’s inequality that

P[|X − EX| > t] = P[|X − EX|k > tk]

≤
E
[
|X − EX|k

]
tk

,

where the equality follows from the fact that for k > 0 and x > 0, x 7→ xk is strictly
increasing, and the inequality from Markov’s inequality.

Obviously the higher k is the faster the tails decay but then potentially the numerator
will also grow. In fact for a fixed t the optimum bound that can be obtained using the
above approach comes from optimising over k, that is

P[|X − EX| > t] ≤ inf
k

E
[
|X − EX|k

]
tk

.

However, optimising the above, even with X Gaussian becomes cumbersome. What if we
try instead the mapping x 7→ ex or more generally x 7→ eλx for λ ∈ R? This family of
bounds is known collectively as Chernoff bounds. First we need a definition.

Definition 4 (Moment- and Cumulant-Generating Function). Given a random variable
X such that E[exp(λX)] < ∞ for all λ ∈ (−b, b) for some b > 0, we define its Moment
Generating Function (MGF) and its Cumulant Generating Function (CGF) respectively
through

MX(λ) := E[exp(λX)], ψ(λ) := logE[exp(λX − EX)].

Lemma 1.2.1 (Chernoff Bound). Suppose that MX(λ) < ∞ for all λ ∈ R, and define
the Legendre dual of ψ as

ψ∗(t) := sup
λ≥0

[λt− ψ(λ)].

Then for all t ≥ 0
P[X − EX ≥ t] ≤ e−ψ∗(t).

Proof. We start off as promised by considering x 7→ exp(λx), that is

P[X − EX > t] ≤ E [exp {λ(X − EX)} > exp(λt]

≤ E [exp {λ(X − EX)}]
exp(λt)

= eψ(λ)−λt.

Since this holds for all λ it also follows that

P[X − EX > t] ≤ inf
λ

eψ(λ)−λt = e−ψ∗(t).

Notice that the above gives only the upper tail, but letting Y = −X, and using the
union bound

P[|X − EX| > t] ≤ P[X − EX > t] + P[X − EX < −t]
≤ P[X − EX > t] + P[Y − EY > t],

and we can bound each of the above terms as before.

4



Example 2. Suppose now that X ∼ N (0, σ2). Then we know that MX(λ) = eλ2σ2/2 and
thus that ψ(λ) = λ2σ2/2. From this we can compute

ψ∗(t) = sup
λ
λt− λ2σ2

2 = t2

2σ2 ,

and thus the corresponding Chernoff bound is

P[X ≥ t] ≤ e−t2/2σ2
,

which indeed attains the desired Ce−Ct2 tail decay.

Example 3. Going back to our running example suppose that {Xi : i = 1, . . . , n} are
i.i.d. N (µ, σ2) and let Y = 1

n

∑n
i=1Xi ∼ N (µ, σ2/n). Then using independence we have

that ψY (λ) = λ2σ2/2n, whence ψ∗Y (t) = nt2/(2σ2) and thus

P

ñ∣∣∣∣∣ 1n n∑
i=1

Xi − µ
∣∣∣∣∣ ≥ t

ô
≤ 2e−nt2/2σ2

. (1.2) {eq:gaussian_concentration}{eq:gaussian_concentration}

1.3 Sub-gaussian random variables.

Inspecting the proof and the two examples in the last section we can see that what buys
as the correct rate is the behaviour of the CGF. That is suppose that we know that for
some random variable X we have ψX(λ) ≤ σ2λ2/2, then we conclude that

ψ∗Y (t) =
∑
λ≥0

[λt− ψY (λ)] ≥ sup
λ

[
λt− σ2λ2] = t2

2σ2 .

This motivates the following definition.

Definition 5 (Sub-gaussian random variable). Let σ > 0. The random variable X, with
mean µ = E[X], is said to be σ-sub-Gaussian, or sub-Gaussian with variance proxy σ, if

ψX(λ) ≤ λ2σ2

2 , for all λ ∈ R.

Definition 6 (Sub-gaussian random vector). Let σ > 0. The random vector ε =
(ε1, . . . , εn) ∈ Rn is a σ2-sub-Gaussian vector in Rn if for any unit vector u ∈ Sn−1

the random variable uTε is σ2-sub-Gaussian.

The discussion above then shows that if X is σ-sub-Gaussian, then it satisfies the
upper-deviation inequality

P[X ≥ µ+ t] ≤ e−
t2

2σ2 .

From the definition it easily follows that −X must also be σ-sub-Gaussian and thus we
also have that

P[X ≤ µ− t] = P[−X ≥ −µ+ t] ≤ e−
t2

2σ2 ,

and thus we see that X must also satisfy the concentration inequality

P[|X − µ| ≥ t] ≤ 2e−
t2

2σ2 .

Example 4 (Rademacher random variables are sub-Gaussian). Let X be a Rademacher
random variable, that is P(X = ±1) = 1/2. Then X is 1-sub-Gaussian.
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Proof 1. It is obvious that MX(λ) = (eλ + e−λ)/2 = cosh(x), and thus that ψX(λ) =
log(eλ + e−λ) − log(2). Also notice that ψX(0) = 0 and ψX(1) = 0 and since X is
symmetric ψX(λ) = ψX(−λ).

We next compute for λ > 0

ψ′X(x) = ex − e−x

ex + e−x = 1− 2e−x

ex + e−λ

ψ′′X(x) = 4 e2x

(e2x + 1)2 ≤ 1

since the function y 7→ y/(y + 1)2 is decreasing for y ≥ 1.
Combining everything we have for λ > 0

ψX(λ) = ψX(0) +
∫ λ

0
ψ′X(r)dr

= ψX(0) + λψ′X(0) +
∫ λ

0

∫ r

0
ψ′′X(s)dsdr

= 0 + λ× 0 +
∫ λ

0

∫ r

0
ψ′′X(s)dsdr

≤
∫ λ

0

∫ r

0
1dsdr ≤ λ2

2 .

Proof 2. (from Wainwright 2019). We have

1
2
î
eλ + e−λ

ó
= 1

2

∞∑
k=0

λk

k! +
∞∑
k=0

(−λ)k

k! = 1
2

∞∑
k=0

λk + (−λ)k

k!

= 1
2

∞∑
k=0,k∈2Z

2λk

k! =
∞∑
m=0

λ2m

(2m)!

= 1 +
∞∑
m=1

λ2m

(2m)! ≤ 1 +
∞∑
m=1

λ2m

2mm!

since clearly for m ≥ 1, (2m)! ≥ 2mm!

=
∞∑
m=0

λ2m

2mm! = eλ2/2.

Example 5 (Bounded random variables). Let X take values in the interval [a, b], for
a < b. Then X is (b− a)/2-sub-Gaussian.

Proof. (Symmetrisation argument, from Wainwright 2019). LetX ′ be an independent copy
of X and notice that

E [exp {λ(X − E[X])}] = E
[
exp

{
λ(X − E[X ′])

}]
= E

î
eλXeλE[−X′]

ó
and since by Jensen’s inequality eλE[−X′] ≤ E

¶
eλ(−X′)

©
≤ E
î
eλX E

¶
eλ(−X′)

©ó
6



≤ E
î
eλ(X−X′)

ó
,

where the last equality follows by independence.
The important thing is that we now have to deal with the random variable Y := X−X ′

whose distribution is symmetric, that is Y D= −Y . Stated different, if ξ is a Rademacher
random variable, then Y

D= ξY and therefore

E

î
eλ(X−X′)

ó
= E

î
eλY
ó

= E

î
eλξY
ó

= E

[
E

{
eλξY

∣∣∣Y }] ≤ E [E{eλ2Y 2/2
∣∣∣Y }] = E

î
eλ2Y 2/2

ó
,

where we applied the result of the previous example, that is E[eλ′ξ] ≤ e(λ′)2/2, conditionally
on Y , with λ′ = λY . Finally since X,X ′ ∈ [a, b], we have that |X −X ′| ≤ b− a and thus

E

î
eλ(X−X′)

ó
≤ E
î
eλ2Y 2/2

ó
≤ eλ2(b−a)2/2,

and thus ψX(λ) ≤ (b− a)2λ2/2.

Just like a linear combination of independent Gaussian random variables is also Gaus-
sian, the sub-Gaussian property is also preserved by linear operations. It is an easy
exercise to verify that if X1, X2 are σ1- and σ2-sub-Gaussian respectively then X1 + X2
is
√
σ2

1 + σ2
2-sub-Gaussian. This leads us to the famous Hoeffding bound.

Theorem 4 (Hoeffding bound). Suppose that {Xi}ni=1 are independent random variables,
where Xi has mean µi and is σi-sub-Gaussian. Then for all t ≥ 0 we have

P

ñ
n∑
i=1

(Xi − µi) ≥ t
ô
≤ exp

Å
− t

2
∑n
i=1 σ

2
i

ã
.

1.3.1 Characterisations of sub-Gaussian random variables

We based our search for ways to generalise Gaussian tail bounds to non-Gaussian vari-
ables on the condition ψX(λ) ≤ λ2σ2/2, which could be used to directly lower bound
ψ∗X(t) in Chernoff’s bound. However as we shall see now there is a number of equivalent
characterisations of sub-Gaussian random variables. The presentation is largely taken
from Van Handel 2016.

{thm:subGtfae}
Theorem 5. Let X be a centred random variable. TFAE

(a) There is a constant σ ≥ 0 such that

E[eλX ] ≤ eλ2σ2/2 for all λ ∈ R;

(b) There exist a universal constant c > 0 such that

P[|X| ≥ s] ≤ 2 exp
Å
− s2

2cσ2

ã
, for all s > 0;

(c) There exist a universal constant c > 0 such that

E

ï
exp
Å
X2

cσ2

ãò
≤ 2.
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(d) There exist a universal constant c > 0 such that

E[X2k] ≤ (cσ2)qq!;

Proof. (a)⇒ (b): We have

P[|X| ≥ s] ≤ P[X ≥ s] + P[X ≤ −s],

let us treat the first term; let λ ∈ R

P[X ≥ s] ≤ P[exp(λX) ≥ λs] ≤ E exp(λX)
eλs

≤ exp
ß
λ2σ2

2 − λs
™

and optimising the bound over λ, we set λ∗ = s/σ2 to get

≤ exp
{
− s

2σ2

}
.

