
Advanced Simulation Methods
Chapter 9 - Sequential Monte Carlo methods

Sequential Monte Carlo (SMC) methods, aka “particle methods”, constitute a broad and popular class
of Monte Carlo algorithms that have been developed over the past twenty years to provide approximate
solutions to intractable inference problems. For a detailed treatment of SMC, see [1], [2] and [3]. In these
notes, we build upon Sequential Importance Sampling (SIS), which was introduced in the previous notes, in
order to describe a generic SMC algorithm. The notation is essentially the same as in Chapter 8.

1 Resampling
We have seen that SIS provides estimates whose variance increases, typically exponentially, with t, because
the importance weights become more and more unbalanced when t increases. Resampling is the key ingredient
of SMC methods, which partially solves this problem. Resampling refers to the task of transforming a
weighted sample

(
wi, Xi

)
, for i ∈ {1, . . . , N}, into an unweighted sample

(
X̄i
)
, for i ∈ {1, . . . , N}, without

“changing the distribution”; in other words, we want
(
X̄i
)

to represent the same distribution than the
weighted sample, but without weights. For instance, if the Xi are drawn from a proposal q, and wi ∝
π(Xi)/q(Xi), then the weighted samples are approximately distributed according to π; we want to obtain an
unweighted sample also approximately distributed according to π. Of course, simply discarding the weights
does not work, since we would then have an unweighted sample distributed according to q.

There are many ways to perform resampling. The most common one is called multinomial resampling,
and is described in Algorithm 1. It consists in drawing for each index i, a “ancestry” variable Ai in {1, . . . , N}
with probabilities

∀k ∈ {1, . . . , N} P
(
Ai = k

)
= wk∑N

j=1 w
j
.

Then the particle X̄i is set to be equal to XAi for all i. This way, particles with higher weights get chosen
more often as “ancestors” of the new particles

(
X̄i
)
.

The exact same algorithm can be represented in another way: each Xi
1:t gives birth to a certain number

of offsprings, proportionally to its weight wit. Both formulations are equivalent. The algorithm based on the
offspring representation is described in Algorithm 2.

Algorithm 1 Multinomial resampling based on an ancestry vector. Input w1:N and X1:N . Output X̄1:N .
• Draw an “ancestry vector” A1:N =

(
A1, . . . , AN

)
∈ {1, . . . , N}N independently from a categorical

distribution
A1:N i.i.d∼ Cat

(
w1, . . . , wN

)
,

in other words
∀i ∈ {1, . . . , N} ∀k ∈ {1, . . . , N} P

[
Ai = k

]
= wk∑N

j=1 w
j
.

• Define X̄i to be XAi for all i ∈ {1, . . . , N}. XAi is said to be the “parent” or “ancestor” of X̄i.

• Return X̄ =
(
X̄1, . . . , X̄N

)
.

1



Algorithm 2 Multinomial resampling based on an offspring vector. Input w1:N and X1:N . Output X̄1:N .
• Draw an “offspring vector” O1:N =

(
O1, . . . , ON

)
∈ {0, . . . , N}N from a multinomial distribution

O1:N
t ∼Multinomial

(
N ;w1, . . . , wN

)
,

in other words

∀i ∈ {1, . . . , N} E
[
Oi
]

= N
wi∑N
j=1 w

j
and

N∑
i=1

Oi = N.

• Each particle Xi is replicated Oi times (possibly zero times) to create the sample X̄:

– X̄ ← {}
– For i = 1, . . . , N
∗ For k = 0, . . . , Oit
· X̄ ←

{
X̄,Xi

}
• Return X̄ =

(
X̄1, . . . , X̄N

)
.

The rationale of resampling is that particles with high weights tend to get replicated many times, whereas
particles with low weights tend to get removed from the sample. The process is random, so that there is a
chance of any particle getting removed, even with high weight; and there is a chance of any particle surviving,
even with low weight (except if the weight is exactly zero). Resampling can also be seen as an operator acting
on empirical probability measures: it takes a weighted measure πN (x) =

(∑
wj
)−1∑

wiδXi(x) and returns
an unweighted measure π̄N (x) = N−1∑ δX̄i(x).

