
Advanced Simulation Methods
Chapter 3 - Importance Sampling and Variance Reduction Methods

1 Importance Sampling
In the rejection sampling algorithm, we simulate from a distribution π by sampling from a proposal
distribution q and rejecting some of the proposed values. Importance sampling uses another correction
scheme based on reweighting. In this context the proposal q is also known as an importance distribution.

1.1 Standard Importance Sampling
Let q, π be two probability density functions on X such that π (x) > 0 ⇒ q (x) > 0. Then, for any1 set
A such that π (A) > 0

π (A) =

ˆ
A

π (x) dx

=

ˆ
A

π(x)

q(x)
q (x) dx

=

ˆ
A

w (x) q (x) dx

where w : X → R+ is the so-called importance weight function: w : x 7→ π(x)/q(x). This identity can be
obviously generalised to the expectation of any function. Assume π (x)φ (x) > 0 ⇒ q(x) > 0, then

I = Eπ(φ(X)) =

ˆ
X
φ (x)π (x) dx

=

ˆ
X
φ (x)w (x) q (x) dx

= Eq(φ(X)w (X)).

Now let X1, ..., Xn be a sample of independent random variables distributed according to q, then the
estimator

ÎIS
n =

1

n

n∑
i=1

φ(Xi)w(Xi)

is consistent through the strong law of large numbers if Eq(|φ(X)|w (X)) < ∞. We also obtain the
following results.

Proposition 1.1. (Bias and Variance of Standard Importance Sampling)

(a) Eq

(
ÎIS
n

)
= I,

(b) Vq

(
ÎIS
n

)
= 1

nVq (φ(X)w (X)) and if σ2
IS (ϕ) = Vq (φ(X)w (X)) < ∞,

√
n
(
ÎIS
n − I

)
D→ N

(
0, σ2

IS (ϕ)
)
.

Remark: a sufficient condition for Vq

(
ÎIS
n

)
to be finite is to have Vπ (φ(X)) finite and π (x) /Mq (x) ≤

M < ∞ for any x ∈ X.
A natural question consists of choosing what is the best proposal distribution to minimize σ2

IS (ϕ) .

1For X = Rd, we consider the Borel sigma algebra F = B
(
Rd

)
, A ∈ F and the density is with respect to the Lebesgue

measure dx.
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Proposition 1.2. The optimal proposal minimising σ2
IS (ϕ) is given by

qopt (x) =
|φ(x)|π (x)´

X |φ(x)|π (x) dx
.

Proof. We have indeed
σ2

IS (ϕ) = Eq

(
φ2(X)w2 (X)

)
− I2.

For q = qopt, we have

Eqopt

(
φ2(X)w2 (X)

)
=

ˆ
X

φ2(x)π2 (x)

|φ(x)|π (x)
dx.

ˆ
X
|φ(x)|π (x) dx

=

(ˆ
X
|φ(x)|π (x) dx

)2

.

We also have by Jensen’s inequality

Eq

(
φ2(X)w2 (X)

)
≥ (Eq (|φ(X)|w (X)))

2
=

(ˆ
X
|φ(x)|π (x) dx

)2

so we can conclude. �
This optimal variance estimator cannot typically be implemented; e.g for φ (x) > 0 we have qopt (x) =

φ(x)π (x) /I and Vqopt

(
ÎIS
n

)
= 0 but this cannot be implemented as this required knowing I... which

is the original problem! This can be however use as a guideline to select q, i.e. select q such that it
approaches qopt in some respect.

Example 1.1. (Importance sampling for t-distributions) Assume we are interested in computing

I = Eπ(|X|) =
ˆ
R
|x|π(x)dx

where π a t3-distribution, that is, a t-distribution with 3 degrees of freedom. We propose 3 sampling
schemes to compute I, using importance sampling.

1. Use directly π as a sampling distribution;

2. use importance sampling with proposal density q1 : x 7→ gt1 (x), a t1-distribution (also called a
Cauchy distribution);

3. use importance sampling with proposal distribution q2 being a standard normal distribution.

Figure 1 illustrates the various choices of proposal distributions. The performance of the estimates are
displayed in Figure 2 and the associated sample weights in Figure 3. We see that the normal distribution
yields a poor estimate as the variance of the weights is infinite, whereas it can be shown that gt1yields a
smaller variance estimate that π itself.

