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Section A

1. Let X1, . . . , Xn be independent Poisson random variables with means E(Xi) = λmi,

i = 1, . . . , n where λ > 0 is unknown and m1, . . . ,mn are known constants.

(a) Show that the model defines an exponential family with canonical parameter θ =

log λ.

(b) What is the canonical observation? Find its mean and variance.

(c) Find the MLE θ̂ of θ.

(d) What can we say about E[θ̂]?

(e) Show that for any function T : N 7→ R we have that

lim
λ→0

Eλ

[
T
( n∑

i=1

Xi

)]
= T (0).

(f) Conclude that there cannot exist an unbiased estimator of θ.

Solution:

(a)

L(λ,x) =
n∏
1

e−λmi(λmi)
xi/xi

= exp

{
(log λ)

n∑
1

xi − λ

n∑
1

mi +
n∑
1

xi logmi −
n∑
1

log(xi!)

}

which is in canonical exponential form with θ = log λ, B1(x) =
∑n

1 xi

(b) The canonical (minimal) sufficient statistic is X̄ (nX̄ is fine as well). E[X̄] = λm̄.∑n
1 Xi is Poisson (λ

∑n
1 mi) so Var(X̄) = λm̄/n.

(c) ℓ(θ) = const + θ
∑n

1 xi − eθ
∑n

1 mi, ∂ℓ/∂θ =
∑n

1 xi − eθ
∑n

1 mi, so θ̂ = log[x̄/m̄],

provided x̄ > 0. If x̄ = 0 then λ̂ = 0, θ̂ = −∞. As n → ∞ the probability that

X̄ = 0 tends to zero if λ > 0.

(d) In fact, E[θ̂] does not even exist. This is because P (θ̂ = −∞) = P (x̄ = 0) > 0.
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(e)
∑

Xi ∼ Poi(λ
∑

mi) Without loss of generality assume that
∑

mi = 1 to simplify

notations. So we want to prove that if X ∼ Poi(λ) under Eλ then

lim
λ→0

Eλ[T (X)] = T (0)

Observe that

Eλ[T ] = T (0)e−λ + e−λ

∞∑
k=1

T (k)
λk

k!
.

Notice that if λ1 < λ2 then for k ≥ 1 we have λk
1 < λk

2 and thus we also have

|T (k)|λ
k
1

k!
≤ |T (k)|λ

k
2

k!
.

Now we need to assume that T is integrable at least for one λ0 < 1 so that

e−λ

∞∑
k=0

|T (k)|λk

k!
< ∞.

Therefore we have that for λ < λ0

T (k)λk

k!

are dominated by the summable T (k)λk
0/k!, and for each k ≥ 1, T (k)λk/k! → 0.

We apply the dominated convergence theorem to obtain that

lim
λ→0

∑
k≥1

T (k)
λk

k!
= 0,

and therefore, since e−λ → 1 as λ → 0, we also have that

lim
λ→0

e−λ
∑
k≥1

T (k)
λk

k!
= lim

λ→0

∑
k≥1

T (k)
λke−λ

k!
= 0.

Thus

Eλ[T ] → T (0) as λ → 0

(f) Notice that since θ = log(λ), we have that θ → −∞ as λ → 0. Therefore if T is

any unbiased estimator, then for any K > 0 we can find ϵ > 0 such that for λ < ϵ

Eλ[T ] < −K. But T (0) > −∞ and therefore we arrive at a contradiction.
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Section B

2. Let X1, . . . , Xn be a random sample from the density

f(x; θ) = e−(x−θ), x ≥ θ

(a) Show that the MLE θ̂ of θ is the minimum of X1, . . . , Xn.

(b) Show that θ̂ is a sufficient for θ.

(c) Show that for all ϵ > 0

Pθ[|θ̂ − θ| > ϵ] ≤ e−nϵ,

deduce that θ̂ is consistent in probability and in quadratic mean, that is θ̂ → θ in

probability and in L2 (we say that Xn → X in L2 if E[(Xn−X)2] → 0), but that it

is a biased estimator of θ with E[θ̂] = θ+1/n. Suggest an unbiased and consistent

estimator and find its variance.

Solution:

L(θ;x) = e−
∑n

1 xi+nθ

n∏
i=1

I[xi>θ] = enθe−
∑

xiI[minxi≥θ]

Note that X1 is just θ plus a mean 1 exponential r.v.