Of course, not any resampling scheme would lead to consistent estimators; the use of a categorical/multinomial
distribution above was not completely arbitrary. In particular, the property E

[
Oi
]

= Nwi/
∑
wj , or equiva-

lently, P
[
Ai = k

]
= wk/

∑
wj , is typically required to ensure that the resampled points

(
X̄i
)

still consistently
approximate the same distribution.

Indeed, denoting by O1:N the offspring vector obtained during resampling, we can write for any test
function ϕ:

1
N

N∑
k=1

ϕ
(
X̄k
)

= 1
N

N∑
k=1

Okϕ
(
Xk
)
.

Thus

E

[
1
N

N∑
k=1

ϕ
(
X̄k
)
| X1, . . . , XN

]
= E

[
1
N

N∑
k=1

Okϕ
(
Xk
)
| X1, . . . , XN

]

= 1
N

N∑
k=1

E
[
Ok
]
ϕ
(
Xk
)

=
N∑
k=1

wk∑N
j=1 w

j
ϕ
(
Xk
)

so that a Monte Carlo estimator based on
(
X̄i
)

has the same expectation as the one based on
(
wi, Xi

)
.

Using the variance decomposition formula

V

[
1
N

N∑
k=1

ϕ
(
X̄k
)]

= V

[
E

[
1
N

N∑
k=1

ϕ
(
X̄k
)
| X1, . . . , XN

]]
+ E

[
V

[
1
N

N∑
k=1

ϕ
(
X̄k
)
| X1, . . . , XN

]]

= V

[
N∑
k=1

wk∑N
j=1 w

j
ϕ
(
Xk
)]

+ E

 1
N

 N∑
k=1

wk∑N
j=1 w

j
ϕ
(
Xk
)2 −( N∑

k=1

wk∑N
j=1 w

j
ϕ
(
Xk
))2 ,

2



Algorithm 3 Sequential Monte Carlo / particle filter
At time t = 1
• Sample Xi

1 ∼ q1(·).
• Compute the weights

wi1 = µ(Xi
1)g(y1 | Xi

1)
q1
(
Xi

1
) .

At time t ≥ 2
• Resample

(
wit−1, X

i
1:t−1

)
to obtain N equally-weighted particles

(
N−1, X

i

1:t−1

)
, e.g. using Algorithm 1.

• Sample Xi
t ∼ qt|t−1( ·| X̄i

1:t−1) and define Xi
1:t =

(
X̄i

1:t−1, X
i
t

)
(thus redefining Xi

1, . . . , X
i
t−1).

• Compute the weights

wit =
f
(
Xi
t

∣∣Xi
t−1
)
g
(
yt|Xi

t

)
qt|t−1(Xi

t | Xi
t−1)

.

see e.g. [4] for the last line, based on V
[
Oi
]

= NW i
(
1−W i

)
where W i refers to the normalized weight.

Thus the variance associated with the resampled
(
X̄i
)

is larger than the one associated with
(
wi, Xi

)
. We

can see that, on its own, the resampling step does not do anything useful. On the contrary, it “adds some
noise” to the estimator. Various other resampling schemes have been proposed, mainly to reduce the variance
of this extra noise; but they all add some noise. So why is resampling useful?

The resampling step is only useful for the subsequent steps. Intuitively, it allows to propagate only the
most promising particles (i.e. the ones with high weights). Conversely, it allows to stop propagating particles
with low weights, which only contribute little to the overal estimation. In the sequential framework, this is
extremely useful since we have only a fixed computational budget “N” to allocate at each time step. Clearly,
there is always the possibility that a particle with low weight at time t would have a high weight at time
t+ 1, in which case resampling would be wasteful. There are artificial models for which this is the case. In
general, resampling can be seen as a way to provide stability in the future samples, at the cost of an increase
in the Monte Carlo variance at the current time.

In terms of computational complexity, remember that Example 2.3 of Chapter 2 described how to sample
from a discrete distribution, such as the categorical distribution in Algorithm 1. However, that method
would result in a computational cost in O (N logN). In fact, it is possible to sample from a multinomial
distribution in only O (N) operations, by carefully generating N uniform variables in sorted order. Generally,
resampling schemes have a cost in O(N), similarly to the other steps in the particle filters described below.