1.2 Normalised Importance Sampling
In practice, standard importance sampling has limited applications as it requires exact evaluations of
π (x), contrarily to rejection sampling where π (x) and q (x) only have to evaluated up to some normal-
ising constants. However there is an alternative version of importance sampling known as normalised
importance sampling which bypasses this problem. Assume that whenever π (x) > 0 ⇒ q(x) > 0, and
that we can write π(x) = π̃(x)/Zπ and q(x) = q̃(x)/Zq, for some normalising constants Zπ and Zq. We
introduce the unnormalised weight function

w̃ : x 7→ π̃ (x) /q̃(x) = w(x)
Zπ

Zq
.
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Figure 1: Different importance proposal distributions to estimate the area under the red curve.
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Figure 2: Estimates of I obtained after 1 to 1500 samples, using proposals π (left), q1 (middle) or q2
(right). The grey shaded areas correpond to the range of 100 independent replications, and the black
line represents the mean.
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Figure 3: Sample weights obtained for 1000 realisations of Xi, using proposals π (left), q1 (middle) or q2
(right).

Then, we can write

I = Eπ(φ(X)) =

ˆ
X
φ (x)π (x) dx

=

´
X φ (x)w(x)q (x) dx´

X w(x)q(x)dx
=

´
X φ (x) w̃(x)q (x) dx´

X w̃(x)q(x)dx

=
Eq(φ(X)w̃ (X))

Eq (w̃ (X))
.
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where the importance weight function only involves the unnormalised probability density functions π̃
and q̃.

Now, let X1, ..., Xn be a sample of independent random variables distributed according to q. The
estimator

ÎNIS
n =

∑n
i=1 φ(Xi)w̃(Xi)∑n

i=1 w̃(Xi)

is consistent through the strong law of large numbers as long as Eq(|φ(X)|w (X)) < ∞.
The normalised importance sampling estimator ÎNIS

n is a ratio of two estimators, therefore we do not
have simple expressions for its finite bias and variance. We can still obtain their asymptotic expression
(i.e. as n → ∞) using the delta method.

Proposition 1.3. (The multivariate delta method). Suppose Zn = (Zn1, ..., Znk) is a sequence of
random vectors such that √

n (Zn − µ)
D→ N (0,Σ) ,

where Σ is a k × k covariance matrix. Let g : Rk → R and let

∇g =

(
∂g

∂z1
· · · ∂g

∂zk

)T

.

Let ∇g (µ) be ∇g evaluated at µ and assume that the elements of ∇g (µ) are non-zero, then
√
n (g (Zn)− g (µ)) → N

(
0,∇Tg (µ) Σ ∇g (µ)

)
.

Proposition 1.4. (CLT for Normalised Importance Sampling)
Assume that Vq (φ(X)w (X)) < ∞ and Vq (w (X)) < ∞ then

√
n
(
ÎNIS
n − I

)
D→ N

(
0, σ2

NIS
)
,

where

σ2
NIS = Vq(φ(X)w (X)) + I2Vq(w (X))− 2ICovq (φ(X)w (X) , w (X))

=

ˆ
(φ (x)− I)

2 π2 (x)

q (x)
dx.

Proof 1 (Delta method). We apply the delta method to Zn = (Zn1, Zn2) where

Zn1 =
1

n

n∑
i=1

φ(Xi)w(Xi), Zn2 =
1

n

n∑
i=1

w(Xi)

and
ÎNIS
n =

Zn1

Zn2
= g (Zn) .

By the CLT, we have
√
n

(
Zn1 − Eq(φ(X)w (X))

Zn2 − Eq(w (X))

)
→ N

(
0,

(
Vq(φ(X)w (X)) Covq (φ(X)w (X) , w (X))
Covq (φ(X)w (X) , w (X)) Vq(w (X))

))
(1)
and

∇g =

(
∂g
∂z1
∂g
∂z2

)
=

(
1/z2

−z1/z
2
2

)
so

∇g (µ) =

(
1/Eq (w (X))

−Eq (φ(X)w (X)) /E2
q (w (X))

)
=

(
1

−Eq (φ(X)w (X))

)
.