Similarly we get
P[X ≤ −s] ≤ exp

{
− s

2σ2

}
,

by applying the previous calculation to −X and (b) follows.

(b)⇒ (c): Suppose that

P[|X| ≥ s] ≤ 2 exp
Å
− s2

2σ2

ã
.

We will use the following fact, if Y is a positive random variable with distribution
function FY , and f increasing and differentiable then

E[f(Y )] =
∫ ∞

0
f(y)F (dy) =

∫ ∞
0

f(0)F (dy) +
∫ ∞

0

∫ y

s=0
f ′(s)F (dy)

= f(0) +
∫ ∞
s=0

∫ ∞
y=s

F (dy)f ′(s)ds = f(0) +
∫ ∞
s=0

P[Y ≥ s]f ′(s)ds.

Then we have, letting Y = X2

E

ï
exp
Å
X2

cσ2

ãò
=
∫ ∞
−∞

exp
Å
x2

cσ2

ã
FX(dx)

= 1 +
∫ ∞

0

1
cσ2 exp

( y

cσ2

)
P[|X|2 > y]dy

≤ 1 + 2
cσ2

∫ ∞
0

exp
( y

cσ2

)
exp

(
− y

2σ2

)
dy

≤ 1 + 2
cσ2

∫ ∞
0

exp
ï
−
Å
c− 2

2c

ã
y

σ2

ò
dy

which is finite for c > 2

= 1 + 2
cσ2

2cσ2

c− 2 = 1 + 4
c− 2 .

Choosing c = 6 we get (c).
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(c)⇒ (a): Assume w.l.o.g. that c = 1. Then using the fact that for x > 0, ex ≥ 1 + xk/k!

2 ≥ E
ï
exp
Å
X2

σ2

ãò
≥ 1 + E

ï
X2q

σ2qq!

ò
whence we have E[X2q] ≤ σ2qq!.

(d) ⇒ (a): Let X ′ be an independent copy of X. Then for Y = X − X ′, notice by the
cr-inequality that E[Y 2k] ≤ 22k E[X2k]. Thus

E[eλY ] =
∞∑
k=0

λk E[Y k]
k!

=
∞∑
k=0

λ2k E[Y 2k]
(2k)! +

∞∑
k=0

λ2k+1 E[Y 2k+1]
(2k + 1)!

and since Y is symmetric

≤
∞∑
k=0

λ2k E[Y 2k]
(2k)! ≤

∞∑
k=0

λ2k22kσ2kk!
(2k)!

≤
∞∑
k=0

λ2k(4σ2)kk!
k!k!

≤
∞∑
k=0

λ2k(4σ2)k

k! ≤ exp
(
4λ2σ2) .

Also since EX = 0, letting X ′ be an independent copy of X we have

E[eλX ] = E[eλX−λE[X′]] ≤ E[eλX−λX′ ] = E[eλY ],

by Jensen’s inequality.
Combining everything we thus get

MX(λ) ≤ exp
(
4λ2σ2) .

Useful lemmas
{lem:subGvector}

Lemma 1.3.1. Suppose that ε = (ε1, . . . , εn), where the variables εi, i = 1, . . . , n are
independent and σ2-sub-Gaussian. Then ε is a σ2-sub-Gaussian vector in Rn. That is for
any v ∈ Sn−1, εTv is σ2-sub-Gaussian.

Proof of Lemma 1.3.1. Obvious since

E

î
exp
Ä
λεTv

äó
= E

î
exp
Ä
λ
∑

εivi
äó

≤
n∏
i=1

E [exp(λεivi)]

≤
n∏
i=1

exp
Å
λ2σ2

2 v2
i

ã
= exp(λ

2σ2

2 ).
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{lem:maxbound}
Lemma 1.3.2 (Maximum of n sub-Gaussian random variables). Let X1, . . . , Xn be n,
centred, σ2-sub-Gaussian random variables. Then for any t > 0 we have

P

Å
max

i=1,...,N
Xi > t

ã
≤ Ne−

t2

2σ2 , E[ max
i=1,...,N

Xi] ≤ σ
√

2 logN.

Proof. The probability bound holds simply by a union bound, that is

P (max i = 1, . . . , nXi > t) ≤
n∑
i=1

P [Xi > t] .

For the expectation we have

E[maxXi] = 1
s
E[log exp(smaxXi)]

≤ 1
s

logE[exp(smaxXi)]

= 1
s

logE[max exp(sXi)]

= 1
s

logN exp
Å
σ2s2

2

ã
= 1
s

logN + σ2s

2 ,

and setting s =
√

2 logn/σ2 gives the result.

1.3.2 Gaussian Concentration

Theorem 6 (Gaussian Concentration). Let X1, . . . , Xn be i.i.d. N (0, 1) and let f : Rn 7→
R be K-Lipschitz. Then f(X1, . . . , Xn) is K-sub-Gaussian. {thm:gauss_conc}

The proof is taken from Lalley’s notes.

Proof. It suffices to prove the result for smooth Lipschitz functions and extend it with an
approximation argument.

Notice that we want to prove that

logE[exp(λf(X)− λE f(X))] ≤ λ2K2

2 .

By the standard symmetrisation trick and Jensen’s inequality it suffices to show that

logE[exp(λf(X)− λf(X ′))] ≤ λ2K2

2 ,

where X ′ is an independent copy of X. Now we will form a smooth path {Xt : t ∈ [0, 1]}
connecting X and X ′, and in particular we will take one such that Xt ∼ N (O,1n). So
let

Xt := cos(πt/2)X + sin(πt/2)X ′,

and we compute

dXt

dt = −π2 sin(πt/2)X + πt

2 cos(πt/2)X ′ =: π2Yt.
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What’s also important is that Yt is uncorrelated and thus independent of Xt.
The FTC then gives

E{exp[λf(X)− λf(X ′]} = E

ß
exp
ï
λ

∫ 1

0
dt∇f(Xt)

dXt

dt

ò™
= E

ß
exp
ï
π

2λ
∫ 1

0
dt〈∇f(Xt), Yt〉

ò™
≤
∫ 1

0
dtE

{
exp

[π
2λ〈∇f(Xt), Yt〉

]}
.

Since as explained earlier, Yt is independent of Xt, conditionally on Xt, we have that
〈∇f(Xt), Yt〉 is ‖∇f(Xt)‖2-sub-Gaussian, so overall K2-sub-Gaussian. Therefore

E{exp[λf(X)− λf(X ′]} ≤
∫ 1

0
dtE

{
exp

[π
2λ〈∇f(Xt), Yt〉

]}
≤
∫ 1

0
dt exp

Å
π2λ2K2

2

ã
,

and the conclusion follows.
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Chapter 2

High-dimensional regression and
Lasso

This chapter is based on Rigollet and Hütter 2017 and Wainwright (2019).
Let θ∗ ∈ Rd be an unknown vector of parameters. Our observation model is the

following
y = Xθ∗ + ε, (2.1) {eq:regression}{eq:regression}

where we observe the vector y ∈ Rn and the matrix X ∈ Rn×d, whereas ε is an Rn noise
vector. Our standing assumption will be that ε = (ε1, . . . , εn) where εi is centred, σ2-sub-
Gaussian for some σ2 > 0, and this will allow us to use the machinery we developed in
Chapter 2.

We will frequently distinguish between fixed design, where X is deterministic, and
random design, where X is random. We first consider fixed design.

2.0.1 Warm-up

In classical linear regression one considers the setup where d � n. There the typical
approach is to use Ordinary Least Squares that is attempt to recover θ∗ by solving the
convex minimisation problem

θ̂LS := arg min
θ

(y −Xθ)T(y −Xθ) = arg min
θ

n∑
i=1

(
yi −

d∑
j=1
Xijθj

)2
. (2.2) {eq:OLS}{eq:OLS}

Since the quadratic loss function is convex we only need to check the first order condition
of optimality:

XTX θ̂LS = XTy.

Under the usual assumption that X has full rank, that is its columns are linearly in-
dependent, it follows easily that XTX is positive definite. To see why notice that for
any vector v ∈ Rd, Xv is a linear combination of the column vectors of X and is thus
non-zero unless v = 0. This implies that vXTXv > 0 for any non-zero v and that XTX
is invertible and thus we can write the solution as θ̂LS = (XTX)−1Xy.

All of the above, depends crucially on the assumption that X has full rank. In fact,
this can only happen if n > d.

When d ≥ n the solution the first order condition is still the same, but we can no longer
hope to find a unique solution since the linear system in (2.2) is now under-determined.
Instead we will get a linear subspace of solutions. To select one we may to impose an
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additional criterion, or some form of regularization; e.g. we may ask for the solution of
(2.2) with the minimum norm, that is the solution to the regularized problem

min
θ
‖θ‖22, XTX θ̂LS = XTy.

It turns out that 2.0.1 always exists and is unique and is known as the Moore-Penrose
inverse denoted by (XTX)†.

So let us now see how the performance of the least squares estimators changes with the
dimension. At this point we should point out that there are different ways of measuring
performance. In particular one may be mostly interested in recovering the vector θ∗ or in
predicting the value of the response variable from the values of the independent variable,
that is the prediction error.

As motivation for what’s to come we first consider the prediction error. We will focus
on the Mean Squared Error(MSE) of the prediction that is

MSE(X θ̂LS) = 1
n
‖Xθ∗ −X θ̂LS‖2 = (θ∗ − θ̂LS)TX

TX

n
(θ∗ − θ̂LS).

First of all notice that since θ̂LS solves (2.2) we have that

‖y −X θ̂LS‖22 ≤ ‖y −Xθ∗‖ = ‖ε2‖, (2.3) {eq:fundamental_ineq}{eq:fundamental_ineq}

and that
‖y −X θ̂LS‖22 = ‖X(θ̂LS − θ∗)‖22 + ‖ε‖22 − 2εTX(θ̂LS − θ∗),

whence we get that

‖X(θ̂LS − θ∗)‖22 ≤ 2εTX(θ̂LS − θ∗) = 2‖X(θ̂LS − θ∗)‖ε
TX(θ̂LS − θ∗)
‖X(θ̂LS − θ∗)‖

,

and after simplifying

‖X(θ̂LS − θ∗)‖ ≤ 2ε
TX(θ̂LS − θ∗)
‖X(θ̂LS − θ∗)‖

.

