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Metropolis–Hastings algorithm

Target distribution on X = Rd of density π (x).
Proposal distribution: for any x, x′ ∈ X, we have q ( x′| x) ≥ 0
and

∫
X

q ( x′| x) dx′ = 1.

Starting with X(1), for t = 2, 3, ...

1 Sample X? ∼ q
(
·|X(t−1)

)
.

2 Compute

α
(

X?|X(t−1)
)
= min

1,
π (X?) q

(
X(t−1)

∣∣∣X?
)

π
(
X(t−1)

)
q
(

X?|X(t−1)
)
 .

3 Sample U ∼ U[0,1]. If U ≤ α
(

X?|X(t−1)
)

, set X(t) = X?,
otherwise set X(t) = X(t−1).
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Some results

Proposition

If q ( x?| x) > 0 for any x, x? ∈ supp(π) then the
Metropolis-Hastings chain is irreducible, in fact every state can be
reached in a single step (strongly irreducible).

Less strict conditions in (Roberts & Rosenthal, 2004).

Proposition

If the MH chain is irreducible then it is also Harris recurrent(see
Tierney, 1994).
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LLN for MH

Theorem
If the Markov chain generated by the Metropolis–Hastings sampler is
π−irreducible, then we have for any integrable function ϕ : X→ R:

lim
t→∞

1
t

t

∑
i=1

ϕ
(

X(i)
)
=
∫

X
ϕ (x)π (x) dx

for every starting value X(1).
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Random Walk Metropolis–Hastings

In the Metropolis–Hastings, pick q(x? | x) = g(x? − x) with g
being a symmetric distribution, thus

X? = X + ε, ε ∼ g;

e.g. g is a zero-mean multivariate normal or t-student.
Acceptance probability becomes

α(x? | x) = min
(

1,
π(x?)
π(x)

)
.

We accept...

a move to a more probable state with probability 1;
a move to a less probable state with probability

π(x?)/π(x) < 1.
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Independent Metropolis–Hastings

Independent proposal: a proposal distribution q(x? | x)
which does not depend on x.

Acceptance probability becomes

α(x? | x) = min
(

1,
π(x?)q(x)
π(x)q(x?)

)
.

For instance, multivariate normal or t-student
distribution.

If π(x)/q(x) < M for all x and some M < ∞, then the chain
is uniformly ergodic.
The acceptance probability at stationarity is at least 1/M
(Lemma 7.9 of Robert & Casella).
On the other hand, if such an M does not exist, the chain is
not even geometrically ergodic!
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Choosing a good proposal distribution

Goal: design a Markov chain with small correlation
ρ
(

X(t−1), X(t)
)

between subsequent values (why?).

Two sources of correlation:
between the current state X(t−1) and proposed value
X ∼ q

(
·|X(t−1)

)
,

correlation induced if X(t) = X(t−1), if proposal is
rejected.

Trade-off: there is a compromise between
proposing large moves,
obtaining a decent acceptance probability.

For multivariate distributions: covariance of proposal should
reflect the covariance structure of the target.
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Choice of proposal

Target distribution, we want to sample from

π (x) = N
(

x;
(

0
0

)
,
(

1 0.5
0.5 1

))
.

We use a random walk Metropolis—Hastings algorithm with

g (ε) = N
(

ε; 0, σ2
(

1 0
0 1

))
.

What is the optimal choice of σ2?
We consider three choices: σ2 = 0.12, 1, 102.
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Metropolis–Hastings algorithm
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Figure: Metropolis–Hastings on a bivariate Gaussian target. With
σ2 = 0.12, the acceptance rate is ≈ 94%.
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Metropolis–Hastings algorithm
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Figure: Metropolis–Hastings on a bivariate Gaussian target. With
σ2 = 0.12, the acceptance rate is ≈ 94%.
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Metropolis–Hastings algorithm
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Figure: Metropolis–Hastings on a bivariate Gaussian target. With
σ2 = 1, the acceptance rate is ≈ 52%.
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Metropolis–Hastings algorithm
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Figure: Metropolis–Hastings on a bivariate Gaussian target. With
σ2 = 1, the acceptance rate is ≈ 52%.
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Metropolis–Hastings algorithm
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Figure: Metropolis–Hastings on a bivariate Gaussian target. With
σ2 = 10, the acceptance rate is ≈ 1.5%.
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Metropolis–Hastings algorithm

0.0

0.2

0.4

0.6

−2 0 2
X1

density

0.0

0.2

0.4

0.6

0.8

−2 0 2
X2

density

Figure: Metropolis–Hastings on a bivariate Gaussian target. With
σ2 = 10, the acceptance rate is ≈ 1.5%.
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Choice of proposal

Aim at some intermediate acceptance ratio: 20%? 40%? Some
hints come from the literature on “optimal scaling”.
Literature suggest tuning to get .234...

