
Advanced Simulation

Problem Sheet 2

Exercise 1

Consider the following “squeeze” rejection algorithm for sampling from a distribution with density π (x) =
π̃ (x) /Zπ on a state space X such that

h (x) ≤ π̃ (x) ≤Mq̃ (x)

where h is a non-negative function, M > 0 and q (x) = q̃ (x) /Zq is the density of a distribution that we
can easily sample from. The algorithm proceeds as follows.

• (a) Draw independently X ∼ q, U ∼ U[0,1].

• (b) Accept X if U ≤ h (X) / (Mq̃ (X)) .

• (c) If X was not accepted in step (b), draw an independent V ∼ U[0,1] and accept X if

V ≤ π̃ (X)− h (X)

Mq̃ (X)− h (X)
.

1. Show that the probability of accepting a proposed X = x in either step (b) or (c) is

π̃ (x)

Mq̃ (x)
.

2. Deduce from the previous question that the distribution of the samples accepted by the above
algorithm is π.

3. Show that the probability that step (c) has to be carried out is

1−
∫
X h (x) dx

MZq
.

4. Let π̃ (x) = exp
(
−x2/2

)
and q̃ (x) = exp (− |x|). Using the fact that

π̃ (x) ≥ 1− x2

2

for any x ∈ R, how could you use the squeeze rejection sampling algorithm to sample from π (x).
What is the probability of not having to evaluate π̃ (x)? Why could it be beneficial to use this
algorithm instead of the standard rejection sampling procedure?

Exercise 2

Optional. Do not hand in. Solutions will be released.

Consider the following algorithm known as Marsaglia’s polar method.

• Step a: Generate independent U1, U2 according to U[−1,1] until Y = U2
1 + U2

2 ≤ 1.
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• Step b: Define
Z =

√
−2 log (Y )

and return

X1 = Z
U1√
Y
, X2 = Z

U2√
Y
.

1. Define ϑ = arctan2(U1, U2), where atan2 : R2 → (−π, π], or (0, 2π], sends (x, y) ∈ R2 to the angle
θ the vector (x, y) forms with the positive x-axis. The difference with the standard arctan(y/x)
function whose range is (−π/2, π/2] is that it retains the information about the signs of x and y,
which is lost when computing y/x.

Show that the joint distribution of Y and ϑ has density

fY,ϑ (y, θ) = 1[0,1] (y)
1[0,2π] (θ)

2π
.

2. Show that X1 and X2 are independent standard normal random variables.

3. What are the potential benefits of this approach over the Box-Muller algorithm?

Exercise 3

Optional. Do not hand in. Solutions will be released.
Consider two probability densities π, q on X such that π (x) > 0 ⇒ q (x) > 0 and assume that you

can easily draw samples from q. Whenever π (x) /q (x) ≤ M < ∞ for any x ∈ X, it is possible to use
rejection sampling to sample from π. When M is unknown or when this condition is not satisfied, we can
use importance sampling techniques to approximate expectations with respect to π. However it might
be the case that most samples from q have very small importance weights.

Rejection control is a method combining rejection and importance weighting. It relies on an arbitrary
threshold value c > 0. We introduce the notation w (x) = π (x) /q (x) and

Zc =

∫
X

min {1, w (x) /c} q (x) dx.

Rejection control proceeds as follows.

• Step a. Generate independent X ∼ q, U ∼ U[0,1] until U ≤ min {1, w (X) /c}.

• Step b. Return X.

1. Give the expression of the probability density q∗ (x) of the accepted samples.

2. Prove that
Eq∗

(
[w∗ (X)]

2
)

= ZcEq (max {w (X) , c}w (X))

where w∗ (x) = π (x) /q∗ (x).

3. Establish that

Eq (min {w (X) , c})Eq (max {w (X) , c}w (X)) ≤ Eq (min {w (X) , c}max {w (X) , c}w (X))

(Hint. Show first that for any c > 0, w1 > 0, w2 > 0

h (w1, w2) = [min {w1, c} −min {w2, c}] [w1 max {w1, c} − w2 max {w2, c}] ≥ 0.