There are two issues here; first θ̂LS clearly depends on ε, and second the right hand side
also depends on the unknown θ∗.

One way around this is to consider the worst case scenario, that is to use the bound

‖X(θ̂LS − θ∗)‖ ≤ 2ε
TX(θ̂LS − θ∗)
‖X(θ̂LS − θ∗)‖

≤ sup
v∈Rn:‖v‖=1

εTv = 2εTε = ‖ε‖22. (2.4) {eq:takingsups}{eq:takingsups}

Since ε is a σ2-sub-Gaussian Rn-vector we know from Theorem 5 that for some uni-
versal constant c > 0 we have

E[‖ε‖22] =
n∑
i=1

E[ε2i ] ≤ cσ2n.

From this we conclude that

E

î
MSE(X θ̂LS)

ó
≤ 2cσ2n

n
= 2cσ2.

The question is how wasteful we have been, in particular in (2.4) when we took the
supremum over the l2-ball in Rn. Thinking about it, we have implicitly assumed that

13



Im(X) = {y ∈ Rn : y = Xv} is all of Rn, which is equivalent to X having rank n. What
happens when the rank of X is lower than n, say r? Can we use this to get a better
bound? The answer turns out to be positive.

Suppose then that Im(X) is r-dimensional. Let {ei; i = 1, . . . , n} be the standard
basis and let {hi : i = 1, . . . , n} be an orthonormal basis such that the first r vectors
{hi : i = 1, . . . , r} form an orthonormal basis of Im(X). That is any element of Im(X)
expressed as a column vector in the H basis has its last n − r elements all zero. Let
hj =

∑n
k=1 h

k
jek, define the row vectors hj = (hij)ni=1 and define the matrix

O =

á
h1
h2
...
hn

ë
,

that is the matrix with rows equal to h1, . . . , hn. Then for any v ∈ Rn, of the form
v =

∑
j αjej the vector Oα allows us to express v in terms of the H basis. In particular,

by definition of O we have PrOXv = OXv for any v ∈ Rn, where

Pr =
Å
1r O

O O

ã
.

Also, since H is orthonormal, an easy calculation shows that O must be orthogonal
and in particular for any vectors v, w ∈ Rn, we have vTw = (Ov)T(Ow).

Therefore going back to our calculation we have, since for any v, ‖Ov‖ = ‖v‖ we have

‖X(θ̂LS − θ∗)‖ ≤ 2ε
TX(θ̂LS − θ∗)
‖X(θ̂LS − θ∗)‖

= 2(Oε)TOX(θ̂LS − θ∗)
‖OX(θ̂LS − θ∗)‖

= 2(Oε)TPrOX(θ̂LS − θ∗)
‖PrOX(θ̂LS − θ∗)‖

= 2ε
TOTPrOX(θ̂LS − θ∗)
‖PrOX(θ̂LS − θ∗)‖

= 2ε
TOTPT

r PrOX(θ̂LS − θ∗)
‖PrOX(θ̂LS − θ∗)‖

≤ 2‖PrOε‖,

where the last inequality follows from the Cauchy-Schwarz inequality.
Assume ε = (ε1, . . . , εn), where εi are independent mean-zero, σ2-sub-Gaussian vari-

ables. Then we can write (Oε)j =
Ä∑n

k=1 h
k
j εj
ä

and therefore

E
[
‖PrOε‖2

]
= E

[
r∑
j=1

Ç
n∑
k=1

hkj εk

å2]

=
r∑
j=1

n∑
k=1

n∑
l=1

hkjh
l
j E [εkεl] =

r∑
j=1

n∑
k=1

(hkj )2 =
r∑

k=1
(OTO)kk = r,

using independence and the zero mean property.
In the scenario where ε ∼ N (0, σ1n) we can go even further and conclude that PrOε

is a σ2-sub-Gaussian vector in Rr; since O is orthogonal, Oε ∼ N (0, σ21n) and therefore
PrOε ∼ N (0, σ21r). Therefore in the case where ε ∼ N (0, σ1n) we can prove that for
some universal constant c > 0, with probability at least 1− δ we have

MSE(X θ̂LS) ≤ cσ2 rank(X) + log(1/δ)
n

.

14



We will now see that we can get similar control in the general case where ε is centred
σ2-sub-Gaussian vector in Rn.

To proceed recall that we are trying to control εTXφ/‖Xφ‖, where Im(X) is r-
dimensional. As before write H = (h)ri=1 for an orthonormal basis of Im(X) where
we can express the vectors hi in the standard basis as

hi =
n∑
k=1

hki ek, i = 1, . . . , r.

For i = 1, . . . , r define the column vectors φi = (h1
i , . . . , h

n
i )T and let Φ be the n×r matrix

Φ = (φ1, . . . , φr). Notice that (ΦTΦ)ij = 〈hi,hj〉 = δij and that for any v ∈ Im(X) we
have

v =
r∑
j=1

αjhj =
r∑
j=1

αj

n∑
k=1

hkjek =
n∑
k=1

(
r∑
j=1

αjh
l
j

)
ek.

Therefore we have that for any v ∈ Im(X)

Φ[v]H = [v]E,

where for any basis K, [v]K denotes the vector of coefficients of v when expressed in the
basis K. In particular, any v ∈ Im(X) can be written as Φν for some ν ∈ Rr.

Therefore, for any φ ∈ Rn, there is some ν ∈ Rr such that

εTXφ

‖Xφ‖
= εTΦν
‖Φν‖ = 〈ΦTε, ν〉

〈Φν,Φν〉1/2 = 〈ΦTε, ν〉
〈ΦTΦν, ν〉1/2 = 〈Φ

Tε, ν〉
‖ν‖

,

since ΦTΦ = 1r and ν ∈ Rr.
Next for u ∈ Sr−1 we can always write

E exp
î
λ〈u,ΦTε〉

ó
= E exp [λ〈Φu, ε〉]

and since ΦTΦ = 1r we have that for any u ∈ Sr−1 we have

‖Φu‖2 = 〈Φu,Φu〉 = 〈ΦTΦu, u〉 = ‖u‖2 = 1,

and therefore Φu ∈ Sn−1. Since, Φu is a unit vector, and by assumption ε is a σ2-sub-
Gaussian random vector in Rn, by definition we have that 〈Φu, ε〉 is σ2-sub-Gaussian and
therefore

E exp
î
λ〈u,ΦTε〉

ó
= E exp [λ〈Φu, ε〉] ≤ exp

Å
λ2σ2

2

ã
.

Since this holds for any u ∈ Sr−1 we conclude that ΦTε is a σ2-sub-Gaussian vector in Rr
(where as ε is in Rn).

Thus, finally we have to consider

εTXφ

‖Xφ‖
≤ sup

ν∈Sr−1

〈ε̃, ν〉
‖ν‖

≤ sup
v∈Rr,‖v‖≤1

〈ε̃, v〉,

where ε̃ is σ2-sub-Gaussian in Rr. The conclusion comes from the following theorem.

Theorem 7. Let X be a σ2-sub-Gaussian vector in Rd. Then for any δ > 0, with
probability at least 1− δ we have

sup
θ∈Bd1 (0)

〈θ,X〉 ≤ 4σ
√
d+ 2σ

»
2 log(1/δ).
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Proof. The idea is quite common for controlling suprema and is the following; let N ⊂
Bd

1(0) be a 1/2-net of Bd
1(0), that is N = {x1, . . . , x|N |} ⊂ Bd

1(0) and for any x ∈ Bd
1(0),

miny∈N |x− y| ≤ ε. In particular B1 ⊂ ∪z∈NB1/2(z).
Then we can write

sup
θ∈B1(0)

〈θ,X〉 ≤ sup{〈z + y,X〉 : y ∈ N , z ∈ B1/2(0)}

≤ sup
z∈B1/2(0)

〈z,X〉+ sup
y∈N
〈y,X〉

= 1
2 sup
z∈B1(0)

〈z,X〉+ sup
y∈N
〈y,X〉,

and rearranging we obtain

sup
θ∈B1(0)

〈θ,X〉 ≤ 2 sup
y∈N
〈y,X〉.

Thus we have reduced the supremum over an uncountable set to a maximum over a finite
set of size N . We know that for each y ∈ B1(0), 〈y,X〉 is σ2-sub-Gaussian, and we can
control the maximum of, possibly dependent, sub-Gaussian variables, very well using a
union bound, as in Lemma 1.3.2. In particular we know that

P[2 sup
y∈N
〈y,X〉 ≥ t] ≤ |N |e−t2/8σ2

.

We now have to control N . Again the argument is classical. We construct an efficient
ε-net with the following algorithm: initialise N := {0}, X := B1(0) \ ∪z∈NBε(z). While
X 6= ∅ choose a point in X and add it toN . By compactness, the algorithm will eventually
terminate at which point for any x, y ∈ N we have |x − y| > ε. Therefore if we replace
the ε-balls with ε/2-balls they will be disjoint and will satisfy

∪z∈NBε/2(z) ⊂ (1 + ε
2)B1(0).

Computing the volumes of the above sets we obtain

(1 + ε
2)dVol(B1(0)) = Vol

(
(1 + ε

2)B1(0)
)
≥ Vol

(
∪y∈NBε/2(y)

)
=
∑
y∈N

Vol(Bε/2(y) = |N |
( ε

2

)d
Vol(B1(0)),

using the fact that the ε/2-balls are disjoint. Rearranging we obtain

|N | ≤
Å1 + ε/2

ε/2

ã
≤ (3/ε)d,

and choosing ε = 1/2 we have |N | ≤ 6d.
Going back to our union bound, we want to ensure that

P[2 sup
y∈N
〈y,X〉 ≥ t] ≤ |N |e−t2/8σ2

≤ 6de−t2/8σ2 ≤ δ
t2

8σ2 ≥ log(1/δ) + d log 6,

which is guaranteed if we choose t =
√

8σ2 log(6)d+ 2σ
√

2 log(1/δ).
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Going back to our estimation of the mean squared error, since

MSE(X θ̂LS) = 1
n
‖Xθ∗ −X θ̂LS‖2 ≤ 4

n

εTX(θ̂LS − θ∗)
‖X(θ̂LS − θ∗)‖

we conclude that with probability at least 1− δ we have

MSD(X θ̂LS) . σ2

n
(r + log(1/δ)) .