2 A Sequential Monte Carlo Algorithm
2.1 Generic algorithm
Let us go back to the problem of sequentially approximating p (x1:t| y1:t) for all t ≥ 1. Consider first an IS
approximation πNt (x1:t| y1:t) of the target distribution p (x1:t| y1:t). This approximation is based on weighted
samples

(
wit, X

i
1:t
)N
i=1, where Xi

1:t is drawn from some proposal qt (x1:t) on Xt, and wit ∝ p(x1:t | y1:t)/qt(x1:t),
for all i ∈ {1, . . . , N}.

SMC methods (or particle filters) are a combination of SIS and resampling. Instead of directly propagating
each Xi

1:t to Xi
1:t+1 using a proposal distribution qt+1|t as in SIS, SMC first applies a resampling step to select

N particles according to their weights. Thus a sample X̄1:N
1:t is obtained, all with equal weight N−1. Then

these are propagated using the proposal qt+1|t to obtain X1:N
1:t+1. The algorithm then reads as in Algorithm

3. It is also called particle filter (PF), Sequential Importance Resampling (SIR), or Sequential Importance
Sampling with Resampling (SISR). Note that the weights wit are used during the resampling step, and then
are reset to N−1, so that the next weights are simply proportional to the “incremental weights” ωit described
for the SIS algorithm.

3



At any time t, this algorithm provides two approximations of p (x1:t| y1:t) . We obtain

πNt (x1:t) =
N∑
i=1

wit∑N
j=1 w

j
t

δXi
1:t

(x1:t) (1)

after the sampling step, yielding

IN (ϕt) =
ˆ
ϕt(x1:t)πNt (x1:t)dx1:t =

∑N
i=1 w

i
tϕt(Xi

1:t)∑N
i=1 w

i
t

and

π̄Nt (x1:t) = 1
N

N∑
i=1

δ
X

i

1:t
(x1:t) (2)

after the resampling step, yielding

ĪN (ϕt) =
ˆ
ϕt(x1:t)π̄Nt (x1:t)dx1:t = 1

N

N∑
i=1

ϕt(X̄i
1:t).

The approximation (1) is to be preferred to (2), since resampling only adds some noise (as discussed above).
Similarly to SIS, we also obtain an approximation of p (yt| y1:t−1) through

pN (yt| y1:t−1) = 1
N

N∑
i=1

wit.

Indeed, remember that

p (yt| y1:t−1) =
ˆ
f (xt|xt−1) g (yt|xt)
qt|t−1(xt | xt−1)

p(x1:t−1 | y1:t−1)
qt−1(x1:t−1) qt (x1:t) dx1:t−1dxt

=
ˆ
w(xt−1, xt)qt|t−1(xt | xt−1)p(x1:t−1 | y1:t−1)dx1:t−1dxt,

therefore, with Xi
1:t =

(
X̄i

1:t−1, X
i
t

)
∼ π̄Nt−1 (x1:t−1) qt|t−1 (xt | xt−1) as described in the algorithm, we have

p (yt| y1:t−1) ≈ 1
N

N∑
i=1

w(X̄i
t−1, X

i
t) = 1

N

N∑
i=1

wit.

Because of the resampling steps, we cannot write explicitely the law of each trajectory X1:t generated at
time t. In particular, it is not q1(x1)

∏t
s=2 qs|s−1(xs | xs−1), as it was for SIS, nor exactly p(x1:t | y1:t).

The resampling steps indeed introduce dependencies among the N paths, which makes the law of each path
intractable. Proving law of large numbers and central limit theorems is therefore harder for particle methods
than it was for SIS. Thankfully a rich literature exists and we will state some results at the end of the notes.

2.2 Choices of proposal
Similarly to SIS, we need to choose the proposal distributions q1 and qt|t−1 for all t ≥ 2 in order to implement
the method. As discussed for SIS, a standard choice is to use µ and f , i.e. the model distributions (“prior
proposal”). This simplifies the form of the weight functions as follows:

w(x1) = µ(x1)g(y1 | x1)
µ (x1) = g(y1 | x1)

∀t ≥ 2 w(xt−1, xt) = f(xt | xt−1)g (yt|xt)
f(xt | xt−1) = g(yt | xt).

Note that, compared to SIS, here the weights are reset to 1/N after each resampling step, so that the next
weight is just equal to the incremental weight. This proposal performs a “blind” exploration of the state
space: the particle Xi

t is drawn from f(xt | Xi
t−1), irrespective of the observation yt.