Hence we have

∇Tg (µ) Σ ∇g (µ) = Vq(φ(X)w (X)) + E2
q (φ(X)w (X))Vq(w (X))− 2Eq (φ(X)w (X))Covq (φ(X)w (X) , w (X))

= Vq(φ(X)w (X)) + I2Vq(w (X))− 2ICovq (φ(X)w (X) , w (X))

Rearranging the terms, we obtain the desired expression.
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Proof 2(Using Slutsky). First notice that with X1, . . . , Xn i.i.d. ∼ q

√
n(Î NIS

n − I) =

1√
n

∑n
i=1 w̃(Xi)

[
φ(Xi)− I

]
1
n

∑n
i=1 w̃(Xi)

where since w̃(x) = π̃/q̃

Eq

[
w̃(Xn)(φ(Xi)− I)

]
= 0.

Since Vq(φ(X)w(X)) < ∞ by standard CLT

1√
n

n∑
i=1

w̃(Xi)
[
φ(Xi)− I

]
⇒ N

(
0,Vq

(
w̃(X1)[φ(X1)− I]

))
.

The strong law of large numbers applied to the denominator

1

n

n∑
i=1

w̃(Xi) → Eq[w̃(X1)] = Zπ/Zq, a.s.

By Slutsky’s theorem, combining the two

√
n(Î NIS

n − I) ⇒ N
(
0,Vq

(
w̃(X1)[φ(X1)− I]

)Z2
q

Z2
π

)
∼ N

(
0, σ2

NIS

)
.

Remark 1.1. Notice that the second proof using Slutsky’s theorem, does not require the assumption that
Vq(w(X)) < ∞ but only the trivial Eqw(X) = 1 < ∞.

Remark: we can have either σ2
IS < σ2

NIS or σ2
IS > σ2

NIS as it is demonstrated here on a toy example.
Indeed, we have

σ2
NIS − σ2

IS =

ˆ
(φ (x)− I)

2 π2 (x)

q (x)
dx−

ˆ
φ2 (x)

π2 (x)

q (x)
dx

= I

(
I

ˆ
π2 (x)

q (x)
dx− 2

ˆ
φ (x)

π2 (x)

q (x)
dx

)
.

For π (x) = N (x; 0, 1), q (x) = N
(
x; 0, σ2

)
we have

π2 (x)

q (x)
=

1√
2π

σ exp
(
−
(
1− 1

2σ2

)
x2

)
= σσ′ 1√

2πσ′
exp

(
− x2

2 (σ′)
2

)

where (σ′)
2
= σ2/

(
2σ2 − 1

)
. Hence, for φ (x) = x2 +m and for σ2 > 1/2

I

ˆ
π2 (x)

q (x)
dx− 2

ˆ
φ (x)

π2 (x)

q (x)
dx = σσ′

{
(1 +m)− 2

(
(σ′)

2
+m

)}
= σσ′

{[
1− 2 (σ′)

2
]
−m

}
.

For σ2 ∈ (1/2,∞) , we have 1 − 2 (σ′)
2
< 0. Hence, by playing with m, the difference σ2

NIS − σ2
IS can

be made either positive or negative. As mentioned already, in many situations, only the normalised
importance sampling estimator can be implemented anyway.

We know that ÎIS
n is unbiased whereas ÎNIS

n is not. We give here an expression for the asymptotic
bias.
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Proposition 1.5 (Asymptotic Bias). If

Eq

[
|φ(X)|w(X)3

]
< ∞,

and

sup
n

Eq

[(
1
n

n∑
1

w̃(Xi)
)−3]

< ∞,

then

lim
n

n× Eq

(
ÎNIS
n − I

)
= −

ˆ
(φ(x)− I)

π2(x)

q(x)
dx

= −Cov(φ(X)w(X), w(X)) + Vq(w(X))I.

Proof not examinable.

Proof.

n× Eq(Ĩ
NIS
n − I) = Eq

[∑n
1 w̃(Xi)(φ(Xi)− I)∑n

1 w̃(Xi)/n

]

= Eq

[
n
w̃(X1)(φ(X1)− I)∑n

1 w̃(Xi)/n

]

= nEq

[
w̃(X1)(φ(X1)− I)∑n

2 w̃(Xi)/n

]

+ nEq

[
w̃(X1)(φ(X1)− I)

{ 1∑n
2 w̃(Xi)/n

− 1∑n
1 w̃(Xi)/n

}]
.

