
3.36pt



Advanced Simulation - Lecture 1

George Deligiannidis

January 18th, 2016

Lecture 1 1 / 25



Housekeeping

First half of course: GD, second half: Lawrence Murray
Website: www.stats.ox.ac.uk/~deligian/sc5.html

Email: deligian@stats.ox.ac.uk

Lectures: Mondays 10-11 & Wednesdays 14-15, weeks 1-8, LG01.
Classes:
Undergraduate: Thursdays 10-11 LG04, weeks 3-8;

MSc: Thursdays 11-11 LG03, weeks 4, 5, 7, 8.

Class tutors:

G. Deligiannidis first half, Lawrence Murray second half.
Hand in solutions by Tuesday, 1pm at the Adv. Simulation tray.
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Motivation

Solutions of many scientific problems involve intractable
high-dimensional integrals.

Standard deterministic numerical integration deteriorates
rapidly with dimension.

Monte Carlo methods are stochastic numerical methods to
approximate high-dimensional integrals.

Main application in this course: Bayesian statistics.

Other applications: statistical/quantum physics, econometrics,
ecology, epidemiology, finance, signal processing, weather
forecasting. . .

More than 2, 000, 000 results for “Monte Carlo” in Google
Scholar.
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Computing Integrals

For f : X→ R, let

I =
∫

X
f (x) dx.

When X = [0, 1], then we can simply approximate I through

În =
1
n

n−1

∑
i=0

f
(

i + 1/2
n

)
.
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Riemann Sums

●

●

●

●

●

●

●

●
●

●

0.0

0.5

1.0

1.5

0.05 0.15 0.25 0.35 0.45 0.55 0.65 0.75 0.85 0.95
x

y

Figure: Riemann sum approximation (black rectangles) of the integral
of f (red curve).
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Error of naive numerical integration in 1D

Naively, for a small interval [a, a + ε] approximate∫ a+ε

a
f (x)dx ≈ ε× f (a).

Error bounded above by∣∣∣ ∫ a+ε

a
f (x)dx− ε× f (a)

∣∣∣ = ∣∣∣ ∫ a+ε

a
[ f (x)− f (a)]dx

∣∣∣
≤
∫ a+ε

a

∫ x

y=a
| f ′(y)|dy dx ≤ sup

x∈[0,1]
| f ′(x)| ε

2

2
.

If supx∈[0,1] | f ′(x)| < M, the uniform grid with n points gives
approximation error at most

Mn× 1
n2 = O(1/n).
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Computing High-Dimensional Integrals

For X = [0, 1]× [0, 1] using n = m2 evaluations

În =
1

m2

m−1

∑
i=0

m−1

∑
j=0

f
(

i + 1/2
m

,
j + 1/2

m

)
the same calculation shows that the approximation error is

Mm2 × 1
m3 = O(1/m) = O

(
n−1/2

)
.

Generally for X = [0, 1]d we have an approximation error in

O
(

n−1/d
)

.

So-called “curse of dimensionality”.
Other integration rules(e.g. Simpson’s) also degrade as d
increases.
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Monte Carlo Integration

For f : X→ R, write

I =
∫

X
f (x) dx =

∫
X

ϕ(x)π(x)dx.

where π is a probability density function on X and

ϕ : x 7→ f (x)/π(x).

Monte Carlo method:
sample X1, . . . , Xn

i.i.d.∼ π,
compute

În =
1
n

n

∑
i=1

ϕ(Xi).

Strong law of large numbers: În → I almost surely;
Central limit theorem: the random approximation error is

O(n−1/2)

whatever the dimension of the state space X.
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Monte Carlo Integration

In many cases the integral of interest is in the form

I =
∫

X
ϕ(x)π(x)dx = Eπ [ϕ(X)] ,

for a specific function ϕ and distribution π.
The distribution π is often called the “target distribution”.
Monte Carlo approach relies on independent copies of

X ∼ π.

Hence the following relationship between integrals and
sampling:

Monte Carlo method to approximate Eπ [ϕ(X)]

⇔ simulation method to sample π

Thus Monte Carlo sometimes refer to simulation methods.
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Ising Model

Consider a simple 2D-Ising model on a finite lattice
G = {1, 2, ..., m} × {1, 2, ..., m} where each site σ = (i, j) hosts a
particle with a +1 or -1 spin modeled as a r.v. Xσ.

The distribution of X = {Xσ}σ∈G on {−1, 1}m2
is given by

πβ (x) =
exp (−βU (x))

Zβ

where β > 0 is called the inverse temperature and the potential
energy is

U (x) = J ∑
σ∼σ′

xσxσ′ .

Physicists are interested in computing Eπβ
[U (X)] and Zβ.

The dimension is m2, where m can easily be 103.
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Ising Model

Figure: One draw from the Ising model on a 500× 500 lattice.
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Option Pricing

Let S (t) denote the price of a stock at time t.

European option: grants the holder the right to buy the stock at
a fixed price K at a fixed time T in the future; the current time
being t = 0.

At time T the holder achieves a payoff of

max{ST − K, 0}.

With interest rate r, the expected discounted value at t = 0 is

exp (−rT)E [max (0, S (T)− K)] .
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Option Pricing

If we knew explicitly the distribution of S (T) then
E [max (0, S (T)− K)] is a low-dimensional integral.