4



0

250

500

750

1000

0 25 50 75 100
time

ESS

prior optimal

Figure 1: Evolution over time of the Effective Sample Size (ESS) using Sequential Monte Carlo, with the
prior proposal and the optimal proposal. Here N = 1000, so the ESS is between 1 and 1000.

Another sensible approach consists in selecting a proposal qt|t−1 (xt|xt−1) that minimizes the variance
of the [incremental] weights (wit)Ni=1.

Proposition. The proposal qt|t−1 (xt|xt−1) minimizing Vqt(x1:t) (wt (X1:t)) is given by

qopt
t|t−1 (xt|xt−1) = f (xt|xt−1) g (yt|xt)

p (yt|xt−1) (3)

and the associated incremental weight is given by

ωopt
t (xt−1, xt) = p (yt|xt−1) .

The proof is the same as for SIS. In practice we will rarely be able to implement this locally optimal
proposal, but it can provide a guideline to construct smart proposals.

3 A linear Gaussian example revisited
3.1 Filtering and marginal likelihood estimation
We revisit the simple linear Gaussian model described in Chapter 8:

∀t ≥ 1 Xt = φXt−1 + σV Vt, (4)
∀t ≥ 1 Yt = Xt + σVWt, (5)

with X0 ∼ N (0, 1) , Vt,Wt
i.i.d.∼ N (0, 1), φ = 0.95, σV = 1, σW = 1. We simulate T = 100 observations from

this model.
We use again both the prior and the locally optimal proposals, but now we resample at each time step;

i.e. we use SMC instead of SIS. We observe the evolution of the ESS over time when using the prior proposal
and the locally optimal proposal within the SMC procedure based on N = 1000 particles, on Figure 1. We
see that the ESS oscillates between large and small values, but has a stable behaviour over time; whereas
the ESS associated with SIS simply dropped to 1 and stayed there.

Figure 2 shows the estimation results: SMC is used to estimate the filtering means E (xt | y1:t) and the
filtering variances V (xt | y1:t), for all t ≥ 1. The results are compared with the exact means and variances
computed using the Kalman filter. We see that for both proposals, the mean is correctly estimated. The
estimate of the variance is more noisy but seems to keep track with the real values as time progress.

Finally, we estimate the log likelihood log p(y1:t) for all t. The results are shown in Figure 3. We see that
both proposals seem to give satisfactory results.

Thus particle filters/SMC seem to perform much better than SIS for the tasks of estimating expectations
of filtering distributions p(x1:t | y1:t), and estimating the marginal likelihood p(y1:t). The resampling steps

5



−4

−2

0

2

0 25 50 75 100
time

x

prior optimal Kalman Filter

0.4

0.6

0.8

1.0

0 25 50 75 100
time

Var(x)

prior optimal Kalman Filter

Figure 2: Estimation of the filtering means E (xt | y1:t) and the filtering variances V (xt | y1:t), using Sequen-
tial Monte Carlo, compared to the exact values calculated with the Kalman filter. Both proposals perform
reasonably well. For the variances, the optimal proposal seems to result in slightly less noisy estimates.

−200

−150

−100

−50

0

0 25 50 75 100
time

log(L(y1:t))

prior optimal Kalman Filter

Figure 3: Estimation of the log likelihood log p(y1:t) using Sequential Monte Carlo, compared to the exact
values computed with the Kalman filter.

6



−6

−3

0

3

6

0 25 50 75 100
time

x

Figure 4: Cloud of points X̄1:N
t after resampling, at each time step t. The filtering means calculated by

Kalman filter are represented by the thick blue line.

select the fittest particles at each step, and thus there are always a diverse population of particles with
significant weights at each step. On the contrary, SIS quickly resulted in a population where only one
particle contributes to the estimates. To show the diversity of the samples, Figure 4 plots a black dot for
each X̄i

t obtained after resampling, at each step. We see that there are always many points (with equal
weights 1/N) in the approximation π̄Nt of p(xt | y1:t).