(a) To maximize L(θ, x) we need to look at the boundaries. Once we do that it is clear

that θ̂ = mini Xi maximizes L(θ,x).

(b)

L(θ;x) = enθ1Imin(xi)>θ × e−nx̄

so it factorizes into f1(min(xi); θ)h(x) and min(xi) is sufficient. The family is not

an exponential family

(c) Writing Zi = Xi − θ, the Zi are iid Exp(1) r.v. Thus θ̂ = θ + minZi. Remember

that mini=1,...,n Zi is itself an Exp(n) r.v.

P (θ̂ − θ > ϵ) = P (minZi > ϵ) = e−nϵ, ϵ > 0

and

P (θ̂ − θ < −ϵ) = 0

Hence for all ϵ > 0

lim
n

Pθ[|θ̂ − θ| > ϵ] = 0
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and it is consistent in probability. We also have that

E[(θ̂ − θ)2] = E[(minZi)
2] = 2/n2 → 0

as n → ∞ so it is consistent in quadratic mean.

Finally

E[θ̂] = θ + 1/n, V (θ̂) = n−2.

It is not unbiased . An unbiased estimator is θ̃ = θ̂ − 1/n and its variance is the

same as that of θ̂.

3. Let X = (X1, . . . , Xn) be an i.i.d. sample from a distribution with density

f(x; θ) =
1

2
θ3x2e−θx, x > 0.

(a) Rewrite the density in standard exponential form.

(b) Find a minimal sufficient statistic for θ, T (X) . Find the expected value of the

statistic.

(c) Find the maximum likelihood estimator for θ. Is it unbiased for θ?

(d) Show that θ∗ = (2/n)
∑n

i=1X
−1
i is an unbiased estimator of θ and find its variance.

(e) Compute the Fisher information In(θ) of the model and compare the variance of

θ∗ with In(θ).

[Hint: Recall: The Gamma density with parameters (α, β) is βα

Γ(α)
xα−1e−βx. If

X ∼ Γ(a1, β), Y ∼ Γ(a2, β) and independent then X + Y ∼ Γ(a1 + a2, β). Mean of

Γ(α, β) is α/β.]

Solution:

(a)

f(x; θ) =
1

2
θ3x2e−θx = exp {−θx+ 3 log θ} x2

2

is in the standard form with T (x) = x, η(θ) = θ, B(θ) = 3 log θ and h(x) = x2/2.

It is clear that this is a strictly 1-parameter exponential family.

(b)

L(θ;x) ∝ θ3ne−θ
∑

xi ×
∏

x2
i

By the factorization theorem (or by standard results about exponential family) x̄

is a minimal sufficient statistic for θ . From the hint we can see that f(x; θ) is a

Γ(3, θ) family and therefore the mean is 3/θ.
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(c) l(θ) = 3n log θ − θ
∑

xi + const, l′(θ) = 3n/θ −
∑

xi so θ̂ = 3/x̄.

Recall: The Gamma density with parameters (α, β) is βα

Γ(α)
xα−1e−βx. If X ∼

Γ(a1, β), Y ∼ Γ(a2, β) and independent then X + Y ∼ Γ(a1 + a2, β). Mean of

Γ(α, β) is α/β.∑n
1 Xi has a Gamma distribution with density

θ3n

Γ(3n)
x3n−1e−θx x > 0

so

E[θ̂] = 3n

∫ ∞

0

θ3n

Γ(3n)
x3n−2e−θxdx

= 3n · θ3n

Γ(3n)
· Γ(3n− 1)

θ3n−1

=
3nθ

3n− 1

Thus θ̂ is a biased estimate of θ.

(d)

E[X−1
i ] =

∫ ∞

0

1

2
θ3xe−θxdx

=
1

2
θ

so θ∗ = (2/n)
∑n

1 X
−1
i is an unbiased estimate of θ. Similarly, from the density,

one can show that Var(θ∗) = θ2/n.

(e) Fisher’s information is In(θ) = −E[ ∂2

∂θ2
ℓ(θ)] = 3n/θ2. To find the variance we

compute

Var

(
1

Xi

)
= E

[
X−2

i

]
− E

[
X−1

i

]2
=

∫
1

2
θ3e−θxx−

(
θ

2

)2

=
θ2

2
− θ2

4
=

θ2

4
.