Recalling that r = rank(X), we summarise what we have done so far we have the
following result.

Theorem 8 (OLS for fixed design). Assume the model (2.1) holds, where ε = (εi)ni=1 is
σ2-sub-Gaussian random vector. Then, there exists a universal constant c > 0, such that
the least squares estimator satisfies

E

î
MSE(X θ̂LS)

ó
≤ c rank(X)

n
σ2,

and with probability at least 1− δ we have

MSE(X θ̂LS) ≤ cσ2 rank(X) + log(1/δ)
n

.

Notice that in the case where n ≥ d and rank(X) = d we can also control the recovery
error in l2, using

λmin(XTX)‖θ̂LS − θ∗‖22 ≤ MSE(X θ̂LS).

Although controlling the prediction error is easier than controlling the recovery error,
we can already feel the effect of the dimension; in this case it is the dimension of the column
space of the design matrix X. In a sense this dimension controls the expressiveness of
model (2.1) as it controls the dimension of the right hand side.

{ex:gaussian_seq}
Example 6 (Gaussian sequence). One example where this bound is actually tight is a
finite dimensional version of the Gaussian sequence model, that is observations of the
form

yi =
√
nθ∗i + εi, i = 1, . . . , n.

Here clearly n = d and the design matrix takes the especially simple form X =
√
n1n.

Here clearly θ̂LS = n−1/2y. One can then easily see that

‖X(θ̂LS − θ∗)‖22 =
n∑
i=1

ε2i
n
,

which is Ω(1) for all n.

So we can see that when d ≥ n, even the prediction error can be quite large. We will
see in the next section that the only way to make any progress in this case is if we impose
some additional structure. Sparsity is the most common choice.
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2.1 High-dimensional models and Sparsity

Despite its simplicity it is worth considering the deterministic linear model y = Xθ∗.
When d > n then it defines an underdetermined linear system which then has a linear
space of solutions. In particular there is no way of obtaining any meaningful information
about θ∗, unless we impose some additional structure. This structure can often be in-
troduced in the model in the form of a constraint. Before proceeding we introduce some
standard notation.
Notation. For a vector v ∈ Rd and q > 0 let ‖v‖q denote the norm ‖v‖q =

∑n
i=1 ‖vi‖q,

lq the normed space (Rd, ‖ · ‖q) and Bq(t) the lq-ball of radius t > 0, that is Bq(t) := {v :
‖v‖q ≤ t}. For q = 0, we define ‖v‖0 :=

∑
j 1{vj 6= 0}, which is not a norm but counts

the number of non-zero entries of v.
Suppose for example that we knew a priori that the solution θ∗ belongs to some set

K; K could be the set of k-sparse vectors, i.e. B0(k), or Bq(1) for some q > 0. Then we
could rephrase the problem as follows for example:

θ̂ = arg min
θ∈K

‖y −Xθ‖22. (2.5) {eq:constrainedLS}{eq:constrainedLS}

Let us first consider the case where K = B1(1) and θ∗ ∈ K.
Notice that since we assume θ∗ ∈ B1(1), the inequality (2.3) holds and thus we again

have
‖X(θ̂LS − θ∗)‖22 ≤ 2ε

TX(θ̂LS − θ∗)
‖X(θ̂LS − θ∗)‖

≤ 2 sup
v,w∈B1(1)

εTX(v − w).

First notice that if v, w ∈ B1(1) then by the triangle inequality v − w ∈ B1(2) and thus
by linearity we have

‖X(θ̂LS−θ∗)‖22 ≤ 2 sup
v′∈B1(2)

εTXv′ ≤ 4 sup
v′∈B1(1)

εTXv′ = 4 sup{εTXv : v = ±ej , j = 1, . . . , d},

where we used the standard fact that a linear form over a convex set is maximized at
an extreme point, and that the extreme points of B1(1) are given by the standard basis
vectors and their opposites (compare with B2(1). This has reduced the supremum from
an uncountable to a finite set of cardinality d. Also notice that if the column vectors
of X are given by X = [X1, · · · ,Xn], then by Lemma 1.3.1, the variables εTXj are
‖Xj‖22σ2-sub-Gaussian. Thus using Lemma 1.3.2 we have that

E

î
MSE(X θ̂LS)

ó
≤ 4σmaxj ‖Xj‖2

n

»
2 log(2d),

and for any t > 0 we have

P

î
MSE(X θ̂LS) > t

ó
≤ P
ï

max
v=±ej

εTXv > nt/4
ò
≤ 2d exp

Å −n2t2

16σ2 maxj ‖Xj‖22

ã
.

In particular if the design matrix is normalized such that maxj ‖Xj‖2 ≤
√
n, then we

have concentration at rate n.
Similar results hold if we let K = B0(k), for some integer k. However, there are

computational issues with that choice, since to solve the problem one needs to compute
a very large number of LS estimators, in particular dCk, one for every possible choice of
support.

So it seems that indeed, additional structure can get us improved results. But we
have cheated. Typically, one will not know a priori that θ∗ belongs to B1(1), or that
it is k-sparse, so we need methods that will automatically adapt to the structure of the
problem.
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Regularization

As we mentioned in the last section if we know that θ∗ belongs to some set K then we
can use this information to obtain sharper rates. Two particular cases of interest were
K = B1(1) and K = B0(k). We saw that in the former case, under some additional
assumptions on the normalization of X we can get much better rates by making use of
the additional structure. The issue however is that typically we do not know that, for
example, θ∗ only has k non-zero entries. We may have reason to believe that it is sparse,
but we need a methodology which does not need a priori knowledge of k, but rather
adapts to it.

In this case instead of (2.5) we may modify (2.2) by adding a regularisation term that
essentially penalises parameters with high l0 norm, that is one could consider

θ̂ ∈ arg min
θ∈Rd

ß 1
2n‖y −Xθ‖22 + λ‖θ‖0,

™
(2.6) {eq:hardsparse}{eq:hardsparse}

where λ is a user-set regularisation parameter.
Before we embark on our task however, it is quite interesting to first consider the

noiseless setting, that is the model
y = Xθ∗, (2.7) {eq:noiseless}{eq:noiseless}

and try to understand when it is possible to recover θ∗ exactly. To be more precise
suppose that we know that θ∗ is sparse, say k-sparse, where k � d is unknown. Then we
could try and solve the underdetermined problem (2.7) by adding a regularisation term.
That is let us try to solve the minimisation problem

min
θ∈Rd

‖θ‖0, Xθ = y. (2.8) {eq:initiall0problem}{eq:initiall0problem}

A solution to this would automatically give us the sparsest parameter θ solving (2.7)
without assuming a priori anything about the sparsity of θ∗.

2.2 Recovery in the noiseless model

Although (2.8) directly controls the sparsity of the parameter, the loss function in the
above problem is non-convex which makes our task quite hard. One would have to search
all subsets of {1, . . . , d} and attempt to solve (2.7) restricted to that subspace. The
computational cost grows exponentially in the sparsity parameter k.

So we may instead consider a convex relaxation of (2.8) by replacing the ‖ · ‖0 regu-
larisation term with a convex one

min
θ∈Rd

‖θ‖1, Xθ = y, (2.9) {eq:basispursuit}{eq:basispursuit}

Chen, Donoho, and Saunders (1998).

Notation. For any integers k < n, let [k : n] = {k, k + 1, . . . , n}.

The first question we will attempt to answer is whether (2.9) recovers the solution of
(2.8). That is suppose that y = Xθ∗, where

θj 6= 0, j ∈ S ⊂ [1 : d], θj = 0, j ∈ Sc = [1 : d] \ S.
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To understand when solving (2.9) will give us the solution of (2.8) we need to first
think a little bit about the space of solutions of Xθ = y. We know that θ∗ is a solution,
so the space of solutions will be given by

S(X, y) := {θ ∈ Rd : Xθ = y} = θ∗ + ker(X),

where ker(X) is the kernel of X.
Since can restate (2.9) as minθ∈S(X,y) ‖θ‖1 it is clear that (2.9) will recover the solution

of (2.8) only when θ∗ is the minimal element of S(X, y) with respect to the ‖ · ‖1 norm,
or in other words, for any v ∈ ker(X) we have

‖θ∗ + v‖1 ≥ ‖θ∗‖.

In order to visualise the situation (see also Figure 2.2) consider B(‖θ∗‖1), that is the
l1-ball with θ∗ on its boundary. Notice that since θ∗ is sparse, it will necessarily be an
extreme point of B(‖θ∗‖1), that is one of the ”corners”. Then (2.9) will correctly recover
θ∗ if and only if θ∗ + ker(X) only intersects B(‖θ∗‖1) at θ∗.

Notation. For v ∈ Rd and S ⊂ [1 : d] we write vS for the vector with entries (vS)i = vi
if i ∈ S and (vS)i = 0 otherwise.

We define the following subset

C(S) := {v ∈ Rd : ‖vSc‖1 ≤ ‖vS‖1}.

We are now ready to have a closer look at Figure 2.2, where d = 2, θ∗ = (0, 1), and thus
its support is S = {2}. The shaded region in the figure represents C(S). We can see that
there will be a unique solution if and only if θ∗ + ker(X) does not intersect the l1 ball
with θ∗ on its boundary. Equivalently, by shifting everything by −θ∗, we can see that we

{fig:restrictednull}

θ∗

S = {2}, Sc = {1}

θ∗ + ker(X)

ker(X)

Figure 2.1: Here S = {2}. The gray shaded region represents C(S). The green shaded
region is B(‖θ∗‖1).

can recover θ∗ if and only if ker(X) does not intersect the gray shaded region which is
precisely C(S).

As we can see this property refers only to the kernel of X and the support of the
vector.

20



Definition 7. We say that the matrix X satisfies the restricted nullspace property
with respect to S ⊂ [1 : d], if C(S) ∩ ker(X) = {0}.

Summarising the previous discussion we have the following result.

Theorem 9. The following are equivalent:

(a) For any vector θ∗ supported on S ⊂ [1 : d], (2.9) has a unique solution θ∗.

(b) The matrix X satisfies the restricted nullspace property with respect to S.

