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Asymptotic Bias I

Proposition

If
Eq

[
|ϕ(X)|w(X)3

]
< ∞,

and

Eq

[(
1
n

n

∑
1

w̃(Xi)
)−3]

≤ C < ∞,

then

lim
n

n×Eq
(

ÎNIS
n − I

)
= −

∫
(ϕ(x)− I)

π2(x)
q(x)

dx

= −Cov(ϕ(X)w(X), w(X)) + Vq(w(X))I.

Proof not examinable.
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Asymptotic Bias II

Proof.

n×Eq( Î NIS
n − I) = Eq

[
∑n

1 w̃(Xi)(ϕ(Xi)− I)
∑n

1 w̃(Xi)/n

]

= Eq

[
n

w̃(X1)(ϕ(X1)− I)
∑n

1 w̃(Xi)/n

]

= nEq

[
w̃(X1)(ϕ(X1)− I)

∑n
2 w̃(Xi)/n

]

+ nEq

[
w̃(X1)(ϕ(X1)− I)

{ 1
∑n

2 w̃(Xi)/n
− 1

∑n
1 w̃(Xi)/n

}]
.

By independence the first term is 0.

Lecture 4 Normalized Importance Sampling January 27th, 2016 3 / 32



Asymptotic Bias III

Proof.
Thus

n×Eq( Î NIS
n − I)

= −nEq

[
w̃(X1)

2(ϕ(X1)− I)/n(
∑n

2 w̃(Xi)/n
)(

∑n
1 w̃(Xi)/n

)]

= −Eq

[
w̃(X1)

2(ϕ(X1)− I)(
∑n

2 w̃(Xi)/n
)2

]
+ E

where

|E | ≤ 1
n

Eq

{
w̃(Xi)

3|ϕ(Xi)− I|
}

Eq

{( n

∑
2

w̃(Xi)/n
)−3}

.
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Variance of importance sampling estimators

Normalised Importance Sampling: X1, . . . , Xn
iid∼ q,

Î NIS
n =

∑n
i=1 ϕ(Xi)w̃(Xi)

∑n
i=1 w̃(Xi)

.

Asymptotic Variance:

Vas

(
Î NIS
n

)
=

Eq

[
(ϕ(X)w(X)− I × w(X))2

]
Eq [w(X)]2

.

Thus the asymptotic variance can be estimated consistently
with

1
n ∑N

i=1 w̃(Xi)
2
(

ϕ(Xi)− Î NIS
n

)2

(
1
n ∑N

i=1 w̃(Xi)
)2 .
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Diagnostics

Importance sampling works well when all weights roughly
equal.
If dominated by one w̃(Xj),

Î NIS
n =

∑n
i=1 ϕ(Xi)w̃(Xi)

∑n
i=1 w̃(Xi)

≈ w̃(Xj)ϕ(Xj).

The “effective sample size” is one.

To how many unweighted samples correspond our weighted
samples of size n? Solve for ne in

1
n

Vas

(
ÎNIS
n

)
=

σ2

ne
,

where σ2/ne corresponds to the variance of an unweighted
sample of size ne.

Lecture 4 Normalized Importance Sampling January 27th, 2016 6 / 32



Diagnostics

We solve by matching ϕ(Xi)− ÎNIS with ϕ(Xi)− I ≈ σ as if
they were i.i.d samples:

1
n

1
n ∑N

i=1 w̃(Xi)
2
(

ϕ(Xi)− ÎNIS
n

)2

( 1
n ∑n

i=1 w̃(Xi)
)2 ≈ σ2

ne

i.e.
1
n

1
n ∑N

i=1 w̃(Xi)
2( 1

n ∑n
i=1 w̃(Xi)

)2 =
1
ne

.

The solution is

ne =
(∑n

i=1 w̃(Xi))
2

∑n
i=1 w̃(Xi)2 ,

and is called the effective sample size.
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Rejection and Importance Sampling in High
Dimensions

Toy example: Let X = Rd and

π (x) =
1

(2π)d/2 exp

(
−∑d

i=1 x2
i

2

)

and

q (x) =
1

(2πσ2)d/2 exp

(
−∑d

i=1 x2
i

2σ2

)
.