So Var(θ∗) = θ2/n ≥ In(θ) = θ2/(3n).
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4. Let X1, . . . , Xn be a sample from N(µ, σ2).

(a) Show that the MLE of σ2 is

σ̂2 = n−1

n∑
i=1

(Xi − X̄)2.

(b) Show that σ̂2 has a smaller mean square error than

(n− 1)−1

n∑
i=1

(Xi − X̄)2.

(c) For which value of a is the MSE of

(n+ a)−1

n∑
i=1

(Xi − X̄)2

the smallest.

Hint: For (b) and (c) you will need to find Var(χ2
n−1) which is a special case of the

variance of a gamma distribution.

Solution:

(a)

ℓ(µ, σ2) = const− n

2
log σ2 − 1

2

n∑
1

(xi − µ)2/σ2

so

∂ℓ

∂σ2
= − n

2σ2
+

1

2σ4

n∑
1

(xi − µ)2 (1)

∂ℓ

∂µ
=

1

σ2

∑
(xi − µ). (2)

Setting both equal to 0 we get that µMLE = x̄, uniformly in σ2, so

σ̂2 = n−1

n∑
i=1

(Xi − X̄)2.

Technically we should also do a second derivative test to verify it’s indeed a maxi-

mum. Recap from Part A Statistics

(n− 1)S2

σ2
∼ χ2

n−1

σ̂2 =
n− 1

n
S2 ∼ σ2

n
χ2
n−1
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χ2
r has a density

1

Γ(r/2)2r/2
xr/2−1e−x/2, > x > 0

which is a Γ(r/2, 1/2) density with mean 2× r/2 = r and variance 4× r/2 = 2r.

(b) E(σ̂2) = ((n− 1)/n)σ2, Bias(σ̂2) = −σ2/n, Var(σ̂2) = (2(n− 1)/n2)σ4. Thus

MSE(σ̂2) = Var(σ̂2) + Bias(σ̂2)2 =
2n− 1

n2
σ4

Let

S2 = (n− 1)−1

n∑
i=1

(Xi − X̄)2 ∼ σ2

n− 1
χ2
n−1,

then [S2] = σ2, so unbiased. Therefore the MSE is simply the variance and therefore

MSE(S2) =
2(n− 1)

(n− 1)2
σ4 =

2

n− 1
σ4 > MSE(σ̂2) =

2n− 1

n2
σ4.

(c) Let

σ∗2 = (n+ a)−1

n∑
i=1

(Xi − X̄)2

A similar calculation to (b) shows that

MSE(σ∗2) =

(
2

n− 1
b2 + (b− 1)2

)
σ4

where b = (n− 1)/(n+ a). The MSE is minimal when

b =
1

2
n−1

+ 1
, or a = 1

That is the minimal MSE solution is

(n+ 1)−1

n∑
i=1

(Xi − X̄)2
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5. (a) Let Y1, . . . , Yn be a random sample from a Poisson distribution with parameter

λ > 0. One observes only Wi = 1Yi>0. Compute the likelihood associated with the

sample (W1, . . . ,Wn) and the MLE in λ. Show that it is consistent in probability.

(b) Let X1, . . . , Xn be a random sample from a truncated Poisson distribution with

distribution

f(x;λ) =
e−λ

1− e−λ
· λ

x

x!
, x = 1, 2, . . . .

For i = 1, . . . , n a random variable Zi is defined by

Zi = Xi if Xi ≥ 2 or Zi = 0 if Xi = 1

Show that Z̄ is an unbiased estimator of λ with efficiency (efficiency is the ratio of

the variance to the Cramer-Rao lower bound)

1− e−λ

1−
(

λe−λ

1−e−λ

)2 .

Solution:

(a) For the first part, the likelihood function is the folowing: let w = (w1, . . . , wn) be

the vector of observations and let S =
∑

wi. Then

L(λ,w) = (1− e−λ)Se−λ(n−S) = (eλ − 1)Se−nλ

So that

ℓ′(λ) = S
eλ

eλ − 1
− n

and solving ℓ′ = 0 gives us

λ̂ = − log(1− S

n
).

Note that we have again the problem that λ̂ = ∞ with positive probability.

Observe that the Wi are iid Bernoulli variables with parameter p = 1 − e−λ. The

MLE estimator for p is well known to be p̂ = S/n. Notice that p̂ = 1 − e−λ̂ (or

λ̂ = − log(1−p̂)). This is an example of the invariance of the MLE w.r.t. one-to-one

reparametrization.

