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Metropolis—Hastings algorithm

m Target distribution on X = R? of density 7 (x).

m Proposal distribution: for any x,x" € X, we have g (x| x) > 0
and [y q(x'|x)dx' =1.

m Starting with XM fort=2,3, ..

Sample X* ~ g <| X(t_l)) :
Compute

o (3¢1X09) = ( O (00 x) ) |

T (X(ED) g (X*| X(t-D)

Sample U ~ Uyg,. If U < a (X* X(D), set X0 = X,
otherwise set X(f) = X(=1),



Proposition

If g (x*| x) > 0 for any x, x* € supp(m) then the
Metropolis-Hastings chain is irreducible, in fact every state can be
reached in a single step (strongly irreducible).

Less strict conditions in (Roberts & Rosenthal, 2004).

Proposition

If the MH chain is irreducible then it is also Harris recurrent(see
Tierney, 1994).




LLN for MH

If the Markov chain generated by the Metropolis—Hastings sampler is
rt—irreducible, then we have for any integrable function ¢ : X — R:

t

lim12¢<X(i)) :/Xgo(x)n(x) dx

t—oo i1

for every starting value X(1).




Random Walk Metropolis—Hastings

m In the Metropolis—-Hastings, pick g(x* | x) = g(x* — x) with g
being a symmetric distribution, thus

X*=X+e e~g

e.g. ¢ is a zero-mean multivariate normal or t-student.

m Acceptance probability becomes

a(x* | x) = min (1, Z(x*)> .

m We accept...

m a move to a more probable state with probability 1;
m a move to a less probable state with probability

(x*)/m(x) < 1.

Metropolis-Hastings Random Walk Metropolis




Independent Metropolis—Hastings

m Independent proposal: a proposal distribution g(x* | x)
which does not depend on x.

m Acceptance probability becomes

a(x* | x) = min (1%) |

m For instance, multivariate normal or t-student
distribution.

m If 7(x)/q(x) < M for all x and some M < oo, then the chain
is uniformly ergodic.

m The acceptance probability at stationarity is at least 1/ M
(Lemma 7.9 of Robert & Casella).

m On the other hand, if such an M does not exist, the chain is
not even geometrically ergodic!
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Choosing a good proposal distribution

m Goal: design a Markov chain with small correlation
0 (X(tfl), X(t)> between subsequent values (why?).

m Two sources of correlation:
= between the current state X(*~1) and proposed value
X~gq (’ X(f—l)),
m correlation induced if X() = X(=1) if proposal is
rejected.

m Trade-off: there is a compromise between
m proposing large moves,
m obtaining a decent acceptance probability.

m For multivariate distributions: covariance of proposal should
reflect the covariance structure of the target.

Metropolis-Hastings Which proposal?



Choice of proposal

m Target distribution, we want to sample from

- (=& %))

m We use a random walk Metropolis—Hastings algorithm with

ge)=N <s;0,(72 (é (1)>> .

m What is the optimal choice of ¢2?

m We consider three choices: 02 = 0.12,1,102.

Metropolis-Hastings Which proposal?



Metropolis—Hastings algorithm
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Figure: Metropolis—Hastings on a bivariate Gaussian target. With
02 = 0.12, the acceptance rate is ~ 94%.
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Figure: Metropolis—Hastings on a bivariate Gaussian target. With
02 = 0.12, the acceptance rate is ~ 94%.
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Metropolis—Hastings algorithm
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Figure: Metropolis—-Hastings on a bivariate Gaussian target. With
02 = 1, the acceptance rate is ~ 52%.
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Figure: Metropolis—Hastings on a bivariate Gaussian target. With
02 = 1, the acceptance rate is ~ 52%.
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Figure: Metropolis—Hastings on a bivariate Gaussian target. With
02 = 10, the acceptance rate is ~ 1.5%.
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Figure: Metropolis—Hastings on a bivariate Gaussian target. With
02 = 10, the acceptance rate is ~ 1.5%.
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Choice of proposal

m Aim at some intermediate acceptance ratio: 20%? 40%? Some
hints come from the literature on “optimal scaling”.

m Literature suggest tuning to get .234...

m Maximize the expected square jumping distance:

E (|| Xe41 — Xi?]

m In multivariate cases, try to mimick the covariance structure
of the target distribution.

Cooking recipe: run the algorithm for T iterations, check some
criterion, tune the proposal distribution accordingly, run the
algorithm for T iterations again ...