Proof. (b) ⇒ (a): By assumption Xθ∗ so we need to prove that any other solution θ′,
has norm ‖θ′‖1 ≥ ‖θ∗‖1. Let us write θ′ = θ∗ + v, where v ∈ ker(X); by (b) it must be
the case that ‖vSc‖1 ≥ vS‖1. Finally, recall that θ∗ is supported on S, and thus by the
triangle inequality

‖θ′‖1 = ‖θ∗ + v‖1 = ‖θ∗Sc + vSc‖1 + ‖θ∗S + vS‖1
= ‖vSc‖1 + ‖θ∗S + vS‖1 ≥ ‖θ∗S‖1 − ‖vS‖1 + ‖vSc‖1 ≥ ‖θ∗‖1.

(a)⇒ (b): Suppose that θ∗ ∈ ker(X), θ∗ 6= 0. Then Xθ∗ = 0, and thus

X[θ∗S , 0]T = X[0,−θ∗Sc ]T.

But this means that the vector [0,−θ∗Sc ] solve the problem Xθ = X[θ∗S , 0]. Since by (a),
(2.9) must recover θ∗S uniquely, we must have that ‖θS‖1 < ‖θSc‖1.

Sufficient conditions for restricted nullspace property

For the restricted nullspace property to be useful we need checkable sufficient conditions.
First we should develop a little intuition.

Let us first think about what it means for a vector v = (v1, . . . , vd)T to be in ker (X);
by definition Xv = 0, and since Xv =

∑d
j=1 vjXj , where Xj , j = 1, . . . , d are the

columns of X, the condition Xv = 0 for v 6= 0, implies that the columns of X are not
linearly independent. Therefore one obvious condition we could impose to ensure that
ker(X) = 0, and therefore that the restricted nullspace property holds for all S ⊂ [1 : d]
would be to require that the columns of X are linearly independent; one can see that this
requires that d ≤ n so it restricts the dimension of the model. If the columns of X are
linearly independent then by transforming the model (2.7), we can actually assume that
the columns are orthonormal, that is 〈Xj ,Xk〉 = δj,k, where for two vectors v, w ∈ Rd we
write 〈v, w〉 for their inner product.

In fact when we consider the noisy model (2.1) it will be convenient to change the
normalisation of the problem so that the corresponding assumption would be the following
condition known

1
n
〈Xj ,Xk〉 = nδj,k, j, k,= 1, . . . , d. (2.10) {eq:ORT}{eq:ORT}

However, as we mentioned before, this is quite restrictive as it can only hold for d ≤ n.
One way around this problem would be to allow (2.10) to fail in a controlled way.

That is we could require for the colums of X to be almost orthonormal. This leads us to
the following definition.

Definition 8 (Pairwise incoherence parameter). For a n × d-matrix X, we define the
pairwise incoherence parameter as

δPW(X) := max
j,k=1,...,d

∣∣∣∣ 1n〈Xj ,Xk〉 − δj,k
∣∣∣∣ .
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The pairwise incoherence parameter allows us to quantify the degree to which (2.10)
fails to hold.

Let us now see how we can use the pairwise incoherence parameter to check the
restricted nullspace property. Let S ⊂ [1 : d], with |S| = s and suppose that δPW(X) ≤
γ/s. Also let XS = (Xi,j)i,j∈S . Suppose that λ is an eigenvalue of XT

SXS/n. Then for
some w ∈ Rs Å 1

n
XT
SXS − 1

ã
w = (λ− 1)w

|λ− 1|‖w‖2 ≤
∥∥∥∥ 1
n
XT
SXS − 1

∥∥∥∥
2
‖w‖2

≤
∥∥∥∥ 1
n
XT
SXS − 1

∥∥∥∥
F
‖w‖2 (2.11) {eq:pwineq}{eq:pwineq}

where for a matrix A ∈ Rk×k, the l2-norm is defined as

‖A‖2 := supw ∈ Rk : ‖w‖2 = 1‖Aw‖2,

and the Frobenius norm ‖A‖F as

‖A‖F :=
k∑

i,j=1
A2
i,j .

We also used the standard inequality ‖A‖2 ≤ ‖A‖F which follows easily by checking the
inequality for any v =

∑
j vjej , with

∑
c2
j = 1. Thus continuing from (2.11) we have

|λ− 1|2 ≤
∑
j,k∈S

Å 1
n
〈Xj ,Xk〉 − δj,k

ã2
≤ |S|2δPW(X)2 ≤ γ2.

From this we easily deduce that if γ ∈ (0, 1) we must have 1 − λ ≤ γ and therefore that
λ ≥ 1− γ > 0.

This implies that for any θ ∈ Rd we have

θT
S

XT
SXS

n
θS ≥ (1− γ)‖θS‖22,

which after rearranging and noticing that ‖XSθS‖2 = ‖XθS‖2, implies that

‖θS‖22 ≤
1

1− γ θ
T
S

XTX

n
θS .

Now, suppose that θ ∈ ker(X). Thus XθS = −XθSc . Therefore

‖θS‖22 ≤
1

1− γ θ
T
S

XTX

n
θS

= 1
1− γ θ

T
S

XTX

n
θSc

= 1
1− γ θ

T
S

Ç
XTX

n
− 1
å
θSc

since θT
SθSc = 0

≤ 1
1− γ ‖

XTX

n
− 1‖∞‖θS‖1‖θSc‖1
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≤ 1
1− γ δPW(X)‖θS‖1‖θSc‖1,

where ‖A‖∞ := maxi,k |Ai,j |. Finally, using the l1 − l2 inequality we have that ‖θS‖21 ≤
|S|‖θS‖22 and thus continuing from above

‖θ‖21 ≤ s‖θS‖22 ≤ s
1

1− γ
γ

s
‖θSc‖1

‖θ‖1 ≤
γ

1− γ ‖θS
c‖1.

We have essentially proven the following result.

Proposition 2.2.1. If for some integer s we have

δPW(X) ≤ 1
3s,

then the restricted nullspace property holds for all subsets S of cardinality at most s.

2.3 The Lasso estimator

We have developed some intuition about the way the design matrix X and the parameter
θ∗ must interact for (2.9) to recover the solution of (2.8) in the noiseless setting.

We now return to the noisy setting of Model (2.1). We aim to look for sparse solutions,
but instead of considering (2.6) we aim for its convex relaxation

θ̂L ∈ arg min
θ∈Rd

ß 1
2n‖y −Xθ‖22 + λ‖θ‖1,

™
, (2.12) {eq:lasso}{eq:lasso}

known as the Lasso estimator, Tibshirani (1996).
We will first analyse the Lasso estimator without imposing any structural assumptions

on the design matrix. We will then see how controlling the pairwise incoherence parameter
of X can allow us to get better rates.

2.3.1 Lasso-minimal assumptions

First we attempt to bound the means squared error of the Lasso estimator assuming only
that the columns of X are normalized so that maxj ‖Xj‖22 ≤ n. Recall that

‖Y −X θ̂L‖22 = ‖Xθ∗ + ε−X θ̂L‖22
= ‖X(θ∗ − θ̂L)‖22 + 2〈ε,X(θ∗ − θ̂L)〉+ ‖ε‖22

and thus
‖X(θ∗ − θ̂L)‖22 = ‖Y −X θ̂L‖22 − 2〈ε,X(θ∗ − θ̂L)〉 − ‖ε‖22. (2.13) {eq:lasso_slow1}{eq:lasso_slow1}

Directly from (2.12) we obtain

1
n
‖Y −X θ̂L‖22 + 2τ‖θ̂L‖21 ≤

1
n
‖Y −Xθ∗‖22 + 2τ‖θ∗‖1

which combined with (2.13) gives us

‖X(θ∗ − θ̂L)‖22 ≤ 2〈ε,X(θ̂L − θ∗)〉+ 2nτ
Ä
‖θ∗‖1 − ‖θ̂L‖1

ä
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≤ 2〈XTε, θ̂L〉 − 2nτ‖θ̂L‖1 + 2
Ä
〈XTε, θ∗〉+ nτ‖θ∗‖1

ä
≤ 2
Ä
‖XTε‖∞ − nτ

ä
‖θ̂L‖1 +

Ä
‖XTε‖∞ + nτ

ä
‖θ∗‖1.

A combination of a union bound with Lemma 1.3.1 gives

P

î
‖XTε‖∞ ≥ t

ó
= P

ï
max
j=1,...,d

〈ε,Xj〉 ≥ t
ò
≤ d max

j=1,...,d
P [〈ε,Xj〉 ≥ t] ≤ 2d exp

Å
− t

2nσ2

ã
,

where we used the assumption that maxj ‖Xj‖22 ≤ n.
We want the probability of this event to be smaller than δ > 0 say, which can be

guaranteed by letting
t = σ

»
2n log(2d) + σ

»
2n log(1/δ).

If we then choose the regularisation parameter τ to be such that τ = t/n then we have
that with probability at least 1− δ we have

MSE(X θ̂L) := ‖X(θ∗ − θ̂L)‖22
n

≤ 4τ‖θ∗‖1.

We have just proven the following result.
{thm:lasso_slow_rate}

Theorem 10. Suppose that (2.1) holds and let θ̂L the solution of (2.12) with

τ = σ

…
2
n

(»
log(2d) +

»
log(1/δ)

)
.

Then with probability at least 1− δ we have

MSE(X θ̂L) ≤ 4‖θ∗‖1√
n

(»
2 log(2d) +

»
2 log(1/δ)

)
.

We can see that if we only assume that maxj ‖Xj‖2 ≤
√
n, we get a n−1/2 rate.

2.3.2 ORT, thresholding and faster rates

Although we seem to have attained the n−1/2 rate almost for free, it is quite interesting
to revisit the Gaussian sequence Example 6. Recall that there n = d and X =

√
n1. In

this case (2.12) becomes

arg min
θ∈Rn

ï 1
2n‖y −Xθ‖22 + τ‖θ‖1.

ò
(2.14) {eq:sft_gaussian}{eq:sft_gaussian}

By multiplying (2.1) by XT/n the model now becomes

y′ := 1
n
XTy = θ∗ + ξ,

where ξ = (ξ1, . . . , ξn), with ξi independent and (σ2/n)-sub-Gaussian. Then notice that

1
n
‖y −Xθ‖22 =

∥∥∥∥ 1
n
XT(y −Xθ)

∥∥∥∥2

2
=
∥∥y′ − θ∥∥2

2 ,

whence (2.14) becomes

arg min
θ∈Rd

[
‖y′ − θ‖22 + 2τ‖θ‖1

]
= arg min

θ1,...,θd

d∑
i=1

[
(y′i − θi)2 + 2τ |θi|

]
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=
d∑
i=1

arg min
θ1,...,θd

[
(y′i − θi)2 + 2τ |θi|

]
.