By independence the first term is 0. Thus

n× Eq(Ĩ
NIS
n − I) = −nEq

[
w̃(X1)

2(φ(X1)− I)/n(∑n
2 w̃(Xi)/n

)(∑n
1 w̃(Xi)/n

)]

= −Eq

[
w̃(X1)

2(φ(X1)− I)(∑n
2 w̃(Xi)/n

)2

]
+ E

where

|E| ≤ 1

n
Eq

{
w̃(Xi)

3|φ(Xi)− I|
}
Eq

{( n∑
2

w̃(Xi)/n
)−3}

.

Remark. The bias being of order 1/n, the square of the bias is in 1/n2, and we can conclude that
the mean square error of ÎNIS

n is asymptotically dominated by the variance term.

1.3 Case study: Bayesian analysis of a Markov chain
Consider a two-state discrete time Markov chain (Xt) with transition matrix(

α1 1− α1

1− α2 α2

)
,

that is,

P (Xt+1 = 1|Xt = 1) = 1− P (Xt+1 = 2|Xt = 1) = α1,

P (Xt+1 = 2|Xt = 2) = 1− P (Xt+1 = 1|Xt = 2) = α2.

We assume that some physical constraints tell us that α1+α2 < 1. Assume that we observe (X1, ..., Xm) =
(x1, ..., xm); we shorten the notation by writing x1:m for (x1, . . . , xm). We want to perform Bayesian
inference about (α1, α2). We set the following prior distribution:

p (α1, α2) = 2Iα1+α2≤1.
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The posterior of interest has density:

p (α1, α2|x1:m) ∝ α
m1,1

1 (1− α1)
m1,2 (1− α2)

m2,1 α
m2,2

2 Iα1+α2≤1,

where

mi,j =

m−1∑
t=1

Ixt=iIxt+1=j .

The posterior does not admit a standard expression and its normalising constant is unknown.
We are interested in estimating E [ϕi (α1, α2)|x1:m] for the following test functions:

ϕ1 (α1, α2) = α1,

ϕ2 (α1, α2) = α2,

ϕ3 (α1, α2) = α1/ (1− α1) ,

ϕ4 (α1, α2) = α2/ (1− α2) ,

ϕ5 (α1, α2) = log α1 (1− α2)

α2 (1− α1)
.

We can sample from the posterior through rejection sampling using the prior as a proposal but this
can be highly inefficient if m is large; for a Markov chain of length 100, started at X1 = 1, and simulated
using α? = (0.2, 0.4), we obtain an acceptance rate lower than 3%. Furthermore, to implement rejection
sampling, we need an upper bound on the posterior density function, which can be found here using a
numerical optimizer such as the one provided by the function optim in R. Therefore we discuss various
possible importance proposal distributions.

We first consider the prior as a importance proposal distribution, and we denote it by q0. The
procedure is therefore similar to the rejection sampler described above, except that we do not need an
upper bound on the posterior density function, and that each proposed sample contributes to the final
estimate.

The form of the posterior also suggests using a Dirichlet distribution with density

q1 (α1, α2) ∝ α
m1,1

1 α
m2,2

2 (1− α1 − α2)
m1,2+m2,1

but the ratio p (α1, α2|x1:m) /q1 (α1, α2) is unbounded. Therefore, we do not expect this proposal dis-
tribution to yield good results.

Another possible choice of q consists of using

q2 (α1, α2) = Beta (α1;m1,1 + 1,m1,2 + 1) q2 (α2|α1) ,

i.e. we match the correct marginal distribution for α1. For α2 given α1, the posterior distribu-
tion is p (α2|x1:m, α1) ∝ (1− α2)

m2,1 α
m2,2

2 Iα2≤1−α1
, and we approximate it by q2 (α2|x1:m, α1) =

2
(1−α1)

2α2Iα2≤1−α1 . This conditional density corresponds to the law of Y defined as Y = (1−α1)X where
X follows a Beta (2, 1) distribution. It is straightforward to check that p (α1, α2|x1:m) /q2 (α1, α2) ∝
(1− α2)

m2,1 α
m2,2−1
2 (1− α1)

2
/2 < ∞ whenever m2,2 ≥ 1.

