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Housekeeping

First half of course: GD, second half: Lawrence Murray
Website: www.stats.ox.ac.uk/~deligian/sc5.html

Email: deligian@stats.ox.ac.uk

Lectures: Mondays 10-11 & Wednesdays 14-15, weeks 1-8, LGO1.
Classes:

Undergraduate: Thursdays 10-11 LG04, weeks 3-8;
MSc: Thursdays 11-11 LG03, weeks 4, 5, 7, 8.

Class tutors:

m G. Deligiannidis first half, Lawrence Murray second half.

Hand in solutions by Tuesday, 1pm at the Adv. Simulation tray.
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www.stats.ox.ac.uk/~deligian/sc5.html

m Solutions of many scientific problems involve intractable
high-dimensional integrals.

m Standard deterministic numerical integration deteriorates
rapidly with dimension.

m Monte Carlo methods are stochastic numerical methods to
approximate high-dimensional integrals.

m Main application in this course: Bayesian statistics.

m Other applications: statistical /quantum physics, econometrics,
ecology, epidemiology, finance, signal processing, weather
forecasting. ..

m More than 2,000, 000 results for “Monte Carlo” in Google
Scholar.



Computing Integrals

m For f: X = R, let

Iz/xf(x)dx

m When X = [0, 1], then we can simply approximate I through

~ _li (z+1/2>




Riemann Sums
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Figure: Riemann sum approximation (black rectangles) of the integral
of f (red curve).



Error of naive numerical integration in 1D

m Naively, for a small interval [a, a + €] approximate

a+e

/ f(x)dx ~ € x f(a).

a

m Error bounded above by
a-+e
/ f(x)dx—sxf(a)‘: f(a ]dx’
< [T reyar < sup if @15

x€[0,1]

m If sup,coq) |f'(x)| < M, the uniform grid with n points gives
approximation error at most
1
Mn x ﬁ = 0(1/1’1)



Computing High-Dimensional Integrals

m For X = [0,1] x [0,1] using n = m? evaluations

T ()

i=0 j=0

the same calculation shows that the approximation error is
1
Mm? x —=0(1/m)=0 (n’1/2> .
m

m Generally for X = [0, 1]d we have an approximation error in

O (n74).

m So-called “curse of dimensionality”.

m Other integration rules(e.g. Simpson’s) also degrade as d
increases.



Monte Carlo Integration

m For f : X = R, write

I:/Xf(x)dx:/xgo(x)n(x)dx.

where 77 is a probability density function on X and

¢:x— f(x)/m(x).
m Monte Carlo method: L
m sample X, ..., X, e T,
m compute

m Strong law of large numbers: Tn — I almost surely;
m Central limit theorem: the random approximation error is

O(n=12)
whatever the dimension of the state space X.



Monte Carlo Integration

m In many cases the integral of interest is in the form

= /xgo(x)n(x)dx = Ex [p(X)],

for a specific function ¢ and distribution 7.
m The distribution 77 is often called the “target distribution”.
m Monte Carlo approach relies on independent copies of

X ~ 71,

m Hence the following relationship between integrals and
sampling:

Monte Carlo method to approximate E [¢(X)]

& simulation method to sample 7

m Thus Monte Carlo sometimes refer to simulation methods.



Ising Model

m Consider a simple 2D-Ising model on a finite lattice
G ={1,2,..,m} x{1,2,..,m} where each site ¢ = (i, ) hosts a
particle with a +1 or -1 spin modeled as a r.v. X,.

m The distribution of X = {X;},5 on {—1, 1}'"2 is given by

g (x) — exp (_Ziu (x))

where B > 0is called the inverse temperature and the potential
energy is
Ux) =7 ) xoxo.
o~o’

m Physicists are interested in computing Er, [U (X)] and Zg.

m The dimension is m?2, where m can easily be 103.



Ising Model

Figure: One draw from the Ising model on a 500 x 500 lattice.



Option Pricing

m Let S (¢) denote the price of a stock at time .

m FEuropean option: grants the holder the right to buy the stock at
a fixed price K at a fixed time T in the future; the current time
being t = 0.

m At time T the holder achieves a payoff of

max{St — K, 0}.

m With interest rate 7, the expected discounted value at t = 0 is

exp (—T) E [max (0,5 (T) — K)].



Option Pricing

m If we knew explicitly the distribution of S (T') then
E [max (0,S (T) — K)] is a low-dimensional integral.

m Problem: We only have access to a complex stochastic model
for {5 (t) }en

=g(S
=g(g(S(t—-1),W(t) W(t+1))
=: ¢ (S(0),W(1),.. W(t+1))

where {W (t)},.p is a sequence of random variables and g is a
known function.