How do Rejection sampling and Importance sampling scale in
this context?
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Performance of Rejection Sampling

We have

w (x) =
π (x)
q (x)

= σd exp

(
−∑d

i=1 x2
i

2

(
1− 1

σ2

))
≤ σd

for σ > 1.
Acceptance probability is

P (X accepted) =
1
σd → 0 as d→ ∞,

i.e. exponential degradation of performance.
For d = 100, σ = 1.2, we have

P (X accepted) ≈ 1.2× 10−8.
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Performance of Importance Sampling

We have

w (x) = σd exp

(
−∑d

i=1 x2
i

2

(
1− 1

σ2

))
.

Variance of the weights:

Vq [w (X)] =

(
σ4

2σ2 − 1

)d/2

− 1

where σ4/
(
2σ2 − 1

)
> 1 for any σ2 > 1/2.

For d = 100, σ = 1.2, we have

Vq [w (X)] ≈ 1.8× 104.
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Wait a minute. . .

Simpson’s rule for approximating integrals: error in O(n−1/d).

Monte Carlo for approximating integrals: error in O(n−1/2)
with rate independent of d.

And now:
Importance Sampling standard deviation in the Gaussian
example in exp(d)n−1/2.

The rate is indeed independent of d but the “constant” (in n)
explodes exponentially (in d).
Markov chain Monte Carlo methods yield errors which
explodes only polynomially in d, at least under some
conditions.
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Markov chain Monte Carlo

Revolutionary idea introduced by Metropolis et al., J. Chemical
Physics, 1953.

Key idea: Given a target distribution π, build a Markov chain
(Xt)t≥1 such that, as t→ ∞, Xt ∼ π and

1
n

n

∑
t=1

ϕ (Xt)→
∫

ϕ (x)π (x) dx

when n→ ∞ e.g. almost surely.

Also central limit theorems with a rate in 1/
√

n.
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Markov chains - discrete space

Let X be discrete, e.g. X = Z.

(Xt)t≥1 is a Markov chain if

P(Xt = xt|X1 = x1, ..., Xt−1 = xt−1) =P(Xt = xt|Xt−1 = xt−1).

Homogeneous Markov chains:

∀m ∈N : P(Xt = y|Xt−1 = x) = P(Xt+m = y|Xt+m−1 = x).

The Markov transition kernel is

K(i, j) = Kij = P(Xt = j|Xt−1 = i).
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Markov chains - discrete space

Let µt(x) = P (Xt = x), the chain rule yields

P(X1 = x1, X2 = x2, ..., Xt = xt) = µ1(x1)
t

∏
i=2

Kxi−1xi .

The m-transition matrix Km as

Km
ij = P(Xt+m = j|Xt = i).

Chapman-Kolmogorov equation:

Km+n
ij = ∑

k∈X

Km
ik Kn

kj.

We obtain
µt+1(j) = ∑

i
µt(i)Kij

i.e. using “linear algebra notation”,

µt+1 = µtK.
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Irreducibility and aperiodicity

Definition
A Markov chain is said to be irreducible if all the states
communicate with each other, that is

∀x, y ∈ X min
{

t : Kt
xy > 0

}
< ∞.

A state x has period d(x) defined as

d(x) = gcd {s ≥ 1 : Ks
xx > 0} .

An irreducible chain is aperiodic if all states have period 1.

Example: Kθ =

(
θ 1− θ
1− θ θ

)
is irreducible if θ ∈ [0, 1) and

aperiodic if θ ∈ (0, 1). If θ = 0, the gcd is 2.
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Transience and recurrence

Introduce the number of visits to x:

ηx :=
∞

∑
k=1

1x (Xk) .

Definition
A state x is termed transient if:

Ex (ηx) < ∞,

where Ex refers to the law of the chain starting from x.
A state is called recurrent otherwise and

Ex (ηx) = ∞.
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Invariant distribution

Definition
A distribution π is invariant for a Markov kernel K, if

πK = π.