Problem: We only have access to a complex stochastic model
for {S (t)}t∈N

S (t + 1) = g (S (t) , W (t + 1))
= g (g (S (t− 1) , W (t)) , W (t + 1))

=: gt+1 (S (0) , W (1) , ..., W (t + 1))

where {W (t)}t∈N is a sequence of random variables and g is a
known function.
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Option Pricing

The price of the option involves an integral over the T latent
variables

{W (t)}T
t=1 .

Assume these are independent with probability density
function pW .

We can write

E [max (0, S (T)− K)]

=
∫

max
[
0, gT (s (0) , w (1) , ..., w (T))− K

]
×
{

T

∏
t=1

pW (w (t))

}
dw (1) · · · dw (T) ,

a high-dimensional integral.
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Bayesian Inference

Given θ ∈ Θ, we assume that Y follows a probability density
function pY (y; θ).

Having observed Y = y, we want to perform inference about θ.

In the frequentist approach θ is unknown but fixed; inference in
this context can be performed based on

`(θ) = log pY (y; θ) .

In the Bayesian approach, the unknown parameter is regarded
as a random variable ϑ and assigned a prior pϑ (θ).
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Frequentist vs Bayesian

Probabilities refer to limiting relative frequencies. They are
(supposed to be) objective properties of the real world.

Parameters are fixed unknown constants. Because they are not
random, we cannot make any probability statements about
parameters.

Statistical procedures should have well-defined long-run
properties. For example, a 95% confidence interval should
include the true value of the parameter with limiting frequency
at least 95%.
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Frequentist vs Bayesian

Probability describes degrees of subjective belief, not limiting
frequency.

We can make probability statements about parameters, e.g.

P (θ ∈ [−1, 1] | Y = y)

Observations produce a new probability distribution for the
parameter, the posterior.

Point estimates and interval estimates may then be extracted
from this distribution.
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Bayesian Inference

Bayesian inference relies on the posterior

pϑ|Y ( θ| y) = pY (y; θ) pϑ (θ)

pY (y)

where
pY (y) =

∫
Θ

pY (y; θ) pϑ (θ)dθ

is the so-called marginal likelihood or evidence.

Point estimates, e.g. posterior mean of ϑ

E (ϑ|y) =
∫

Θ
θ pϑ|Y ( θ| y)dθ

can be computed.
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Bayesian Inference

Credible intervals: an interval C such that

P (ϑ ∈ C| y) = 1− α.

Assume the observations are independent given ϑ = θ then the
predictive density of a new observation Ynew having observed
Y = y is

pYnew|Y (ynew| y) =
∫

Θ
pY (ynew; θ) pϑ|Y ( θ| y) dθ

Above predictive density takes into account the uncertainty
about the parameter θ.

Compare to simple plug-in rule pY

(
ynew; θ̂

)
where θ̂ is a point

estimate of θ (e.g. the MLE).
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Bayesian Inference: Gaussian Data

Let Y = (Y1, ..., Yn) be i.i.d. random variables with
Yi ∼ N

(
θ, σ2) with σ2 known and θ unknown.

Assign a prior distribution on the parameter: ϑ ∼ N
(
µ, κ2),

then one can check that

p ( θ| y) = N
(
θ; ν, ω2)

where

ω2 =
κ2σ2

nκ2 + σ2 , ν =
σ2

nκ2 + σ2 µ +
nκ2

nκ2 + σ2 y.

Thus E (ϑ|y) = ν and V (ϑ|y) = ω2.
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Bayesian Inference: Gaussian Data

If C :=
(
ν−Φ−1 (1− α/2)ω, ν + Φ−1 (1− α/2)ω

)
, then

P (ϑ ∈ C| y) = 1− α.

If Yn+1 ∼ N
(
θ, σ2) then

p (yn+1| y) =
∫

Θ
p (yn+1| θ) p ( θ| y) dθ = N

(
yn+1; ν, ω2 + σ2) .

No need to do Monte Carlo approximations: the prior is
conjugate for the model.
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Bayesian Inference: Logistic Regression

Let (xi, Yi) ∈ Rd × {0, 1} where xi ∈ Rd is a covariate and

P (Yi = 1| θ) = 1
1 + e−θT xi

Assign a prior p (θ) on ϑ. Then Bayesian inference relies on

p ( θ| y1, ..., yn) =

p (θ)
n
∏
i=1

P (Yi = yi| θ)

P (y1, ..., yn)

If the prior is Gaussian, the posterior is not a standard
distribution: P (y1, ..., yn) cannot be computed.
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S&P 500 index

200

300

400

01/01/84 01/01/86 01/01/88 01/01/90 01/01/92
time

S&P500

Figure: S&P 500 daily price index (pt) between 1984 and 1991.
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S&P 500 index
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Figure: Daily returns yt = log(pt/pt−1) between 1984 and 1991.
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Bayesian Inference: Stochastic Volatility Model

Latent stochastic volatility (Xt)t≥1 of an asset is modeled
through

Xt = ϕXt−1 + σVt, Yt = β exp (Xt)Wt

where Vt, Wt ∼ N (0, 1) .
Intuitively, log-returns are modeled as centered Gaussians with
dependent variances.
Popular alternative to ARCH and GARCH models (Engle, 2003
Nobel Prize).
Estimate the parameters (ϕ, σ, β) given the observations.
Estimate Xt given Y1, ..., Yt on-line based on p ( xt| y1, ..., yt) .
No analytical solution available!
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