We present the empirical root mean square errors corresponding to rejection sampling and importance
sampling using the three choices of proposal distributions in the table. To compute the root mean square
errors, we need the true value of each posterior expectations E [ϕi (α1, α2)|x1:m]. Since it is unavailable,
we first approximate these using a rejection sampler based on one million proposed samples, and consider
the result to be the ground truth. Then, for each proposed method, we use 10, 000 proposed samples,
and 100 independent experiments are performed to compute the root mean square errors:

RMSE(ϕi) =

√√√√ 1

M

M∑
j=1

(
ϕ̂i

(j) − E [ϕi (α1, α2)|x1:m]
)2

,

where M = 100 is the number of independent experiments, and each ϕ̂i
(j) is obtained using 10, 000

proposed samples. As we can see from the table, importance sampling using the prior distribution
compares favourably to rejection sampling using the same prior distribution. The proposal distribution
q1 yields catastrophic results, as expected, while the custom distribution q2 proves more efficient than
the prior distribution q0.
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Method ϕ1 ϕ2 ϕ3 ϕ4 ϕ5

1 rejection sampling 0.0036 0.0041 0.0055 0.0129 0.0313
2 IS using q0 0.0014 0.0016 0.0021 0.0047 0.0125
3 IS using q1 0.0587 0.0659 0.0834 0.1932 0.2937
4 IS using q2 0.0011 0.0010 0.0016 0.0029 0.0090

Table 1: Root mean square errors associated to each method and each test function of interest.

2 Antithetic Variates
We are interested in computing

I =

ˆ 1

0

φ(x)dx = E (φ(U)) , U ∼ U[0,1].

Instead of

În =
1

n

n∑
i=1

φ(Ui),

we consider here

In =
1

2n

n∑
i=1

(φ(Ui) + φ(1− Ui)) .

We obtain

V
(
In
)
=

n

4n2
V (φ(U) + φ(1− U))

=
1

2n
(V (φ(U)) + Cov (φ(U), φ(1− U))) .

If Cov(φ(U), φ(1− U)) < 0, V
(
In
)
≤ V

(
În

)
. The following lemma gives conditions for this to hold.

Lemma 2.1. If the function φ is monotonic, then Cov (φ(U), φ(1− U)) < 0, unless φ is constant on
[0, 1].

Proof. Let U1, U2 be independent and uniformly distributed on [0, 1]. We have

Cov (φ(U), φ(1− U)) =
1

2
E [(φ(U1)− φ(U2)) (φ(1− U1)− φ(1− U2))] .

We assume that φ is monotonically increasing. If U1 < U2, then the first factor is negative and the
second positive, and vice versa for U1 > U2. Thus, the integrand is always non-positive. To verify that
the covariance is strictly negative, we investigate when the integrand is zero. One factor must be 0, that
is, almost surely either φ(U1) = φ(U2) or φ(1 − U1) = φ(1 − U2). Because φ is monotone, this is only
possible if φ is constant.

3 Control Variates
Assume there exists a function ϕ such that

´
ϕ (x)π (x) dx is known and we want to compute I =´

φ(x)π (x) dx. Without loss of generality, assume further that
´
ϕ (x)π (x) dx = 0. Then, for any λ

În,c =
1

n

n∑
i=1

(φ(Xi)− λϕ (Xi))

is an unbiased estimator of I for Xi
i.i.d∼ π. Its variance is

V
(
În,c

)
=

1

n
V (φ(Xi)− λϕ (Xi))

=
1

n

{
V (φ(Xi)) + λ2V (ϕ(Xi))− 2λCov (φ(Xi), ϕ(Xi))

}
.
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The optimal λ is

λopt =
Cov (φ(Xi), ϕ(Xi))

V (ϕ(Xi))

and the minimal variance is

Vopt

(
În,c

)
=

1

n
V (φ(X))

{
1− corr (φ(X), ϕ(X))

2
}
≤ 1

n
V (φ(X)) .

In general, λopt is unknown, but it can be estimated by

λ̂opt =

∑n
i=1

(
φ(Xi)− În

)
ϕ (Xi)∑n

i=1 ϕ (Xi)
2 .

This is consistent, and we obtain asymptotically the same variance as if λopt is known.
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