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m Monte Carlo methods rely on random numbers to approximate
integrals.

m In this lecture we'll see some statistical problems involving
integrals, and discuss the properties of the basic Monte Carlo
estimator.

m We will see some basic methods for sampling from
distributions: inversion, transformation, rejection sampling...




Monte Carlo Integration

m We are interested in computing

I:/Xq)(x)n(x)dx

where risapdfon X and ¢ : X — R.
m Monte Carlo method:
m sample n independent copies X, ..., X, of X ~ T,

n

~ 1
L ==Y o(X)).
niS l

® Remark: You can think of it as having the following empirical
measure approximation of 7t (dx)

~ 1¢
Ty (dx) = " Y 6x, (dx)
i=1
where Jx, (dx) is the Dirac measure at X;.




Monte Carlo Integration: Limit Theorems

Proposition (LLN)

IfE (J¢ (X)|) < oo then I, is a strongly consistent estimator of I.

Proposition (CLT)

If
o> =V (9 (X)) = [ lp(x) =P 7 (x)dx < o0
then R , R 2
(1)) =v() =5
and
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Monte Carlo Integration: Variance Estimation I

Assume 02 =V (¢ (X)) < oo then

Siznilé(q’(xi)—fn)z

is an unbiased sample variance estimator of 0.




Monte Carlo Integration: Variance Estimation II

let Y; = @ (X;) then we have

E(s}) = ﬁﬁm«y YP) = LE(L )

E(Y) = ]E[ZYZ—F;YY]: V) + )+ =1p
YW, p

IE(S%):nL:V(Y)_nZW;(aY)+ni1lz_ni112
_V(¥) = V (p(X). a]




Monte Carlo Integration: Error Estimates

m Chebyshev’s inequality: exact but possibly rough
o > v (Tﬂ) 1

P — | < ==
Vn

~ 2% /n
m CLT: much tighter but approximate and for large n

fn—l‘>c

e—c2/2

>z2(1—®(c)):(9< ).

o
NG

m Choosing ¢ = ¢y s.t. 2(1 — P (¢y)) = &, an approximate
(1 — &) 100%-CI for I is

(rae) = (1255)

and the rate is in 1/+/n whatever X.
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Toy Example

m Consider the case where we have a square S CIR?, sides of
length 2, with inscribed disk D of radius 1.

m Use Monte Carlo to compute the area I of D.

I:n:// dxdx,
D

= //S Ip (x1,x2)dxidxpasD C S
= 4//]1{2 ]ID (X1,X2) 7T (x1,x2) dxlde

where S :=[—1,1] x [-1,1] and

1
T (x1,Xx2) = 1]13 (x1,x2)

is the uniform density on the square S.




Toy Example
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Figure: I, = 472 where np is the number of samples which fell
within the disk.




Toy Example
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Figure: Relative error of I, against the number of samples.
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Drawing random numbers

m Computing intricate high-dimensional integrals boils down to
generating random variables from complicated distributions.

m How does a computer simulate random variables?

m Firstly it can produce a random integer uniformly distributed
in {0,..., M — 1} for some large M, often M = 2% giving 32-bit
integers.

m These are pseudo-random numbers.

m Then various techniques are used to produce all others
distributions of interest.




Pseudo-Random Number Generation

Start off with a “seed" x.

m Given x,, produce
Xpt1 = (ax, +¢) mod M,
for integers a, c, and M.

® Maximum period M.

m Hull and Dobell (1962) provide necessary and sufficient
conditions for period M.

m Then U, = X,,/ M behaves similarly to /[0, 1] random variable,
despite not being random at all.
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Figure: Left: 10,000 pseudo random numbers in [0, 1];
Right: histogram.

Sampling




Drawing random numbers

m Assumption: we have access to i.i.d. (U;,i > 1) ~ Ujp ).

m To simulate from 7 (x1,x2) = %]Ig (x1,x2), we draw U; and Uy
uniformly and define X; = 2U; — 1, Xo = 2U, — 1. Then the
point (Xj, X») is distributed uniformly within S.

m We will see how to use the above to simulate many different
random variables.




Galton’s machine to draw normal samples




Inversion Method

m Consider a real-valued random variable X and its associated
cumulative distribution function (cdf)

F(x)=P (X <x)=F(x).

m Thecdf F: R — [0,1] is

m increasing;i.e. if x < ythen F (x) < F (y),
m right continuous; ie. F (x +¢) — F(x)ase — 0%,
m F(x) > 0asx = —ooand F (x) — 1 as x — +oo.

m We define the generalised inverse
F~(u) =inf{x e R;F (x) > u}

also known as the quantile function.