“Constructing a chain that mixes well is somewhat of an art.”
All of Statistics, L. Wasserman.
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The adaptive MCMC approach

m One can make the transition kernel K adaptive, i.e. use K; at
iteration ¢ and choose K; using the past sample
(X1,..., Xi-1)-

m The Markov chain is not homogeneous anymore: the
mathematical study of the algorithm is much more
complicated.

m Adaptation can be counterproductive in some cases (see
Atchadé & Rosenthal, 2005)!

m Adaptive Gibbs samplers also exist.
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Sophisticated Proposals

m “Langevin” proposal relies on
X* =Xt 4 % Viog 7|y + W

where W ~ N (0, I;), so the Metropolis-Hastings acceptance
ratio is
m(X*)g(X*V | X*)
R(XTD)g( | X0D)
n(X*)  N(XEV; X* 4+ $.Vlog 7t|x+;0?)
(X)) N (X% XD 4+ 2.V log 7| yi-1); 02)

m Possibility to use higher order derivatives:

X = XD ¢ % [V21og 7|y ] Viog 7|y 1) + oW.

Metropolis-Hastings Which proposal?



Sophisticated Proposals

m We can use
g(x*|XU7V) = g(X* (X))

where g is a distribution on X of parameters ¢(X(*~1)) and ¢
is a deterministic mapping

r(XNg(XUVIXY) w(XN)g(XEY (X))
(X )g(XA XD (XU 1))( Fp(XU-1))

m For instance, use heuristics borrowed from optimization
techniques.

Metropolis-Hastings Which proposal?




Sophisticated Proposals

The following link shows a comparison of
m adaptive Metropolis-Hastings,

m Gibbs sampling,
m No U-Turn Sampler (e.g. Hamiltonian MCMC)

on a simple linear model.

twiecki.github.io/blog/2014/01/02 /visualizing-mcmc/
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Sophisticated Proposals

m Assume you want to sample from a target 7t with
supp(7r) C R*, e.g. the posterior distribution of a
variance/scale parameter.

m Any proposed move, e.g. using a normal random walk, to
IR~ is a waste of time.

m Given X"V, propose X* = exp(log X"V + ¢) with
¢ ~ N(0,0?). What is the acceptance probability then?

* (t-1) *
#(X* | X¢D) = min (1, n(X*) q(X |X>)

r(XUD) g(X* | XU=1)

— min (1 n(x*) X*
= min ’77T(X(t_1))X(t_1) .

Why?
1 - (log y—log x)?
q(ylx) _ wme"f’[ font et | _x
X B 1 (logx—logy)?] Yy
axly) - — =exp |- (Bt el Y
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Random Proposals

m Assume you want to use g,2(X*| X)) = N (X; X1, ¢2)
but you don’t know how to pick . You decide to pick a
random ¢** from a distribution f(c?):

0 s F(0P), X e g (XD)
so that

A0C1X0D) = [ goan (X |XOD) f(02) o,

m Perhaps g(X*|X(~1) cannot be evaluated, e.g. the above
integral is intractable. Hence the acceptance probability

(X*)q(XUV]X")

i ) g (X )

}

cannot be computed.

Metropolis-Hastings Which proposal?




Random Proposals

m Instead you decide to accept your proposal with probability

#; = min {1, 7 (X*) 421 (X(tfl)’ X*) }

7 (X)) g2 (X5 X0D)

where 0>(!=1) corresponds to parameter of the last accepted

proposal.

m With probability a;, set 0>(*) = ¢2*, X() = X*, otherwise
20 — G201 x(B) — x(t-1).

m Question: Is it valid? If so, why?
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Random Proposals

m Consider the extended target

7 (x,0%) == 7 (x) f (7).
m Previous algorithm is a Metropolis-Hastings of target

71(x,0?) and proposal

q(y, T[x,0%) = f(T*)qe (y|%)
m Indeed, we have
) q(x, 0%y, )
(x o) q(y, T|x, 02)
n(y)f(7?) f(0)a(xly) _ 7(y) 4,2 (x]y)
~ ()f(0?) f()galylx) — w(x) g (ylx)

m Remark: we just need to be able to sample from f (-), not to
evaluate it.

Metropolis-Hastings Which proposal?




Using multiple proposals

m Consider a target of density 7 (x) where x € X.

m To sample from 77, you might want to use various proposals
for Metropolis-Hastings q1 (x| x), g2 (x'| x), ..., 4, (x| x).

m One way to achieve this is to build a proposal

p
([ x) = 251‘71 ‘x)/ﬁj>0/Z;ﬁj=1/
]:

and Metropolis-Hastings requires evaluating

‘ 7'((X*) q x| x*
« (X*‘ X(t—l)> — min (1, - (X(fl))(q X X(fg))) ,

and thus evaluating g; (X*| X(t*1)> forj=1,..,p.
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Motivating Example

m Let
q(x'|x) =N (¥;0,2) + (1= )N (x;p(x), %)

where y : X — Xis a clever but computationally expensive
deterministic optimisation algorithm.

m Using 1 ~ 1 will make most proposed points come from the
cheaper proposal distribution N (x/; x, £). ..

m ...but you won't save time as u (X(t_l)) needs to be
evaluated at every step.
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Composing kernels

m How to use different proposals to sample from 7 without
evaluating all the densities at each step?

m What about combining different Metropolis-Hastings
updates K; using proposal g; instead? i.e.