Option Pricing

m The price of the option involves an integral over the T latent
variables .
W ()}

m Assume these are independent with probability density
function py.

m We can write
E [max (0,S (T) — K)]
—/max 0,¢" (s(0),w (1), ...,w(T))—K}

X {HPW (W(t))}dw (1) ---dw(T),

a high-dimensional integral.



Bayesian Inference

m Given 6 € ©, we assume that Y follows a probability density
function py (y;0).

m Having observed Y = y, we want to perform inference about 6.

m In the frequentist approach 6 is unknown but fixed; inference in
this context can be performed based on

0(0) =logpy (1;0).

m In the Bayesian approach, the unknown parameter is regarded
as a random variable ¢ and assigned a prior py (0).



vs Bayesian

m Probabilities refer to limiting relative frequencies. They are
(supposed to be) objective properties of the real world.

m Parameters are fixed unknown constants. Because they are not
random, we cannot make any probability statements about
parameters.

m Statistical procedures should have well-defined long-run
properties. For example, a 95% confidence interval should
include the true value of the parameter with limiting frequency
at least 95%.



Frequentist vs

m Probability describes degrees of subjective belief, not limiting
frequency.

m We can make probability statements about parameters, e.g.

P6ec|[-1,1]]Y=y)

m Observations produce a new probability distribution for the
parameter, the posterior.

m Point estimates and interval estimates may then be extracted
from this distribution.
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Bayesian Inference

m Bayesian inference relies on the posterior

py (v;0) ps (0)

Poly (9| y) = Py (y)

where

pr(v) = [ py (:6) po (6) 6

is the so-called marginal likelihood or evidence.

m Point estimates, e.g. posterior mean of ¢

E(8ly) = [ 0 poy (6]y)do

can be computed.



Bayesian Inference

m Credible intervals: an interval C such that

P(deCly)=1—a.

m Assume the observations are independent given ¢ = 6 then the
predictive density of a new observation Y}, having observed
Y =yis

PYyew|Y (Ynew| y) = /@PY (Ynew; 0) Psly (0ly)de

m Above predictive density takes into account the uncertainty
about the parameter 6.

m Compare to simple plug-in rule py (ynew ; 5) where 0 is a point
estimate of 6 (e.g. the MLE).



Bayesian Inference: Gaussian Data

m LetY = (Y3,...,Y,) beiid. random variables with
Y; ~ N (6,0?) with ¢ known and 6 unknown.

m Assign a prior distribution on the parameter: ¢ ~ N (y,x?),
then one can check that

p(0ly) =N (6;v,0)

where

2 K202 o? nK

e + o2’ V= mcz—i-(rzy—i— nix2 —i—aZy'

2

m Thus E (d)y) = vand V (d]y) = >



Bayesian Inference: Gaussian Data

mIfC:=(v—d'(1-a/2)w,v+P (1 -a/2)w), then

P(deCly)=1—a.

mIfY, 1 ~N (9, (72) then

Pnav) = [P (ynsa]0)p (B1) 40 = N (vasaiv, 0 +02).

m No need to do Monte Carlo approximations: the prior is
conjugate for the model.



Bayesian Inference: Logistic Regression

m Let (x;,Y;) € R? x {0,1} where x; € R? is a covariate and

1

PO=119) = T

m Assign a prior p (6) on ¢. Then Bayesian inference relies on

PO TP (Y, = yl0)

P (y1,-rYn)

p(0ly1, - yn) =

m If the prior is Gaussian, the posterior is not a standard
distribution: P (y1, ..., ¥») cannot be computed.



S&P 500 index
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Figure: S&P 500 daily price index (p¢) between 1984 and 1991.



S&P 500 index
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Figure: Daily returns y; = log(p¢/ p:—1) between 1984 and 1991.



Bayesian Inference: Stochastic Volatility Model

Latent stochastic volatility (X;),., of an asset is modeled
through

Xy = @Xi—1+0Vi, Y = Bexp (X¢) Wi
where V;, W; ~ N (0,1).
Intuitively, log-returns are modeled as centered Gaussians with
dependent variances.
m Popular alternative to ARCH and GARCH models (Engle, 2003
Nobel Prize).

Estimate the parameters (¢, o, B) given the observations.

Estimate X; given Y3, ..., Y; on-line based on p (x¢| y1, ..., y¢) -

No analytical solution available!
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