Inversion Method

Figure: Cumulative distribution function F and representation of the
inverse cumulative distribution function.




Inversion Method

Proposition
Let F be a cdf and U ~ U y). Then X = F~ (U) has cdf F.

In other words, to sample from a distribution with cdf F, we
can sample U ~ Uy ;) and then return F~(U).

Fact: F~ (u) < x < u < F(x).
Thus for U ~ U}, we have

P(F~(U)<x)=P(U<F(x))=F(x). O




= Exponential distribution. If F (x) = 1 — e~%, then
F~(u) =F'(u)=—log(1—u)/A.

Thus when U ~ Z/{[O,ﬂ,
—log(1-U) /A ~Exp(A), and —log(U)/A~Exp(A).

m Discrete distribution. Assume X takes values x; < xp, < - - -
with probability py, pa, ... so

F(x)= ) o

X <x

F () =xiforpi 4 +prg <u<pi+-+pr




Transformation Method

Setting:
m Wecan simulate Y ~ ¢, Y € Y.

m We want to simulate: X ~ 1, X € X.
m Transformation method: find a function ¢ : Y — X such that

Y~g=X=¢(Y)~m.

m Inversion is a special case of this idea.




Transformation Method

m Gamma distribution. Fora € N, letY;,i =1,2,-- -, beii.d.
with Y; ~ Exp (1). Then

o
X=p"1Y Yi~G(ap).
i=1
Proof. The moment generating function of X is

1

o
E (X)) =T]E (ef i) = —————,
() =I1® (") = r—i7ps
which is the MGF of the Gamma density with param’s « and
7 (x) < x* Lexp (—px).

m Beta distribution. See Exercise sheet 1.




Transformation Method - Box-Muller Algorithm

m Gaussian distribution. Let Uy ~ Uy and Uz ~ Uy ;) be
independent and set

R = —210g(l11), 19:27'CUQ.

m Clearly R, ¢ independent and R? ~ Exp(1/2), & ~ Ujg ] with
joint density
11 X
q(r%,9) = = 2exp( r°/2).
m Set X = Rcos(?),Y = Rsin(9) a bijection.




Transformation Method - Box-Muller Algorithm

m By standard facts:

r
11 x2 412 1 x2 412
_Eﬂexp[_ 2 ]Z_Eexp[_ 2 ]’
since 0
cos .
det d(x,y) | o —rsind| _ 1
a(r?,9) SH;(T ) rcos® 2

m thus (X, Y) are independent standard normal.




Transformation Method - Multivariate Normal

m LetZ = (Z1,.., Z4) & N(0,1).
Let L be a real invertible d x d matrix satisfying L LT =%, and
X=LZ+u. ThenX ~ N (u,X).

= We have indeed ¢ (z) = (277) % exp (—127z) and
(x) =q(z)|detoz/ox|
where 9z/9x = L™! and det (L™!) = det (z)~12, Additionally,
T
Zz=(x—p) (L) L7 (x—p)
= (=)' Z (x—p).

m In practice, use a Cholesky factorization & = L LT where Lis a
lower triangular matrix.




Sampling via Composition

m Assume we have a joint pdf 77 with marginal 7; i.e.

7(x) = [Ty (xy)dy
where 7T (x,y) can always be decomposed as
Txy (% y) =Ty () Txy (x]y) .-

m It might be easy to sample from 77 (x, ) whereas it is
difficult/impossible to compute 7t (x).

m In this case, it is sufficient to sample
so (X,Y) ~ 7xy and hence X ~ 7.




Finite Mixture of Distributions

m Assume one wants to sample from
p
T (x) =Y wimi(x)
i=1

wherea; > 0,0 a; =land m; (x) >0, [ 71; (x)dx = 1.

®m We can introduce Y € {1, ..., p} and

TTxy (x,y) = ay x 1, (X).

m To sample from 7 (x), first sample Y from a discrete
distribution such that P (Y = k) = a; then

X|(Y=y) ~my.




Rejection Sampling
Basic idea: Sample from instrumental proposal q # 7; correct

through rejection step to obtain a sample from 7.

Algorithm (Rejection Sampling). Given two densities 7T, g with
7 (x) < M g (x) for all x, we can generate a sample from 7 by

Draw X ~ g, draw U ~ U]gq).
Accept X = x as a sample from 7 if

u<

otherwise go to step 1.

Proposition
The distribution of the samples accepted by rejection sampling is .




Rejection Sampling

P (X € A, X accepted)
IP (X accepted)

P (X € A| X accepted) =
where

P (X € A, X accepted)

_// T, ( x)]I<u< ((i)>q(x)dudx

:/X]IA(x)M g (x)dx
:/X]IA(x)%dx:#. O
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