Maximize the expected square jumping distance:

E
[
||Xt+1 − Xt||2

]
In multivariate cases, try to mimick the covariance structure
of the target distribution.

Cooking recipe: run the algorithm for T iterations, check some
criterion, tune the proposal distribution accordingly, run the
algorithm for T iterations again . . .
“Constructing a chain that mixes well is somewhat of an art.”
All of Statistics, L. Wasserman.
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The adaptive MCMC approach

One can make the transition kernel K adaptive, i.e. use Kt at
iteration t and choose Kt using the past sample
(X1, . . . , Xt−1).

The Markov chain is not homogeneous anymore: the
mathematical study of the algorithm is much more
complicated.

Adaptation can be counterproductive in some cases (see
Atchadé & Rosenthal, 2005)!

Adaptive Gibbs samplers also exist.
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Sophisticated Proposals

“Langevin” proposal relies on

X? = X(t−1) +
σ

2
∇ log π|X(t−1) + σW

where W ∼ N (0, Id), so the Metropolis-Hastings acceptance
ratio is

π(X?)q(X(t−1) | X?)

π(X(t−1))q(X? | X(t−1))

=
π(X?)

π(X(t−1))

N (X(t−1); X? + σ
2 .∇ log π|X? ; σ2)

N (X?; X(t−1) + σ
2 .∇ log π|X(t−1) ; σ2)

.

Possibility to use higher order derivatives:

X? = X(t−1) +
σ

2
[
∇2 log π|X(t−1)

]−1 ∇ log π|X(t−1) + σW.
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Sophisticated Proposals

We can use

q(X?|X(t−1)) = g(X?; ϕ(X(t−1)))

where g is a distribution on X of parameters ϕ(X(t−1)) and ϕ
is a deterministic mapping

π(X?)q(X(t−1)|X?)

π(X(t−1))q(X?|X(t−1))
=

π(X?)g(X(t−1); ϕ(X?))

π(X(t−1))g(X?; ϕ(X(t−1)))
.

For instance, use heuristics borrowed from optimization
techniques.
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Sophisticated Proposals

The following link shows a comparison of
adaptive Metropolis-Hastings,
Gibbs sampling,
No U-Turn Sampler (e.g. Hamiltonian MCMC)

on a simple linear model.

twiecki.github.io/blog/2014/01/02/visualizing-mcmc/
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Sophisticated Proposals

Assume you want to sample from a target π with
supp(π) ⊂ R+, e.g. the posterior distribution of a
variance/scale parameter.
Any proposed move, e.g. using a normal random walk, to
R− is a waste of time.
Given X(t−1), propose X? = exp(log X(t−1) + ε) with
ε ∼ N (0, σ2). What is the acceptance probability then?

α(X? | X(t−1)) = min

(
1,

π(X?)

π(X(t−1))

q(X(t−1) | X?)

q(X? | X(t−1))

)

= min
(

1,
π(X?)

π(X(t−1))

X?

X(t−1)

)
.

Why?

q(y|x)
q(x | y)

=

1
yσ
√

2π
exp

[
− (log y−log x)2

2σ2

]
1

xσ
√

2π
exp

[
− (log x−log y)2

2σ2

] =
x
y

.
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Random Proposals

Assume you want to use qσ2(X?|X(t−1)) = N (X; X(t−1), σ2)
but you don’t know how to pick σ2. You decide to pick a
random σ2,? from a distribution f (σ2):

σ2,? ∼ f (σ2,?), X?|σ2,? ∼ qσ2,?(·|X(t−1))

so that

q(X?|X(t−1)) =
∫

qσ2,?(X?|X(t−1)) f (σ2,?)dσ2,?.

Perhaps q(X?|X(t−1)) cannot be evaluated, e.g. the above
integral is intractable. Hence the acceptance probability

min{1,
π(X?)q(X(t−1)|X?)

π(X(t−1))q(X?|X(t−1))
}

cannot be computed.
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Random Proposals

Instead you decide to accept your proposal with probability

αt = min

1,
π (X?) qσ2,(t−1)

(
X(t−1)

∣∣∣X?
)

π
(
X(t−1)

)
qσ2,?

(
X?|X(t−1)

)


where σ2,(t−1) corresponds to parameter of the last accepted
proposal.