For positive θi this becomes

θ2
i − 2y′iθi + y′2i + 2τθi = θ2

i + 2(τ − y′i)θi + y′2i ,

which is optimized at y′i − τ , whereas for negative θi this is

θ2
i − 2y′iθi + y′2i − 2τθi = θ2

i − 2(τ + y′i)θi + y′2i ,

which is minimised at τ + y′i. Therefore if y′i > τ , θ̂i = yi − τ , and if τ + yi < 0, that is
yi < −τ , θ̂i = yi + τ . In the case where |y′i| ≤ τ , we have in either case no solution so the
function is minimised at the boundary, that is θi = 0.

We can summarise this as

θsft
i = T sft

τ (y′i), i = 1, . . . , d,

where we used the soft thresholding function

T sft
τ (x) :=

®
sign(x′)(|x| − τ) if |x| ≥ τ ,
0 otherwise.

Let

τ := τn := σ

 
8 log(2d/δ)

n
,

and define the event A := {maxi |ξi| ≤ τ/2}. Since each ξi is (σ2/n)-sub-Gaussian we get
that

P[Ac] ≤ 2d exp
Å
−n τ2

8σ2

ã
≤ δ.

On the event A, we can thus estimate

‖θsft − θ∗‖22 =
d∑
j=1

∣∣∣T sft
τ (y′i)− θ∗i

∣∣∣2
=

d∑
j=1

[
1{y′i ≥ τ}(θ∗i + ξi − τ − θ∗i )

+ 1{y′i ≤ −τ}(θ∗i + ξi + τ − θ∗i )− 1{|y′i| ≤ τ}|θ∗i |
]2

=
d∑
j=1

[
1{y′i ≥ τ}(ξi − τ)

+ 1{y′i ≤ −τ}(ξi + τ)− 1{|y′i| ≤ τ}|θ∗i |
]2

≤
d∑
j=1

[
2τ1{|y′i| ≥ τ}+ 1{|y′i| ≤ τ}|θ∗i |

]2
.

Also notice that on the event A it easily follows that |y′j | ≥ τ implies that

τ

2 ≥ |ξj | ≥ |ξj + θ∗j | − |θ∗j |,
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whence we obtain |θ∗j | ≥ τ/2, and |y′j | ≤ τ implies that |θ∗j | ≤ 3τ/2. Overall we thus
obtain

‖θsft − θ∗‖22 ≤
d∑
j=1

[
2τ1{|θ∗j | ≥ τ/2}+ 1{|θ∗j | ≤ 3τ/2}|θ∗j |

]2

≤
d∑
j=1

[
4 min{|θ∗j |, τ/2}

]2
≤

d∑
j=1

16 min
ß
|θ∗j |2,

τ2

4

™
≤ 4‖θ∗‖20τ2

≤ 4‖θ∗‖20σ2 8 log(2d/δ)
n

= 32‖θ∗‖20σ2 log(2d/δ)
n

.

Also notice that by construction the support of θsft is contained in the support of θ∗, and
that with probability at least 1 − δ, if θ∗j > 3τn/2 for every j in the support of θ∗, then
the support of θsft matches that of θ∗.

Notice that we can get a similar rate for the mean squared error of the original model
(2.1) under the assumption (2.10). Indeed if XTX/n = 1, then by multiplying the model
y = Xθ∗ + ε, where εi are independent σ2-sub-Gaussian, by XT/n we obtain

y′ = XTy

n
= θ∗ + ξ,

where ξ = XTε/n. Notice that ξ = (ξ1, . . . , ξn) where the ξi are (σ2/n)-sub-Gaussian,
although no longer independent. However, notice that all preceding calculations did not
use independence at all, since we only relied on union bounds and the sub-Gaussian
properties of the individual noise components εi. Since under assumption (2.10) the MSE
of θsft for model (2.1) is given by

MSE(Xθsft) = (θ∗ − θsft)TX
TX

n
(θ∗ − θsft),

we thus conclude that similar bounds hold.
We thus have the following result.

{thm:lasso_ort_fast}
Theorem 11. For the observation model 2.1, under the assumption (2.10), with proba-
bility at least 1− δ, we have

MSE(Xθsft) ≤ 32‖θ∗‖20σ2 log(2d/δ)
n

.

where θsft is the soft thresholding estimator with threshold

τ := τn := σ

 
8 log(2d/δ)

n
.

When discussing exact recovery in the noiseless setting we saw that we could actually
make progress by using the pairwise incoherence parameter to quantify the extend to
which (2.10) failed. We will now see that this is also the case for the Lasso estimator.
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2.3.3 The restricted eigenvalue condition

In the last Section we saw that under the assumption (2.10) we can obtain n−1 rates
for the prediction error of the Lasso estimator, which in that case takes the special form
of the soft thresholding estimator θsft. On the other hand, under only the normalisation
assumption that maxj ‖Xj‖2 ≤

√
n, in Theorem 10 we were able to obtain the rate n−1/2.

We will now attempt to obtain the n−1 rate without assumption (2.10). In the noise-
less setting we saw that the restricted nullspace assumption was crucial in general for
recovering the truth θ∗. In this section a similar, albeit stronger condition, will prove
extremely useful. Before we introduce this condition, we need some notation. For α ≥ 1
and S ⊂ [1 : d], we define the set

Cα(S) := {v ∈ Rd : ‖vSc‖1 ≤ α‖vS‖1}.

Notice that for C1(S) coincides with the set C(S) used in the restricted nullspace property.

Definition 9 (Restricted eigenvalue condition). The matrix X satisfies the (κ, α)-restricted
eigenvalue condition (RE) over S ⊂ [1 : d] if for all v ∈ Cα(S)

κ‖v‖22 ≤
1
n
‖Xv‖22.

{thm:lasso_fast_rate}
Theorem 12. Suppose that (2.1) holds with θ∗ supported on S ⊂ [1 : d], where ε = (εi)di=1,
with εi σ2-sub-Gaussian. Suppose in addition that X is normalised so that maxj ‖Xj‖2 ≤√
n and that X satisfies the (κ, 3)-restricted eigenvalue condition with respect to S. Let

θ̂L solve (2.12) with

τn :=

 
8σ2 log(2d/δ)

n
.

Then with probability at least 1− δ

MSE(X θ̂L) ≤ 24‖θ∗‖0σ2 log(2d/δ)
κn

.

Proof. Define the event
A :=

ß
max
j=1,...,d

1
n
〈Xj , ε〉 ≤ τ/2

™
.

Notice that

P(Ac) ≤ 2d exp
Å
− n2τ2

8σ2 maxj ‖Xj‖22

ã
≤ 2d exp

Å
−nτ

2

8σ2

ã
≤ δ,

since by assumption maxj ‖Xj‖2 ≤
√
n, and the εi are σ2-sub-Gaussian.

To ease notation let

L(θ; τ) := Ln(θ; τ) := 1
2n‖y −Xθ‖22 + τ‖θ‖1,

and let’s write ∆ := θ̂L − θ∗.
Since y −X θ̂L = −X∆ + ε, we get

L(θ̂L; τ) = 1
2n‖X∆‖22 −

1
n
〈X∆, ε〉+ ‖ε‖

2
2

2n + τ‖θ̂L‖1.
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Note that by definition of θ̂L we have that

L(θ̂L; τ) ≤ L(θ∗; τ) = 1
2n‖ε‖

2
2 + τ‖θ∗‖1,

which after re-arrangement gives

0 ≤ 1
2n‖X∆‖22 ≤

1
n
〈X∆, ε〉+ τ

î
‖θ∗‖1 − ‖θ̂L‖1

ó
. (2.15) {eq:fund_lagrangian}{eq:fund_lagrangian}

Since by definition θ∗ is supported on S we have that

‖θ∗‖1 − ‖θ̂L‖1 = ‖θ∗S‖1 − ‖θ̂L
S‖1 − ‖θ̂L

Sc‖1 = ‖θ∗S‖1 − ‖θ∗S + ∆S‖1 − ‖∆Sc‖1
≤ ‖θ∗S‖1 − (‖θ∗S‖1 − ‖∆S‖1)− ‖∆Sc‖1 = ‖∆S‖1 − ‖∆Sc‖1.

Thus continuing from (2.15) we have

0 ≤ 1
n
‖X∆‖22 ≤

2
n
〈XTε,∆〉+ 2τ (‖∆S‖1 − ‖∆Sc‖1)

≤ 2‖∆‖1 max
j=1,...,d

|〈Xj , ε〉|
n

+ 2τ (‖∆S‖1 − ‖∆Sc‖1)

and on the event A

≤ τ (3‖∆S‖1 − ‖∆Sc‖1) .

This implies that on the event A, the error vector ∆ belongs to C3(S). Thus, continuing
from above

1
n
‖X∆‖22 ≤ 3τ‖∆S‖1 ≤ 3τ

√
s‖∆‖2 ≤ 3τ

√
s
‖X∆‖2√

κn
(2.16) {eq:fast_rate_ineq1}{eq:fast_rate_ineq1}

by the l1− l2-inequality and the assumption that X satisfies the (κ, 3)-RE condition with
respect to S. Rearranging the above we finally get

1√
n
‖X∆‖2 ≤ 3τ

…
s

κ
, (2.17) {eq:fast_rate_ineq2}{eq:fast_rate_ineq2}

whence we conclude that

MSE(X(θ̂L) ≤ 24‖θ∗‖0σ2 log(2d/δ)
κn

.

Remark 2.3.1. comment about necessity of RE condition?

2.4 Bounds on l2-error

So far we have mainly discussed the prediction error, that is error incurred when using
our estimator θ̂ to predict the response vector y for a fresh instance of the noise vector.
However, one may be more interested in inference for the parameter vector θ∗ itself. In
this section we will obtain bounds on the l2 error ‖θ∗ − θ̂L‖22.