Notice that p 7→ log(1 − p) is uniformly continuous on [0, 1 − δ] for any δ > 0.

Suppose first that λ < ∞, or equivalently that p = 1− e−λ < 1− δ for some δ > 0.

Then there exists a K = Kδ such that

| log(1− p)− log(1− p′)| ≤ Kδ|p− p′|, for all p, p′ ∈ [0, 1− δ].
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Then we have for any ϵ > 0

P [| log(1− p̂n)− log(1− p)| > ϵ] ≤ P
[{

| log(1− p̂n)− log(1− p)| > ϵ
}
∩
{
|p̂n − p| ≤ δ/2

}]
+ P [|p̂n − p| > δ/2]

≤ P
[
|p̂n − p| > ϵ/Kδ/2

]
+ o(1) = o(1)

by consistency of p̂n.

On the other hand if λ = ∞, then p = 1 we have that S/n = p̂ = 1 = p with

probability 1. Therefore log(1 − p̂) = +∞ = λ with probability 1. Therefore we

have consistency.

(b) For the second part,

f(x;λ) =
e−λ

1− e−λ

λx

x!
, x = 1, 2, . . .

The mean of Z is

E[Z] =
∑
x≥2

x
e−λ

1− e−λ

λx

x!
=

e−λ

1− e−λ

∑
x≥2

λx

(x− 1)!
=

e−λ

1− e−λ
λ(eλ − 1) = λ

Therefore Z̄ =
∑

Zi/n is an unbiased estimator.

Now we want to compute the efficiency. For this we need the Fisher information

and the variance of the estimator. Here the estimator is Z̄ and the model is the

sample (X1, . . . , Xn). Thus the Fisher information is calculated w.r.t the law of

the vector (X1, . . . , Xn). The Fisher information is additive so that the Fisher

information of (X1, . . . , Xn) is simply niλ where iλ is the Fisher information of a

singe X. The loglikelihood

l(λ) = −λ− log(1− e−λ) + x log λ− log x!

and

∂l

∂λ
= − 1

1− e−λ
+

x

λ
∂2l

∂λ2
=

e−λ

(1− e−λ)2
− x

λ2

The Fisher information for one observation is (using E[X] = λ/(1− e−λ))

iλ = −E
(
∂2l

∂λ2

)
= − e−λ

(1− e−λ)2
+

1

λ2

λ

1− e−λ

=
1

λ
· 1

1− e−λ

[
1− λe−λ

1− e−λ

]

Department of Statistics, University of Oxford

George Deligiannidis: deligian@stats.ox.ac.uk

Page 9 of 13



SB2.1 Foundations of Statistical Inference: Sheet 1 (Tutors Only) — MT22

To obtain the variance consider

E[Z(Z − 1)] =
∑
x≥2

x(x− 1)
e−λ

1− e−λ

λx

x!
=

e−λ

1− e−λ

∑
x≥2

λx

(x− 2)!
=

λ2

1− e−λ

Then

Var(Z) =
λ2

1− e−λ
+ λ− λ2 = λ

[
1 +

λe−λ

1− e−λ

]
I have

iλ = −E
(
∂2l

∂λ2

)
= − e−λ

(1− e−λ)2
+

λ

λ2

=
1

λ
· 1

1− e−λ

[
1− λe−λ

1− e−λ

]

Efficiency =
[
IλVar(Z̄)

]−1

=
1−

(
λe−λ

1−e−λ

)2

1− e−λ
.
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Section C

6. (a) (optional bookwork) Let X be a discrete random variable with pmf f(x; θ) with

parameter θ ∈ Θ and sample space X ∈ χ. Let T (x) be a function of x. Suppose

f(x; θ)/f(y; θ) is not a function of θ if and only if T (x) = T (y). Show that T (x) is

minimal sufficient for θ.

(b) Let N = N(0, S] be the number of events in a Poisson arrival process of rate λ

acting over time s in the interval 0 < s ≤ S. Suppose we observe arrivals in the

process at times X1, X2, ..., XN , and wish to use these data to estimate λ. Show

that N is minimal sufficient for λ (assume the result in (a) holds for any sufficiently

regular family of probability distributions).

Solution:

(a) Break the condition into two parts:

(*) T (x) = T (y) = t implies f(x; θ)/f(y; θ) is not a function of θ;

(**) f(x; θ)/f(y; θ) not a function of θ implies T (x) = T (y) = t.