4 Path degeneracy
Despite this good behaviour for filtering, the basic particle filter presented above does not solve all inference
problems. Consider for instance the problem of estimating the path distribution p(x1:t | y1:t), and not only
its last component p(xt | y1:t). Algorithm 3 provides the particle approximation πNt as in Eq. 1 or Eq. 2.
As shown on Figure 4, the approximation is satisfactory for p(xt | y1:t). Let us plot the full paths

(
X̄i

1:T
)

for i ∈ {1, . . . , N} obtained at the final step T , on Figure 5. We see that most paths “coalesce” into a
single trajectory: there are many different values for X̄i

T at time T but only one value for X̄i
s at most time

steps in s ∈ {1, . . . , T − 1}. As a result, the trajectories do a poor job at approximating globally the path
(or “smoothing”) distribution p(x1:T | y1:T ) at time T . For instance, if we are interested in the marginal
distribution p(x1 | y1:T ), then the paths provide only one point X̄1. Clearly this is not good enough: for
instance we cannot estimate the variance V (x1 | y1:T ) at all.

This degeneracy comes from the very resampling steps that makes SMC so efficient for filtering: whenever
resampling is performed, some of the paths are depleted. The paths are then extended using qt|t−1(xt | xt−1),
but nothing is done to regenerate the earlier components xs for s < t. Thus, the number of unique values
representing, say, x1, is monotonically decreasing, from N at time 1, to 1 at some later time t. As can been
seen from Figure 5, it does not take many steps for the number of unique values to be 1 or close to 1. This
phenomenon is called the “path degeneracy” problem.

If the interest lies in the smoothing distribution, for instance p(x1 | y1:t), instead of the filtering distri-
bution p(xt | y1:t), the path degeneracy phenomenon is a problem. It has been adressed specifically in the
literature, and many algorithms have been proposed, usually called “particle smoother”: the most popular
are called forward filtering backward smoother, two-filter smoother and fixed-lag smoother (see [3]).

5 Likelihood estimation
So far, the model parameter θ has been assumed constant and SMC methods have been introduced to
estimate the hidden process X1:t given the observations y1:t. As discussed above, particle filters also provide

7



−5.0

−2.5

0.0

2.5

0 25 50 75 100
time

x

Figure 5: Cloud of paths X̄1:N
1:T after resampling at the final step T . Even though there are N = 100 paths,

most of them share the same components xs for s� T .

an estimate of the marginal incremental likelihood:

pN (y1) = 1
N

N∑
i=1

wi1 ≈ p(y1)

∀t ≥ 2 pN (yt | y1:t−1) = 1
N

N∑
i=1

wit ≈ p(yt | y1:t−1).

Multiplying them together, we obtain an estimator of the marginal likelihood:

pN (y1:t) =
T∏
s=1

1
N

N∑
i=1

wis.

If we introduce the parameter θ again, then we write µθ = µ(· | θ) = µ, fθ = f(· | ·, θ) = f , gθ = g(· | ·, θ) = g,
and the proposal distributions q1 and qt|t−1 could depend on θ too. The marginal likelihood is then written
p (y1:t | θ) and can be approximated by pN (y1:t | θ) as above. Figure 6 shows the estimated log likelihoods
when φ varies, in the linear Gaussian example. We see that more particles yield more precision of the
estimates.

These estimates can then be used to perform parameter estimation. In particular, “particle Markov chain
Monte Carlo methods” have been recently developped, and use particle filter to estimate the parameters
associated with hidden Markov models (see [5]).

6 Main theoretical results
Here, we briefly state some selected convergence results for SMC. Denoting by IN (ϕt) the SMC estimator
of I(ϕt) =

´
ϕt(x1:t)p(x1:t | y1:t)dx1:t. In general we can prove the following type of result, usually called

“Lp” bound:

E
[∣∣IN (ϕt)− I (ϕt)

∣∣p]1/p ≤ B(t)c(p) ||ϕt||∞√
N

,

where B(t) is a function of t, which is typically exponential in t as was illustrated by the path degeneracy
problem. The term c(p) depends only on p and ||ϕt||∞ is the supremum of ϕ. The expectation is to be
understood with respect to the particle filter, i.e. to all the random variables generated during the algorithm.
A central limit theorem holds:

√
N
(
IN (ϕt)− I (ϕt)

) D−−−−→
N→∞

N
(
0, σ2

t

)
,

8



●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

N = 1000 N = 10000

−210

−205

−200

−195

0.5 0.6 0.7 0.8 0.9 1.0 0.5 0.6 0.7 0.8 0.9 1.0
φ

lo
gp

(y
1:

t φ)

