
SB2.1 Foundations of Statistical Inference

Sheet 2 — MT22

Section A

1. The number of phone calls a man receives in a week follows a Poisson distribution with

mean θ. At the start of week 1, the man’s beliefs about the value of θ is reprsented by

the gamma distribution

π(θ) =
1

54
θ2e−θ/3, θ > 0.

In the 4 weeks following the start of week 1, the man received 3, 7, 6, and 10 phone calls,

respectively. Determine the posterior distribution of θ and the predictive distribution

for the number of calls that he will receive in week 5.

2. In a model X ∼ f(x, θ), suppose T is complete sufficient statistic for θ. Show that if a

minimal sufficient statistic S for θ exists, then T is also minimal sufficient.
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Section B

3. Let X = (X1, . . . , Xn) be a random sample from a density fX(x; θ) belonging to a

parametric family F . Let T = t(X) be a function of X and denote the density of T by

fT (t; θ). Assuming statistical regularity, let iX(θ) to be the Fisher information about θ

in X. Finally, let iX|t(θ) denote the Fisher information conditional on T = t, i.e.

iX|t(θ) := −
∫

fX|t(x | t; θ)dx
[
− ∂2

∂θ2
log fX|t(x | t; θ)

]
,

and let

iX|T (θ) =

∫
iX|t(θ)fT (t; θ)dt

(a) Show that

iX(θ) = iX|T (θ) + iT (θ)

(b) Show that

iX(θ) ≥ iT (θ),

with equality for all θ if and only if T = t(X) is sufficient for θ.

Hint: Use the factorization theorem for the density

fX(x; θ) = fX|T (x | t; θ)fT (t; θ).

(c) Hence, or otherwise, determine the Fisher information about θ in the first r order

statistics

X(1) < X(2) < · · · < X(r)

of a sample of size n from the density

f(x; θ) = θ exp(−θx), x > 0

4. In order to measure the intensity (on a logarithmic scale so that it can take negative

values), θ, of a source of radiation in a noisy environment, a measurement X1 is taken

without the source present and a second, independent measurement X2 is taken with

the source present. It is known that X1 is N(µ, 1) and X2 is N(µ + θ, 1), where µ is

the mean noise level. The prior distribution for µ is N(µ0, 1) while the prior for θ is

constant (and thus improper).

(a) Write down the joint posterior distribution of µ and θ up to a constant of propor-

tionality.

(b) Hence obtain the posterior marginal distribution of θ.

(c) The usual estimate of θ is x2 − x1; explain why 1
2
(2x2 − x1 − µ0) might be better.
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5. A non-negative function f(θ) of the parameter is said to be proper if its integral is finite∫
f(θ)dθ < ∞

and can thus be normalized to be a probability distribution. Otherwise it is said to be

improper.

Let X1, . . . , Xn be a random sample from a normal distribution with unknown mean µ

and unknown variance λ−1, with the improper prior

π0(µ, λ) = λ−1, λ > 0,−∞ < µ < ∞.

(a) Find the joint posterior density π(µ, λ|x) of (µ, λ).

(b) Find the marginal posterior density π(µ|x) of µ.

(c) Show that the joint posterior density in (a) is proper.
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6. [This question is from a past paper and has three parts] Let E(a, b) be the distribution

of the shifted exponential with density

1

b
e−(x−a)/b, x > a

where a ∈ R, b > 0 are parameters. Let X1, . . . , Xn be a random sample from the

distribution E(a, b).

(a) In this part suppose that a is fixed and known.

(i) Let T be a statistic from the random sample. Write down the definition of

sufficiency, minimality and completeness of T for a parameter θ.

(ii) Show that this is a one parameter exponential family. Without calculation,

give a sufficient and complete statistic for b.

(iii) Find the minimal variance unbiased estimator (MVUE) b̂ of b. (hint: remem-

ber that if G ∼ Γ(u, v) then E(G) = u/v) and that a sum of independent

exponential variables with same means is Gamma distributed)

(iv) Compute the Fisher information for b and compare to the variance of b̂. Does

b̂ attains the Cramer-Rao lower bound? How could you have inferred this

directly from the log-likelihood ℓ? (Hint: if G ∼ Γ(u, v) then V ar(G) = u/v2).

(b) Now we suppose that it is b which is known and a that we wish to estimate.

(i) Can we still say that the distribution E(a, b) with b known is an exponential

family? Briefly justify your answer.

(ii) Find the distribution of X(1) = mini=1,...,n Xi.

(iii) Show that X(1) is sufficient and complete.

(iv) Hence deduce the MVUE of a.

(c) Suppose now that both a and b are unknown. Define T1(X) = X(1) and T2(X) =∑n
i=1(Xi −X(1)).

(i) Fix i ∈ {1, . . . , n}. What is the conditional distribution of Xi − X(1) given

X(1).

(ii) Show that T2(X) has a Gamma distribution and give its parameters.

(iii) Show that (T1, T2) is a sufficient statistic for (a, b). Assuming that is also

complete, obtain an MVUE for (a, b) (Hint: you can assume without proof

that T1 and T2 are independent).

[ It is an interesting (but non-trivial) problem to show that (T1, T2) is complete.

In particular, it involves some measurability issues. You are not required to do

so.]
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Section C

7. From 2015.

(a) Let X = (X1, . . . , Xn) be a sample from a continuous distribution with probability

density function f(x; θ) where θ is an unknown parameter. Let L(θ;X) be the

likelihood function and ℓ(θ) = logL(θ;X)

(i) Prove that E[ ∂ℓ
∂θ
] = 0.

(ii) If we define Iθ = −E[ ∂2ℓ
∂θ2

] show that Iθ = E[( ∂ℓ
∂θ
)2] = Var( ∂ℓ

∂θ
).

(iii) Show that the variance of an unbiased estimator of θ, denoted θ̂(X), satisfies

the Cramér-Rao inequality

Var
[
θ̂(X)

]
≥ I−1

θ ,

and provide a brief statement about why regularity conditions are needed for

this result to hold.

(iv) Show that there exists an unbiased estimator θ̂ which attains the Cramér-Rao

lower bound (under regularity conditions) if and only if

∂ℓ

∂θ
= Iθ(θ̂ − θ)

(v) If ĝ(X) is an unbiased estimator of the function g(θ) derive a lower bound for

the variance of the estimator.

(b) Suppose that

f(x; θ) =
θ3x(x+ 1)

θ + 2
e−θx, x ≥ 0, θ > 0.

Find an unbiased estimator of (θ2−6)/[θ(θ+2)] whose variance attains the Cramér-

Rao lower bound.
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