We will again be making use of the Restricted Eigenvalue condition, and perhaps here
it will be easier to visualise its importance. To simplify things suppose that instead of

28



(2.12) we consider the constrained problem (2.5) with K = B1(R), where R = ‖θ∗‖1, so
that the truth is feasible. That is we consider the problem

θ̂ := arg min
θ∈B1(R)

Ln(θ),

where Ln(·) is the empirical loss

Ln(θ) := 1
2n‖y −Xθ‖22.

Notice that θ̂ above is a minimiser of the empirical loss, whereas θ∗ by definition minimises
the population loss, that is

L(θ) := E
[
‖y −Xθ‖22

]
= E

[
‖X(θ∗ − θ) + ε‖22

]
.

When the sample size n is large, one would expect that the empirical and population
errors should be close, and therefore that θ∗ should almost minimise the empirical loss;
that is one would expect that Ln(θ∗) ≈ Ln(θ̂), and indeed this is what we observed in
the last section. When does |Ln(θ∗)− Ln(θ̂)| being small also imply that |θ∗ − θ̂| is also
small? The reverse situation is probably easier to parse: can we have |θ∗ − θ̂| large and
|Ln(θ∗) − Ln(θ̂)| small? The answer is of course yes, when Ln is flat. In the opposite
direction, if f is strongly convex, that is we have

f(y) ≥ f(x) + 〈∇f(x), y − x〉+ κ‖y − x‖22,

for all x, y, x∗ is a minimiser, whence ∇f(x∗) = 0, and f(x′)− f(x∗) ≤ ε, then

κ‖x′ − x∗‖22 ≤ f(x′)− f(x∗) < ε,

concluding that ‖x′ − x∗‖22 ≤ ε/κ.
Although the quadratic form of the loss may raise some hope that Ln is indeed strongly

convex, a more careful examination shows that in the high-dimensional case that is of
interest to us this is impossible. In fact, the loss will be completely flat along any direction
in the nullspace of X and the nullspace is certainly non-empty when d � n. Therefore
in the high-dimensional case, there is only hope of ‖θ∗ − θ̂‖22 being small if θ∗ does is not
too aligned with the nullspace of X. The restricted eigenvalue condition quantifies the
above intuition.

Example 7. Consider the following simple scenario. Let d = 2 and n = 1 and suppose
for simplicity that X = [1, 0]. Thus we have a single observation given by

y = X[θ∗1, θ∗2] + ε = θ∗1 + ε.

We are trying to infer θ∗. Clearly there isn’t much hope in recovering any information
about θ∗2. Suppose first that θ∗ = [1, 0], so that S = {1} and X satisfies the (κ, 3)-RE
condition: let v ∈ C3(S), that is 3|v1| ≥ |v2|. Then

‖Xv‖22 = v2
1 = (1− ε)v2

1 + εv2
1

≥ (1− ε)v2
1 + ε

9v
2
2 ≥ κ‖v‖22,

where κ := min{(1− ε), ε/9}.

29



Let θ̂ solve (2.12). Then notice that

(y −X θ̂)2 + λ‖θ̂‖1 = (1 + ε− θ̂1)2 + λ|θ̂1|+ λ|θ̂2|,

which is clearly minimised at θ̂ = [1 + ε − λ/2, 0], so that the prediction and l2(squared)
error are both given by (ε− λ)2. In particular for a small regularisation parameter λ and
small var ε, both errors will be small.

Now, suppose that θ∗ = [0, 1], so that X no longer satisfies the (κ, 3)-RE for any
κ > 0. Then y = ε and thus

(y −X θ̂)2 + λ‖θ̂‖1 = (ε− θ̂2)2 + λ|θ̂1|+ λ|θ̂2|,

which, at least for small enough λ is minimised at, θ̂ = [0, ε− λ/2]. Now notice that the
prediction error is then

‖X(θ∗ − θ̂)‖22 = 0,

where as the l2-error is

‖θ∗ − θ̂‖22 =
Å

1− ε+ λ

2

ã2
,

which is much larger.
{thm:lasso_l2}

Theorem 13. Under the assumptions of Theorem 12, with probability at least 1 − δ we
have

‖θ̂L − θ∗‖2 ≤
3
κ

 
8|S|σ2 log(2d/δ)

n
.

Proof. The proof is essentially contained in the proof of Theorem 12. Recall just before
(2.16) that on an event A of probability at least 1 − δ, the error vector ∆ = θ̂L − θ∗

belongs to C3(S). Therefore from (2.17) and the (κ, 3)-RE condition, we conclude from

√
κ‖∆‖2 ≤

1√
n
‖X∆‖2 ≤ 3τ

 
|S|
κ
.

2.5 Random design

So far we have studied the fixed design case under assumptions like the restricted nullspace
or restricted eigenvalue condition. Now we will show that for certain random designs,
mainly Gaussian, these conditions hold with high probability. The results will be based
on a few auxiliary results, most importantly some comparison inequalities for Gaussian
processes.

{lem:interpolation}
Lemma 2.5.1 (Interpolation). Suppose X ∼ N (O,ΣX) and Y ∼ N (O,ΣY ) are inde-
pendent Gaussian vectors and define their interpolation

Z =
√
tX +

√
1− tY , t ∈ [0, 1].

Then for every smooth function f we have

d
dt E[f(Zt)] = 1

2

n∑
i,j=1

Ä
ΣXij − ΣYij

ä
E

ï
∂2

∂xj∂xi
f(Zt)

ò
.
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Before proving the lemma we will an auxiliary result which is a multivariate form of
Stein’s lemma.

Lemma 2.5.2 (Multivariate Stein’s Lemma). Let X ∼ N (O,Σ). Then

E[Xif(X)] =
∑
j

Σij E

ï
∂f

∂xj
f(X)

ò
,

for any function f for which both sides make sense.

Proof. We can write X as X = Σ1/2ξ, where ξ is a standard normal vector. Then we
have

E[Xif(x)] =
∑
k

Σ1/2
ik E[ξkf(Σ1/2ξ)]

=
∑
k

Σ1/2
ik E

¶
E

î
ξkf(Σ1/2ξ) | ξ−i

ó©
and applying Stein’s lemma on the function ξk 7→ f(Σ1/2ξ)

=
∑
k

Σ1/2
ik

∑
j

E

ß
E

ï
∂f

∂xj
(Σ1/2ξ)Σ1/2

jk | ξ−i
ò™

=
∑
k

∑
j

Σ1/2
ik Σ1/2

jk E

ß
∂f

∂xj
(X)
™

=
∑
j

E

ß
∂f

∂xj
(X)
™∑

k

Σ1/2
ik Σ1/2

jk

=
∑
j

E

ß
∂f

∂xj
(X)
™

Σij ,

where we used the fact that by definition of the square root of the symmetric matrix Σ,
we have

∑
k Σ1/2

jk Σ1/2
ik = Σij .

Proof of Lemma 2.5.1. We can easily see that

d
dt E[f(Zt)] =

n∑
i=1

E

ï
∂

∂xi
f(Zt)

dZi(t)
dt

ò
= 1

2

n∑
i=1

E

ï
∂

∂xi
f(
√
tX +

√
1− tY )

Å
Xi√
t
− Yi√

1− t

ãò
= 1

2

n∑
j=1

n∑
i=1

ΣXij E
ï

∂2

∂xj∂xi
f(
√
tX +

√
1− tY )

ò
− 1

2

n∑
j=1

n∑
i=1

ΣYij E
ï

∂2

∂xj∂xi
f(
√
tX +

√
1− tY )

ò
= 1

2

n∑
j=1

n∑
i=1

Ä
ΣXij − ΣYij

ä
E

ï
∂2

∂xj∂xi
f(Zt)

ò
.

We next start present the first Gaussian comparison inequality, due to Sudakov and
Fernique.
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Theorem 14 (Sudakov-Fernique). Let X, Y be Gaussian vectors such that E[Xi] =
E[Yi] = µi for all i, and E[(Xi −Xj)2] ≤ E[(Yi − Yj)2] whenever i 6= j. Then we have

E[maxXi] ≤ E[max Yi].

Proof. We want to apply the Interpolation Lemma 2.5.1, but the max is not really a
smooth function. We instead first consider a soft-max function given by

fβ(x) = 1
β

log
∑
i

eβxi .

An easy calculation shows that

∂

∂xi
fβ(x) = eβxi∑

eβxi =: pi(x),

∂2

∂j∂xi
fβ(x) = δi,j

βeβxi∑
eβxi −

βeβxieβxj

(
∑

eβxi)2 = β [δijpi(x)− pi(x)pj(x)] ,

where the choice of notation obviously hints at the fact that the pi(x) form a probability
vector for each x.

Applying Lemma 2.5.1 to fβ we thus get

d
dt E[fβ(Zt)] = β

2

n∑
i,j=1

Ä
ΣXij − ΣYij

ä
E [δijpi (Z(t))]

− β

2

n∑
i,j=1

Ä
ΣXij − ΣYij

ä
E [pi (Z(t)) pj (Z(t))]

= β

2

n∑
i

Ä
ΣXii − ΣYii

ä
E [pi (Z(t))]

− β

2

n∑
i,j=1

Ä
ΣXij − ΣYij

ä
E [pi (Z(t)) pj (Z(t))]

next using the fact that
∑
j pj(x) = 1

= β

2

n∑
i,j=1

Ä
ΣXii − ΣYii

ä
E [pi (Z(t)) pj (Z(t))]

− β

2

n∑
i,j=1

Ä
ΣXij − ΣYij

ä
E [pi (Z(t)) pj (Z(t))] .

After noticing that terms with i = j cancel we can write

d
dt E[fβ(Zt)] = β

2

n∑
i<j

Ä
ΣYii − ΣXii + ΣYjj − ΣXjj + 2ΣXij − 2ΣYij

ä
E [pi (Z(t)) pj (Z(t))]

= β

2

n∑
i<j

Ä
γYij − γXij

ä
E [pi (Z(t)) pj (Z(t))] ,

where

γXij = ΣXii + ΣXjj − 2ΣXij = E
[
(Xi − µi −Xj + µj)2] = E[(Xi −Xj)2]− (µi − µj)2
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γYij = ΣYii + ΣYjj − 2ΣYij = E

î
(Yi − µYi − Yj + µYj )2

ó
= E[(Yi − Yj)2]− (µi − µj)2.