Figure 6: Log-likelihood log p(y1:t | φ) estimated by log pN (y1:t | φ) as a function of φ for the linear Gaussian
model. For each φ, 12 independent estimates are drawn. The left panel shows the results using N = 1000
particles, while the right panel shows the results for N = 10000 particles.

where again σ2
t grows exponentially fast with t. Hence, these are very weak results: if it was for them,

particle filters would be useless.
When we look at the filtering distribution only, we obtain much stronger results. Define ϕt(x1:t) = ϕt(xt),

i.e. the test function depends only on the latest component xt. Then we obtain

E
[∣∣IN (ϕt)− I (ϕt)

∣∣p]1/p ≤ B1c(p) ||ϕt||∞√
N

√
N
(
IN (ϕt)− I (ϕt)

) D−−−−→
N→∞

N
(
0, σ2

t

)
,

where now, B1 does not depend on t, and σ2
t can be uniformly bounded (over t) by some constant B2. In

other words, the asymptotic variance of the SMC filtering estimators is stable in time! This remarkable
property is often called “time uniform stability” of particle filters. It means that a fixed number of particles
N will be enough to keep track of the filtering distribution, as time t goes to infinity.

For the marginal likelihood p (y1:t), the variance is typically increasing with t but linearly, and not
exponentially. Some recent articles prove

E

((
pN (y1:t)
p(y1:t

− 1
)2)

≤ B3t

N

where B3 is another constant; the result holds for all N and t, so it is non-asymptotic.
Another interesting property of the marginal likelihood estimator pN (y1:t) is that it is unbiased:

E
(
pN (y1:t)

)
= p(y1:t),

as proven e.g. in [1], Chapter 7. This proves very useful for parameter estimation, as emphasized in [5].
Indeed, unbiased estimators of the likelihood can indeed be used to design MCMC algorithms that target
exactly the posterior distribution, as if we had access to the likelihood.

7 Back to the general sampling
The efficiency of particle methods in hidden Markov models has led to consider similar methods for general
models, outside time series analysis. Consider again the problem of sampling from a target distribution π,
defined on a space X, such that the probability density function π(x) can be evaluated point-wise up to a
normalizing constant. We can introduce an artificial sequence of target distributions Introduce intermediate
distributions

π0, π1, . . . , πT

9



such that:

• π0 is easy to sample from,

• πt and πt+1 are not too different,

• πT = π.

For example, in the case of a posterior distributioon π(θ) ∝ p(θ)p(y1:T | θ), we can introduce the partial
posterior πt(θ) ∝ p(θ)p(y1:t | θ). The first distribution is π0(θ) = p(θ), the prior distribution, and the last
distribution πT (θ) = π(θ) = p(θ | y1:T ) is the full posterior distribution. We can expect πt(θ) to be similar
to πt+1(θ), at least when t is large and when the data is i.i.d. Note that for i.i.d data, the ordering of y1:T
should not matter, so any arbitrary permutation of the dataset y1, . . . , yT can used.

Another generic choice consists in introducing a simple parametric distribution q, and the sequence of
distributions

πt(x) ∝ π(x)γtq(x)1−γt

where 0 = γ0 < γ1 < . . . < γT = 1. Then π0 = q, πT = π, and if γt is close to γt+1, then πt is close to πt+1.
Given a sequence of targets, one can apply the Sequential Importance Sampling idea. Here, each target

is defined on the same space X, so there is no need to “extend the space” as in hidden Markov models
(remember, the sequence of targets was p(x1:t | y1:t), defined on Xt). The procedure starts with θ1, . . . , θN

drawn from π0, and then at any time t ≥ 1

wit = πt(θi)
π0(θi)

= πt−1(θi)
π0(θi)

πt(θi)
πt−1(θi) = wit−1 ×

πt(θi)
πt−1(θi) .

If we simply keep updating the weights as above, then one of the particles generated from the initial dis-
tribution π0 will end up having all the weight. As in particle filters, we can introduce resampling steps. If
we only do that, then the resampled particles

(
N−1, θ̄i

)N
i=1 will have fewer unique values than the particles

before resampling (wit, θi)Ni=1. Thus resampling depletes the number of unique values in the population, and
after a few steps the population contains only one unique value. This clearly implies that the approximation
of the posterior distribution is poor.