Note: if there exists t such that Xt ∼ π, then

Xt+s ∼ π

for all s ∈N.
Example: for any θ ∈ [0, 1]

Kθ =

(
θ 1− θ
1− θ θ

)
admits the invariant distribution

π =
( 1

2
1
2

)
.
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Detailed balance

Definition
A Markov kernel K satisfies detailed balance for π if

∀x, y ∈ X : π(x)Kxy = π(y)Kyx.

Lemma
If K satisfies detailed balance for π then K is π-invariant.

If K satisfies detailed balance for π then the Markov chain is
reversible, i.e. at stationarity,

∀x, y ∈ X : P(Xt = x, Xt+1 = y) = P(Xt = x, Xt−1 = y).
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Lack of reversibility

Let P =

 1/3 1/3 1/3
1 0 0
0 1 0

.

Check πP = π for π = (1/2, 1/3, 1/6).
P cannot be π reversible as

1→ 3→ 2→ 1

is a possible sequence whereas

1→ 2→ 3→ 1

is not (as P2,3 = 0).
Detailed balance does not hold as π2P23 = 0 6= π3P32.
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Remarks

All finite space Markov chains have at least one stationary
distribution but not all stationary distributions are also limiting
distributions.

P =


0.4 0.6 0 0
0.2 0.8 0 0
0 0 0.4 0.6
0 0 0.2 0.8


Two left eigenvectors of eigenvalue 1:

π1 = (1/4, 3/4, 0, 0) ,
π2 = (0, 0, 1/4, 3/4)

depending on the initial state, two different stationary
distributions.
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Equilibrium

Proposition

If a discrete space Markov chain is aperiodic and irreducible, and
admits an invariant distribution, then

∀x ∈ X Pµ (Xt = x) −−→
t→∞

π(x),

for any starting distribution µ.

In the Monte Carlo perspective, we will be primarily interested
in convergence of empirical averages, such as

În =
1
n

n

∑
t=1

ϕ (Xt)
a.s.−−−→

n→∞
I = ∑

x∈X

ϕ (x)π(x).

Before turning to these “ergodic theorems”, let us consider
continuous spaces.
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Markov chains - continuous space

The state space X is now continuous, e.g. Rd.

(Xt)t≥1 is a Markov chain if for any (measurable) set A,

P(Xt ∈ A|X1 = x1, X2 = x2, ..., Xt−1 = xt−1)

= P(Xt ∈ A|Xt−1 = xt−1).

We have

P(Xt ∈ A|Xt−1 = x) =
∫

A
K (x, y) dy = K (x, A) ,

that is conditional on Xt−1 = x, Xt is a random variable which
admits a probability density function K (x, ·).

K : X2 → R is the kernel of the Markov chain.
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Markov chains - continuous space

Denoting µ1 the pdf of X1, we obtain directly

P(X1 ∈ A1, ..., Xt ∈ At)

=
∫

A1×···×At

µ1 (x1)
t

∏
k=2

K (xk−1, xk) dx1 · · · dxt.

Denoting by µt the distribution of Xt, Chapman-Kolmogorov
equation reads

µt (y) =
∫

X
µt−1(x)K(x, y)dx

and similarly for m > 1

µt+m (y) =
∫

X
µt(x)Km(x, y)dx

where

Km (xt, xt+m) =
∫

Xm−1

t+m

∏
k=t+1

K (xk−1, xk) dxt+1 · · · dxt+m−1.
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Example

Consider the autoregressive (AR) model

Xt = ρXt−1 + Vt

where Vt
i.i.d.∼ N

(
0, τ2). This defines a Markov process such that

K (x, y) =
1√

2πτ2
exp

(
− 1

2τ2 (y− ρx)2
)

.

We also have

Xt+m = ρmXt +
m

∑
k=1

ρm−kVt+k

so in the Gaussian case

Km (x, y) =
1√

2πτ2
m

exp

(
−1

2
(y− ρmx)2

τ2
m

)

with τ2
m = τ2 ∑m

k=1
(
ρ2)m−k

= τ2 1−ρ2m

1−ρ2 .

Lecture 4 Markov Chains January 27th, 2016 24 / 32



Irreducibility and aperiodicity

Definition
Given a distribution µ over X, a Markov chain is µ-irreducible
if

∀x ∈ X ∀A : µ(A) > 0 ∃t ∈N Kt (x, A) > 0.