Kj (x,x") = aj (x| x) g; (x'[ x) + (1 = aj (x)) 6 (¥)
where

aj(x'|x) = min <1,

”(x/)%(x|x,))
7t(x)q;(x'|x)

aj(x) = /aj(x/|x)q]-(x’|x)dx’.
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Composing kernels

Generally speaking, assume

m p possible updates characterised by kernels K; (-, -),

m each kernel K; is 7t-invariant.

Two possibilities of combining the p MCMC updates:

m Cycle: perform the MCMC updates in a deterministic order.

m Mixture: Pick an MCMC update at random.

Metropolis-Hastings Which proposal?



Cycle of MCMC updates

m Starting with XM jterate for t = 2,3, ...

Set Z(t0) .= x(t-1),
Forj=1,..,p,sample ZWE) ~ K; (Z(t'j_l), ) .

Set X(t) .= Zz(tp),
m Full cycle transition kernel is
K (x(ffl),xm) _ / / K (x(t’l),z(t'l)) K, (z(tA),Z(t,Z))
LK, (Z(t,pq), x(t)) Azt . gz tp=1).

m K is rr-invariant.

Metropolis-Hastings Which proposal?



Mixture of MCMC updates

m Starting with XU iterate for t = 2,3, ...

Sample | from {1,...,p} with IP (] = k) = Bx.
Sample X ~ K (X(-1),.).

m Corresponding transition kernel is

K (3070, x0) = Y BK (x0-0,20)
=1

m Kis rr-invariant.
m The algorithm is different from using a mixture proposal

(«']x) = ngﬂf x| x).
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Metropolis-Hastings Design for Multivariate Targets

m If dim (X) is large, it might be very difficult to design a
“good” proposal g (x| x).

m As in Gibbs sampling, we might want to partition x into
x = (x1,...,xg) and denote x_; := x\ {x;}.

m We propose “local” proposals where only x; is updated

g; (¥'] %) = qj (x]/‘ x) Ox <x'_]~>
N —_—

propose new component j keep other components fixed
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Metropolis-Hastings Design for Multivariate Targets

m This yields
mu(x ;%)) (xjlx—j, xf) 6 (xj)

7 (x—j, x;)q;(x}|x—j, x7) 0x_; (x_;)
N o’

=1
_ m(x_j, x]’-)qj(xj|x_j, x;)
=min | 1, S
mT(x_, x]-)q]-(x].|x,]-, X;)

aj(x,x") =min | 1,

— min 7TX]'|X—]'(x;‘x_]')q]'(lex—jl x]/)
= , .
7 x (1) g (g, x7)

Metropolis-Hastings Which proposal?
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One-at-a-time MH (cycle/systematic scan)

Starting with X(1) iterate for t = 2,3, ...

Forj=1,..4d,
t t t—1 -1
m Sample X* ~ g;(-[x{",..., x{V), XY, XY,
m Compute
<1 v(® t t—1 t—1
_ X, (X]. [xP L xP, xEY L xd ))
®j = min 1,

t—1 t t t—1 t—1
g, (XU x L x xEY LX)
=1 v(t) w(t) wx (i1 -1
a; (X0 X x 0 X X x )
flj<Xj*

X x, X x . x (D)
m With probability a;, set X(*) = X*, otherwise set X(*) = X(t=1).

S U B o
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One-at-a-time MH (mixture/random scan)

Starting with X(1) iterate for t = 2,3, ...
m Sample | from {1,...,d} with P (] = k) = .
m Sample X* ~ g1 <| Xét),..., X{gt_l)> .

m Compute

N t—1 -1 t—1
) . (1 X 1%, (X] Px{Y Y, XY )
I = ' (1) | 1) (1) (1)
X)X <X] |xiY LY, x )
t—1 t—1 L (-1 t—1
ar (X770 0x Y X X )))

N -1 t—1) (t—1), (-1 —1
q] <X] «Et )...X§71 )/ X} ) /X§+1 )...Xlgt )>

X

m With probability a; set X() = X*, otherwise X(1) = X(=1).
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Gibbs Sampler as a Metropolis-Hastings algorithm

Proposition

The systematic Gibbs sampler is a cycle of one-at-a time MH whereas
the random scan Gibbs sampler is a mixture of one-at-a time MH

where
o (2]%) = g, (3]5-).

It follows from

Lecture 7 Metropolis-Hastings Which proposal? 29 /30



This is not a Gibbs sampler

Consider a case where d = 2. From Xitil), thil) attimet — 1:

m Sample X ~ (X | Xét_l)), then X3 ~ (X, | X7). The
proposal is then X* = (X7, X3).

m Compute

a; = min [ 1 (X, X5)  g(Xth | x*
<), X D) (X [ XO)

m Accept X* or not based on a;, where here

Dct#l
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