This is related to the Harris inequality).

4. Deduce from the results established in (2) and (3) that

Vq∗ (w∗ (X)) ≤ Vq (w (X)) .
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Exercise 4

We want to use Monte Carlo methods to approximate the integral

I =

∫
X
φ (x)π (x) dx

where φ : X→ R and π is a probability density on X. Assume we have access to a proposal probability
density q such that w (x) = π (x) /q (x) ≤M <∞ for any x ∈ X.

1. Consider the extended probability density πX,U on X× [0, 1] defined as

πX,U (x, u) =

{
Mq (x) for x ∈ X, u ∈

[
0, w(x)

M

]
0 otherwise.

Verify that πX (x) = π (x) .

2. Using the identity

I =

∫ 1

0

∫
X
φ (x)πX,U (x, u) dxdu,

give the expression of the normalised importance sampling estimate În of I when using n inde-
pendent samples (Xi, Ui) such that (Xi, Ui) ∼ qX,U where qX,U (x, u) = q (x) × I[0,1] (u) (that is
under qX,U we have X ∼ q, U ∼ U[0,1] and X and U are independent). Express this estimate as a
function the importance weight function

w (x, u) =
πX,U (x, u)

qX,U (x, u)
.

Show that this estimate is equivalent to the estimate one would obtain by sampling from π using
rejection sampling using n proposals from q.

3. Show that
Vq (w (X)) ≤ VqX,U

(w (X,U)) .

Exercise 5

Let us consider the normal multivariate density on Rd with identity covariance, that is

π (x) =
1

(2π)
d/2

exp

(
−1

2
xTx

)
.

We write E and V for the expectation and variance under π.

1. (Cameron-Martin formula). Show that for any θ ∈ Rd and function φ : Rd → R

E [φ (X)] = E
[
φ (X + θ) exp

(
−1

2
θTθ − θTX

)]
.

2. It follows directly from the Cameron-Martin formula and the strong law of large numbers that, for
independent X1, ..., Xn ∼ π, the estimator

În (θ) =
1

n

n∑
i=1

φ (Xi + θ) exp

(
−1

2
θTθ − θTXi

)

of E [φ (X)] is strongly consistent for any θ ∈ Rd such that E
[∣∣φ (X + θ) exp

(
− 1

2θ
Tθ − θTX

)∣∣] <
∞. The case θ = (0, ..., 0)

T
corresponds to the usual Monte Carlo estimate. The variance of În (θ)

is given by σ2 (θ) /n where

σ2 (θ) = V
[
φ (X + θ) exp

(
−1

2
θTθ − θTX

)]
.
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We assume in the sequel that σ2 (θ) <∞ for any θ.

Show that

σ2 (θ) = E
[
φ2 (X) exp

(
−1

2
XTX +

1

2
(X − θ)T (X − θ)

)]
− (E [φ (X)])

2

3. A twice differentiable function f : Rd → R is strictly convex if ∇2f (θ) (called the Hessian of f) is
a positive definite matrix for any θ ∈ Rd. Deduce from the expression of σ2 (θ) given in (2) that
the function θ → σ2 (θ) is strictly convex.

4. Show that the minimum of θ → σ2 (θ) is reached at θ∗ such that

E
[
φ2 (X) (θ∗ −X) exp

(
−θ∗TX

)]
= 0.

5. We apply the previous results to a simple model of European options in a Black-Scholes model.
We want to compute

I = exp (−rT )E [max {0, λ exp (σX)−K}]

where X ∼ N (0, 1) and r, λ,K, σ, T are positive real numbers such that λ < K. Show that
θ → σ2 (θ) is decreasing on D =

(
−∞, σ−1 log (K/λ)

)
. Deduce from this result that there exists a

range of values of θ such that the variance of În (θ) is strictly lower than the variance of the usual
Monte Carlo estimate.