A µ-irreducible Markov chain of transition kernel K is periodic
if there exists some partition of the state space X1, ..., Xd for
d ≥ 2, such that

∀i, j, t, s : P
(

Xt+s ∈ Xj
∣∣Xt ∈ Xi

)
=

{
1 j = i + s mod d
0 otherwise.

.

Otherwise the chain is aperiodic.
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Recurrence and Harris Recurrence

For any measurable set A of X, let

ηA =
∞

∑
k=1

IA (Xk) .

Definition
A µ-irreducible Markov chain is recurrent if for any measurable
set A ⊂ X : µ (A) > 0, then

∀x ∈ A Ex (ηA) = ∞.

A µ-irreducible Markov chain is Harris recurrent if for any
measurable set A ⊂ X : µ (A) > 0, then

∀x ∈ X Px (ηA = ∞) = 1.

Harris recurrence is stronger than recurrence.
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Invariant Distribution and Reversibility

Definition
A distribution of density π is invariant or stationary for a
Markov kernel K, if∫

X
π (x)K (x, y) dx = π (y) .

A Markov kernel K is π-reversible if

∀ f
∫∫

f (x, y)π (x)K (x, y) dxdy

=
∫∫

f (y, x)π (x)K (x, y) dxdy

where f is a bounded measurable function.
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Detailed balance

In practice it is easier to check the detailed balance condition:

∀x, y ∈ X π(x)K(x, y) = π(y)K(y, x)

Lemma
If detailed balance holds, then π is invariant for K and K is
π-reversible.

Example: the Gaussian AR process is π-reversible, π-invariant
for

π (x) = N
(

x; 0,
τ2

1− ρ2

)
when |ρ| < 1.
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Law of Large Numbers

Theorem
If K is a π-irreducible, π-invariant Markov kernel, then for any
integrable function ϕ : X→ R:

lim
t→∞

1
t

t

∑
i=1

ϕ (Xi) =
∫

X
ϕ (x)π (x) dx

almost surely, for π− almost all starting values x.

Theorem
If K is a π-irreducible, π-invariant, Harris recurrent Markov chain,
then for any integrable function ϕ : X→ R:

lim
t→∞

1
t

t

∑
i=1

ϕ (Xi) =
∫

X
ϕ (x)π (x) dx

almost surely, for any starting value x.
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Convergence

Theorem
Suppose the kernel K is π-irreducible, π-invariant, aperiodic. Then,
we have

lim
t→∞

∫
X

∣∣Kt (x, y)− π (y)
∣∣ dy = 0

for π−almost all starting values x.

Under some additional conditions, one can prove that a chain
is geometrically ergodic, i.e. there exists ρ < 1 and a function
M : X→ R+ such that for all measurable set A:

|Kn(x, A)− π(A)| ≤ M(x)ρn,

for all n ∈N. In other words, we can obtain a rate of
convergence.
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Central Limit Theorem

Theorem
Under regularity conditions, for a Harris recurrent, π-invariant
Markov chain, we can prove

√
t

[
1
t

t

∑
i=1

ϕ (Xi)−
∫

X
ϕ (x)π (x) dx

]
D−−→

t→∞
N
(
0, σ2 (ϕ)

)
,

where the asymptotic variance can be written

σ2 (ϕ) = Vπ [ϕ (X1)] + 2
∞

∑
k=2

Covπ [ϕ (X1) , ϕ (Xk)] .

This formula shows that (positive) correlations increase the
asymptotic variance, compared to i.i.d. samples for which the
variance would be Vπ(ϕ(X)).
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Central Limit Theorem

Example: for the AR Gaussian model,
π (x) = N

(
x; 0, τ2/(1− ρ2)

)
for |ρ| < 1 and

Cov (X1, Xk) = ρk−1V [X1] = ρk−1 τ2

1− ρ2 .

Therefore with ϕ (x) = x,

σ2(ϕ) =
τ2

1− ρ2

(
1 + 2

∞

∑
k=1

ρk

)
=

τ2

1− ρ2
1 + ρ

1− ρ
=

τ2

(1− ρ)2 ,

which increases when ρ→ 1.
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