Therefore, the assumption implies that γXij ≤ γYij and thus since pi ≥ 0 we conclude that
E[fβ(Zt)] is increasing in t and therefore that

E[fβ(X)] ≤ E[fβ(Y )].

Letting β →∞, the dominated convergence theorem gives us the desired result.

Theorem 15. Consider a random matrix X ∈ Rn×d with i.i.d. N (0, 1) entries. Then
there are universal positive constants c1 < 1 < c2 such that

‖Xθ‖22
n

≥ c1‖θ‖22 − c2
log d
n
‖θ‖21, θ ∈ Rd,

with probability at least 1− e−n/32/(1− e−n/32).

Proof. First notice it suffices to only consider θ ∈ Sd−1. Let g(t) := 2
»

log d
n t and define

the event
E :=

ß
X ∈ Rn×d : inf

θ∈Sd−1

‖Xθ‖2√
n
≤ 1

4 − 2g(‖θ‖1)
™
.

Exercise: Show that on the complement of the event E the desired bound holds.
To complete the proof we have to obtain an upper bound for P[E ].
Although we have total control of the l2 norm of ‖θ‖22, since we are in high-dimensions,

its l1 can actually vary up to
√
n. Thus we would like to split the event E into smaller

events that allow us finer control on the size of ‖θ‖1. For 0 < r < s let

K(r, s) = {θ ∈ Sd−1 : g(‖θ‖1) ∈ [r, s]},

and consider the family of events

A(r, s) :=
ß

inf
K(r,s)

‖Xθ‖2√
n
≤ 1

2 − 2s
™
.

Notice that we have the following inclusion

E ⊂ A
Å

0, 1
4

ã
∪
Ç∞⋃
l=1
A
Ç

2l−1

4 ,
2l

4

åå
.

To see why let θ be the vector where the infimum in the event E is attained. Then θ
must belong to either K(0, 1/4) or one of the K(2l−1/4, 2l/4). In the first case we have
g(‖θ‖1) ≤ 1/4 and for X ∈ E , we have

‖Xθ‖2√
n
≤ 1

4 − 2g(‖θ1‖) ≤
1
4 = 1

2 −
1
4 ,

and thus X ∈ A(0, 1/4). Otherwise θ ∈ K(2l−1/4, 2l/4) for some l ≥ 1 and then

‖Xθ‖2√
n
≤ 1

4 − 2g(‖θ1‖) ≤
1
2 − 2× 2l−1

4 ≤ 1
2 −

2l

4 ,

and thus X ∈ A(2l−1/4, 2l/4).
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Thus a simple union bound gives

P[E ] ≤ P[A(0, 1/4)] +
∞∑
l=1

P

ñ
A
Ç

2l−1

4 ,
2l

4

åô
.

We now bound the probability of the event A(r, s). In fact we will now show that for any
0 < r < s we have

P[A(r, s)] ≤ e−n/32e−ns2/2.

We can equivalently aim for a high-probability lower bound on the quantity

T (r, s) := − inf
θ∈K(r,s)

‖Xθ‖2√
n

.

Using the variational representation of the l2 norm we have

T (r, s) = − inf
θ∈K(r,s)

sup
u∈Sn−1

〈u,Xθ〉√
n

= sup
θ∈K(r,s)

inf
u∈Sn−1

〈u,Xθ〉√
n

.

Let’s write Xu,θ := 〈u,Xθ〉 for the Gaussian process indexed by (u, θ) ∈ Sn−1 × Sd−1.
Notice that Xu,θ ∼ N (0, n−1).

To obtain this bound we will use the following result from Gordon (1985) which we
will state without proof.

Theorem 16 (Theorem 1.4 from Gordon 1985). Let {Xi,j : i ∈ [n], j ∈ [m]}, {Yi,j : i ∈
[n], j ∈ [m]} be two arrays of centred Gaussian random variables such that

E
[
(Yi,j − Yi,k)2] ≤ E [(Xi,j −Xi,k)2] , for all i, j, k, and

E
[
(Yi,j − Yl,k)2] ≥ E [(Xi,j −Xl,k)2] , for any i 6= l.

Then
E

ï
min
i∈[n]

max
j∈[m]

Yi,j

ò
≤ E
ï
min
i∈[n]

max
j∈[m]

Xi,j

ò
.

First notice that if both conditions above hold, then they will also both hold for
(−Xi,j) and (−Yi,j). The conclusion of the theorem then holds for these processes too,
that is

E

ï
min
i∈[n]

max
j∈[m]

(−Yi,j)
ò
≤ E
ï
min
i∈[n]

max
j∈[m]

(−Xi,j)
ò

⇔ E

ï
min
i∈[n]

(− min
j∈[m]

Yi,j)
ò
≤ E
ï
min
i∈[n]

(− min
j∈[m]

Xi,j)
ò

⇔ E

ï
−max

i∈[n]
min
j∈[m]

Yi,j

ò
≤ E
ï
−max

i∈[n]
min
j∈[m]

Xi,j

ò
⇔ E

ï
max
i∈[n]

min
j∈[m]

Yi,j

ò
≥ E
ï
max
i∈[n]

min
j∈[m]

Xi,j

ò
We will apply the max−min version of the above result to upper bound E[supθ infuXu,θ]
by comparing {Xu,θ} with the process

Yu,θ := 〈u, ξ〉√
n

+ 〈θ, ζ〉√
n
,
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where ξ, ζ are Gaussian i.i.d. random vectors in Rn and Rd respectively. Let us first
consider the case where the first index is the same, that is

E[(Xu,θ −Xu,φ)2] = E[〈u,X(θ − φ)〉2]
=
∑
i,j

u2
i (θi − φi)2 = ‖u‖22‖θ − φ‖22 = ‖θ − φ‖22.

On the other hand

E[(Yu,θ − Yu,φ)2] = E
[
〈ζ, θ − φ〉2

]
= ‖θ − φ‖22.

Now let’s consider the case u 6= w.

E[(Yu,θ − Yw,φ)2] = E

î
(〈u− w, ξ〉+ 〈θ − φ, ζ〉)2

ó
= ‖u− w‖22 + ‖θ − φ‖22.

Next we compute for the process Xu,θ and find

E[(Xu,θ −Xw,φ)2] = E

î
(〈u,Xθ〉 − 〈w,Xφ〉)2

ó
= E

î
(〈u,Xθ〉 − 〈w,Xφ〉)2

ó
= E

(∑
i,j

Xij(uiθj − wiφj)
)2


=
∑
i,j

(uiθj − wiφj)2 = ‖uθT − wφT‖2F

where ‖·‖F denotes the Frobenius norm of a matrix, that is for A = (ai,j), ‖A‖2F =
∑
ij a

2
ij .

For two matrices A,B of the same dimensions, we write 〈A,B〉F for the Frobenius inner
product, that is

〈A,B〉F =
∑
ij

AijBij .

Continuing from above we have

E[(Xu,θ −Xw,φ)2] ≤ ‖uθT − wφT‖2F
= ‖u(θ − φ)T + (u− w)φT‖2F
= ‖u(θ − φ)T‖F + ‖(u− w)φT‖2F + 2〈u(θ − φ)T, (u− w)φT〉F.

Expanding the correlation term, after straightforward calculations we obtain

〈u(θ − φ)T, (u− w)φT〉F = ‖u‖22〈θ, φ〉 − 〈u,w〉〈θ, φ〉 − ‖u‖22‖φ‖22 + 〈u,w〉‖φ‖22
= ‖u‖22

(
〈θ, φ〉 − ‖φ‖22

)
− 〈u,w〉

(
〈θ, φ〉 − ‖φ‖22

)
=
(
‖u‖22 − 〈u,w〉

) (
〈θ, φ〉 − ‖φ‖22

)
≤ 0,

since, ‖u‖22 = ‖w‖22 = ‖θ‖22 = ‖φ‖22 = 1, and therefore the first factor is positive and the
second negative. Therefore we have

E[(Xu,θ −Xw,φ)2] ≤ ‖u(θ − φ)T‖2F + ‖(u− w)φT‖2F
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= ‖u‖22‖θ − φ‖22 + ‖φ‖22‖u− w‖22 = ‖u− w‖22 + ‖θ − φ‖22 = E[(Yu,θ − Yw,φ)2]

We can now apply Gordon’s inequality to obtain

√
nE[T (r, s)] = E

ñ
sup

θ∈K(r,s)
inf

u∈Sd−1
Xu,v

ô
≤ E
ñ

sup
θ∈K(r,s)

inf
u∈Sd−1

Yu,v

ô
= E

ñ
sup

θ∈K(r,s)
〈ζ, θ〉

ô
+ E

ï
inf

u∈Sd−1
〈ξ, u〉

ò
= E

ñ
sup

θ∈K(r,s)
〈ζ, θ〉

ô
− E [‖ξ‖2]

≤ sup
θ∈K(r,s)

‖θ‖1 E [‖ζ‖∞]−
…

2n
π
.

Now for θ ∈ K(r, s) we have that g(‖θ‖1) ≤ s, or in other words that

‖θ‖1 ≤
s

2
√

log d/n
.

In addition, from Lemma 1.3.2, we have that

E[‖ζ‖∞] ≤
√

2 log d,

and thus overall we have

E[T (r, s)] ≤ sup
θ∈K(r,s)

‖θ‖1 E
ï‖ζ‖∞√

n

ò
−
…

2
π

≤ s

2
√

log d/n
×
»

2 log d/n−
…

2
π

≤ s−
…

2
π
. (2.18) {eq:mean_bound}{eq:mean_bound}

Finally, from Theorem 6 it follows that

P

(
T (r, s) ≥ E[T (r, s)] + δ

)
≤ e−nδ2/2,

for all δ > 0. Letting δ =
√

2/π − 1/2 + s and using the upper bound in (2.18) we have
that

e−nδ2/2 ≥ P
(
T (r, s) ≥ E[T (r, s)] + δ

)
= P

(
T (r, s) ≥ E[T (r, s)] +

…
2
π
− 1

2 + s
)

≥ P
(
T (r, s) ≥ s−

…
2
π

+
…

2
π
− 1

2 + s
)

≥ P
(
T (r, s) ≥ 2s− 1

2

)
.

The result follows since δ2 > C2 + s2.
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