Note that this is different from the particle filter setting: there, we had less unique values in (N−1, X̄i
t)

than in
(
wit, X

i
t

)
, but at the next step, we drew Xi

t+1 ∼ qt+1|t
(
· | X̄i

t

)
. Thus the particles get diversified

again. The particle depletion effect was only damaging the path approximation pN (x1:t | y1:t), not the
filtering approximation pN (xt | y1:t).

For static problems, we can introduce a similar rejuvation mechanism. Introduce a sequence of Markov
kernels Kt, such that Kt leaves πt invariant. For instance, Kt might correspond to a Metropolis–Hastings
kernel targeting πt, using some random walk proposal, or independent proposal. Then, after resampling, we
might draw

∀i ∈ {1, . . . , N} θit ∼ Kt(θ̄t, dθ).

The algorithm thus goes as follows: start with θ1
0, . . . , θ

N
0 drawn from π0, and wi0 = N−1 for all i, and then

at any time t ≥ 1:

• Resample
(
wit−1, θ

i
t−1
)

to obtain N equally-weighted particles
(
N−1, θ

i

t−1

)
,

• Move the particle using a πt−1-invariant Markov kernel Kt−1: ∀i ∈ {1, . . . , N} θit ∼ Kt−1(θ̄t−1, dθ).

• [At this point
(
N−1, θit

)
still approximates πt−1.]

• Compute wit = πt
(
θit
)
/πt−1

(
θit
)
.

• [At this point
(
wit, θ

i
t

)
approximates πt.]

10



Algorithm 4 Sequential Monte Carlo Sampler for static problems. Ñ refers to the effective sample size threshold.

At time t = 0
• Sample θi0 ∼ π0(·) for i ∈ {1, . . . , N}.
• Compute the weights

∀i ∈ {1, . . . , N} wi0 = 1
N
.

At time t ≥ 1

• If ESS < Ñ , then:

– Resample
(
wit−1, θ

i
t−1
)

to obtain N equally-weighted particles
(
N−1, θ

i

t−1

)
,

– Reset the weights wit−1 to 1/N . At this point
(
N−1, θ̄it−1

)
approximates πt−1.

– Draw for all i, θit ∼ Kt−1(θit−1, dθ), where Kt−1 is a Markov kernel leaving πt−1 invariant. (N−1, θit)
still approximates πt−1.

• Compute the weights

∀i ∈ {1, . . . , N} wit = wit−1 ×
πt(θit)
πt−1(θit)

.

The particles
(
wit, θ

i
t

)
now approximate πt.

This algorithm would perform well but would be expensive: each draw from Kt typically has a cost in O(t).
For instance, if πt(θ) ∝ p(θ)p(y1:t | θ), then a Metropolis–Hastings step targeting πt involves computing the
likelihood of t observations y1:t. To save some computational time, one typically uses an “adaptive resampling
scheme”: that is, the resampling and move steps are not performed at every step t of the algorithm, but
only when necessary. One criterion to decide whether it is necessary to perform this step relies on the
effective sample size (ESS). If it gets too low (for instance, below N/2 or N/10), then a resample move step
is performed. Denoting the ESS threshold by Ñ , the full algorithm is described in Algorithm 4.

References
[1] Del Moral, P. (2004) Feynman-Kac Formulae: Genealogical and Interacting Particle Systems with Appli-

cations. Series: Probability and Applications, Springer-Verlag, New York.

[2] Doucet, A., de Freitas, N. and Gordon, N.J. (eds.) (2001) Sequential Monte Carlo Methods in Practice.
Springer-Verlag, New York.

[3] Doucet, A. and Johansen, A.M. (2011), A tutorial on particle filtering and smoothing: fifteen years later.
In Handbook of Nonlinear Filtering, Cambridge University Press.

[4] Douc, R., Cappé, O. and Moulines, E. (2005), Comparison of Resampling Schemes for Particle Filtering.
Proceedings of the 4th International Symposium on Image and Signal Processing and Analysis.

[5] Andrieu, C., Doucet, A. and Holenstein, R. Particle markov chain monte carlo methods. Journal of the
Royal Statistical Society: Series B (Statistical Methodology) 72.3 (2010): 269-342.

11


	Resampling
	A Sequential Monte Carlo Algorithm 
	Generic algorithm
	Choices of proposal

	A linear Gaussian example revisited
	Filtering and marginal likelihood estimation

	Path degeneracy
	Likelihood estimation
	Main theoretical results
	Back to the general sampling 