With probability αt, set σ2,(t) = σ2,?, X(t) = X?, otherwise
σ2,(t) = σ2,(t−1), X(t) = X(t−1).

Question: Is it valid? If so, why?
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Random Proposals

Consider the extended target

π̃
(
x, σ2) := π (x) f

(
σ2) .

Previous algorithm is a Metropolis-Hastings of target
π̃(x, σ2) and proposal

q(y, τ2|x, σ2) = f (τ2)qτ2(y|x)

Indeed, we have

π̃(y, τ2)

π̃(x, σ2)

q(x, σ2|y, τ2)

q(y, τ2|x, σ2)

=
π(y) f (τ2)

π(x) f (σ2)

f (σ2)qσ2(x|y)
f (τ2)qτ2(y|x)

=
π(y)
π(x)

qσ2(x|y)
qτ2(y|x)

Remark: we just need to be able to sample from f (·), not to
evaluate it.
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Using multiple proposals

Consider a target of density π (x) where x ∈ X.
To sample from π, you might want to use various proposals
for Metropolis-Hastings q1 ( x′| x) , q2 ( x′| x) , ..., qp ( x′| x).
One way to achieve this is to build a proposal

q
(

x′
∣∣ x
)
=

p

∑
j=1

β jqj
(

x′
∣∣ x
)

, β j > 0,
p

∑
j=1

β j = 1,

and Metropolis-Hastings requires evaluating

α
(

X?|X(t−1)
)
= min

1,
π (X?) q

(
X(t−1)

∣∣∣X?
)

π
(
X(t−1)

)
q
(

X?|X(t−1)
)
 ,

and thus evaluating qj

(
X?|X(t−1)

)
for j = 1, ..., p.
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Motivating Example

Let

q
(

x′
∣∣ x
)
= β1N

(
x′; x, Σ

)
+ (1− β1)N

(
x′; µ (x) , Σ

)
where µ : X→ X is a clever but computationally expensive
deterministic optimisation algorithm.

Using β1 ≈ 1 will make most proposed points come from the
cheaper proposal distribution N (x′; x, Σ). . .

. . . but you won’t save time as µ
(

X(t−1)
)

needs to be
evaluated at every step.
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Composing kernels

How to use different proposals to sample from π without
evaluating all the densities at each step?

What about combining different Metropolis-Hastings
updates Kj using proposal qj instead? i.e.

Kj
(
x, x′

)
= αj

(
x′
∣∣ x
)

qj
(

x′
∣∣ x
)
+
(
1− aj (x)

)
δx
(
x′
)

where

αj(x′|x) = min
(

1,
π(x′)qj(x|x′)
π(x)qj(x′|x)

)
aj(x) =

∫
αj(x′|x)qj(x′|x)dx′.
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Composing kernels

Generally speaking, assume

p possible updates characterised by kernels Kj (·, ·),

each kernel Kj is π-invariant.

Two possibilities of combining the p MCMC updates:

Cycle: perform the MCMC updates in a deterministic order.

Mixture: Pick an MCMC update at random.
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Cycle of MCMC updates

Starting with X(1) iterate for t = 2, 3, ...

1 Set Z(t,0) := X(t−1).
2 For j = 1, ..., p, sample Z(t,j) ∼ Kj

(
Z(t,j−1), ·

)
.

3 Set X(t) := Z(t,p).

Full cycle transition kernel is

K
(

x(t−1), x(t)
)
=
∫
· · ·

∫
K1

(
x(t−1), z(t,1)

)
K2

(
z(t,1), z(t,2)

)
· · ·Kp

(
z(t,p−1), x(t)

)
dz(t,1) · · · dz(t,p−1).

K is π-invariant.
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Mixture of MCMC updates

Starting with X(1) iterate for t = 2, 3, ...

1 Sample J from {1, ..., p} with P (J = k) = βk.

2 Sample X(t) ∼ KJ

(
X(t−1), ·

)
.

Corresponding transition kernel is

K
(

x(t−1), x(t)
)
=

p

∑
j=1

β jKj

(
x(t−1), x(t)

)
.

K is π-invariant.
The algorithm is different from using a mixture proposal

q
(

x′
∣∣ x
)
=

p

∑
j=1

β jqj
(

x′
∣∣ x
)

.
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Metropolis-Hastings Design for Multivariate Targets

If dim (X) is large, it might be very difficult to design a
“good” proposal q ( x′| x).

As in Gibbs sampling, we might want to partition x into
x = (x1, ..., xd) and denote x−j := x\

{
xj
}

.