Exercise 6

Let X be a finite state-space. Consider the following Markov transition kernel

T (x, y) = α (x, y) q (x, y) +

(
1−

∑
z∈X

α (x, z) q (x, z)

)
δx (y)

where q (x, y) ≥ 0,
∑
y∈X q (x, y) = 1 and 0 ≤ α (x, y) ≤ 1 for any x, y ∈ X. δx (y) is the Kronecker

symbol; i.e. δx (y) = 1 if y = x and zero otherwise.

1. Explain how you would simulate a Markov chain with transition kernel T.

2. Let π be a probability mass function on X. Show that if

α (x, y) =
γ (x, y)

π (x) q (x, y)

where γ (x, y) = γ (y, x) and γ (x, y) is chosen such that 0 ≤ α (x, y) ≤ 1 for any x, y ∈ X then T is
π−reversible.

3. Show that the Metropolis-Hastings algorithm corresponds to a particular choice of γ (x, y).

4. Let π be a probability mass function on the finite space X such that π (x) > 0 for any x ∈ X.
To sample from π, we run a Metropolis-Hastings chain

(
X(t)

)
t≥1 with proposal q (x, y) ≥ 0, such

that
∑
y∈X q (x, y) = 1 and q (x, x) = 0 for any x ∈ X. Consider here the sequence

(
Y (k)

)
k≥1

of accepted proposals: Y (1) = X(τ1) where τ1 = 1 and, for k ≥ 2, Y (k) = X(τk) where τk :=
min

{
t : t > τk−1, X

(t) 6= Y (k−1)}.

Let φ : X → R be a test function. Show that the estimate 1
τk−1

∑τk−1
t=1 φ

(
X(t)

)
can be rewritten

as a function of
(
Y (k)

)
k≥1 and (τk)k≥1 and prove that the sequence

(
Y (k)

)
k≥1 is a Markov chain

with transition kernel

K (x, y) =
α (x, y) q (x, y)∑
z∈X α (x, z) q (x, z)

.
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5. Show that the transition kernel K (x, y) of the Markov chain
(
Y (k)

)
k≥1 is π̃-reversible where

π̃ (x) =
π (x)m (x)∑
z∈X π (z)m (z)

with
m (x) :=

∑
z∈X

α (x, z) q (x, z) .

6. Assume that for some test function φ : X→ R we have 1
k

∑k
i=1 φ

(
Y (i)

)
→
∑
x∈X φ (x) π̃ (x) almost

surely and additionally assume that m (x) can be computed exactly for any x ∈ X.

Propose a strongly consistent estimate of
∑
x∈X φ (x)π (x) based on the Markov chain

(
Y (k)

)
k≥1

which does not rely on (τk)k≥1.

1 Programming questions

1. Consider the genetic linkage model as in the slides of Lecture 3. Sample some simulated data with
a fixed value of θ of your choice. Implement rejection sampling and reproduce the histograms of
the posterior of θ and the waiting time before acceptance. Experiment with different proposal
distributions.

2. Implement a sampler to draw from a mixture of Gaussians

π(x) = ω1φ(x;µ1, σ
2
1) + ω2φ(x;µ2, σ

2
2)

where φ is the Gaussian pdf. You are allowed to use R’s Gaussian generator (but feel free to
reimplement Box-Muller from Lecture 3 or Marsaglia’s method from Question 1 of this sheet, just
for fun).

3. Let
h(x) = [cos(50x) + sin(20x)].

We consider estimating
∫ 1

0
h(x)dx through Monte Carlo methods.

• first of all, what is the exact answer, to accuracy within 10−4?

• Can you implement rejection sampling with a uniform proposal?

• Find a way to assess how good you are doing.

• Implement an importance sampling solution with a smart proposal (hint: plot h and find a
matching q).
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