We propose “local” proposals where only xj is updated

qj
(

x′
∣∣ x
)
= qj

(
x′j
∣∣∣ x
)

︸ ︷︷ ︸
propose new component j

δx−j

(
x′−j

)
︸ ︷︷ ︸

keep other components fixed

.
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Metropolis-Hastings Design for Multivariate Targets

This yields

αj(x, x′) = min

1,
π(x′−j, x′j)qj(xj|x−j, x′j)

π(x−j, xj)qj(x′j|x−j, xj)

δx′−j
(x−j)

δx−j(x′−j)︸ ︷︷ ︸
=1


= min

(
1,

π(x−j, x′j)qj(xj|x−j, x′j)

π(x−j, xj)qj(x′j|x−j, xj)

)

= min

(
1,

πXj|X−j
(x′j|x−j)qj(xj|x−j, x′j)

πXj|X−j
(xj|x−j)qj(x′j|x−j, xj)

)
.
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One-at-a-time MH (cycle/systematic scan)

Starting with X(1) iterate for t = 2, 3, ...
For j = 1, ..., d,

Sample X? ∼ qj(·|X(t)
1 , . . . , X(t)

j−1, X(t−1)
j , ..., X(t−1)

d ).
Compute

αj = min

1,
πXj|X−j

(
X?

j | X(t)
1 . . . X(t)

j−1, X(t−1)
j+1 . . . X(t−1)

d

)
πXj|X−j

(
X(t−1)

j | X(t)
1 . . . X(t)

j−1, X(t−1)
j+1 . . . X(t−1)

d

)
×

qj

(
X(t−1)

j

∣∣∣X(t)
1 ...X(t)

j−1, X?
j , X(t−1)

j+1 ...X(t−1)
d

)
qj

(
X?

j

∣∣∣X(t)
1 ...X(t)

j−1, X(t−1),
j , X(t−1)

j+1 ...X(t−1)
d

)
 .

With probability αj, set X(t) = X?, otherwise set X(t) = X(t−1).
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One-at-a-time MH (mixture/random scan)

Starting with X(1) iterate for t = 2, 3, ...

Sample J from {1, ..., d} with P (J = k) = βk.

Sample X? ∼ qJ

(
·|X(t)

1 , ..., X(t−1)
d

)
.

Compute

αJ = min

1,
πXJ |X−J

(
X?

J | X(t−1)
1 . . . X(t−1)

J−1 , X(t−1)
J+1 . . .

)
πXJ |X−J

(
X(t−1)

J | X(t−1)
1 . . . X(t−1)

J−1 , X(t−1)
J+1 . . .

)
×

qJ

(
X(t−1)

J

∣∣∣X(t−1)
1 ...X(t−1)

J−1 , X?
J , X(t−1)

J+1 ...X(t−1)
d

)
qJ

(
X?

J

∣∣∣X(t−1)
1 ...X(t−1)

J−1 , X(t−1),
J , X(t−1)

J+1 ...X(t−1)
d

)
 .

With probability αJ set X(t) = X?, otherwise X(t) = X(t−1).
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Gibbs Sampler as a Metropolis-Hastings algorithm

Proposition

The systematic Gibbs sampler is a cycle of one-at-a time MH whereas
the random scan Gibbs sampler is a mixture of one-at-a time MH
where

qj

(
x′j
∣∣∣ x
)
= π Xj|X−j

(
x′j
∣∣∣ x−j

)
.

Proof.
It follows from

π
(

x−j, x′j
)

π
(
x−j, xj

) qj

(
xj
∣∣ x−j, x′j

)
qj

(
x′j
∣∣∣ x−j, xj

)
=

π
(
x−j
)

π Xj|X−j

(
x′j
∣∣∣ x−j

)
π
(

x−j
)

π Xj|X−j

(
xj
∣∣ x−j

) π Xj|X−j

(
xj
∣∣ x−j

)
π Xj|X−j

(
x′j
∣∣∣ x−j

) = 1.
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This is not a Gibbs sampler

Consider a case where d = 2. From X(t−1)
1 , X(t−1)

2 at time t− 1:

Sample X?
1 ∼ π(X1 | X(t−1)

2 ), then X?
2 ∼ π(X2 | X?

1 ). The
proposal is then X? = (X?

1 , X?
2 ).

Compute

αt = min

(
1,

π(X?
1 , X?

2 )

π(X(t−1)
1 , X(t−1)

2 )

q(X(t−1) | X?

q(X? | X(t−1))

)

Accept X? or not based on αt, where here

αt 6= 1

!!
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