Let f(x; θ) = g(x|t(x), θ)h(t|θ) (with no assumption of sufficiency) and suppose

T (x) = T (y) = t. If (*) holds then

f(x; θ)

f(y; θ)
=

g(x|t, θ)
g(y|t, θ)

= c(x, y)

say, with c independent of θ (factors of h cancel). But then∑
x:T (x)=t

g(x|t, θ) = g(y|t, θ)
∑

x:T (x)=t

c(x, y)

so

g(y|t, θ) =

 ∑
x:T (x)=t

c(x, y)

−1

which is independent of θ, so T is sufficient for θ in f . If f(x; θ)/f(y; θ) does depend

on θ when T (x) = T (y) = t then c depends on θ and the same reasoning shows T

cannot be sufficient, so condition (*) is necessary for sufficiency. Let U(x) be some

sufficient statistic. We must show that T is a function of U , so T is minimal. It

is enough to show that U(x) = U(y) implies T (x) = T (y). But U(x) = U(y) = u

implies f(x; θ)/f(y; θ) is not a function of θ, and then (∗∗) implies T (x) = T (y),

so T is minimal sufficient.
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(b) The intervals of a Poisson arrival process of rate λ are exponential so Xi ∼ Exp(λ)

likelihood for i = 1, 2, ..., N . The probability that the final interval between time

Y =
∑N

i=1Xi and S has no event is the probability that an Exp(λ) random variable

exceeds S − Y , that is, exp(−λ(S − Y )). The likelihood for λ given data X =

(x1, ...xn) is therefore

L(θ;x) =

[
n∏

i=1

λ exp(−λxi)

]
exp(−λ(S − Y ))

= exp(−λS)λn

since (S − Y ) + xn + ... + x1 = S and so N is sufficient for λ by the factorization

theorem (L = K1(x, θ)K2(x) with K1(x, θ) = L and K2 = 1). It is minimal

sufficient by part (a) since, if x = (x1, ...xn) and y = y1, ..., ym then L(x;λ)/L(y;λ)

is independent of λ if and only if n = m.

7. A random sample X1, . . . , Xn is taken from the Weibull distribution

β

αβ
xβ−1 exp

{
−
(x
α

)β
}
, x > 0, α > 0, β > 0.

(a) Assuming that β is known, find a sufficient statistic for α.

(b) Suppose now that α is known. Show that the order statistics X(1), . . . , X(n) is

sufficient statistic for β, but that no one-dimensional statistic can be sufficient.

(c) Does the Weibull distribution belong to a 2-parameter exponential family?

Solution:

L(θ;x) = α−nβ exp{−α−β

n∑
1

xβ
i } × βn

n∏
1

xβ−1
i .

Assuming β is a known constant, this is exponential form in the natural parameter

−α−β. The natural observation T (x) = n−1
∑n

1 x
β
i is thus a (minimal) sufficient statis-

tic for α if β is known.

We suppose now that α is known. Observe that the order statistic is always sufficient

when the observation is an i.i.d. sample (the order in which the observations arrive

contains no information).

Notice that a statistic T is minimal sufficient if and only if T (x) = T (y) is equivalent

to f(x; θ)/f(y; θ) being independent of θ. In the case of the Weibull distribution, say
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with α known, and n i.i.d. observations, the log-likelihood ratio takes the form

F (x,y; β) := log
f(x1, . . . , xn; β)

f(y1, . . . , yn; β)

= (β − 1)
∑

log(xi)−
∑(xi

α

)β

− (β − 1)
∑

log(yi) +
∑(yi

α

)β

and this should be independent of β. For β = 1 the above implies that
∑

xi =
∑

yi.

In addition all the derivatives of the above expression w.r.t. β must vanish. Writing

wi = log(xi/α), zi = log(yi/β) we have for p ≥ 2

∂p

∂βp
F (β) = −

∑
wp

i e
βwi +

∑
zpi e

βzi = 0

for all β > 0. Letting β → 0 we obtain then that∑
wp

i =
∑

zpi ,

and therefore all moments of the empirical measures

n∑
i=1

δwi
,

n∑
i=1

δzi ,

are the same and we can conclude that

{x1, . . . , xn} = {y1, . . . , yn}.

Therefore f(x; β)/f(y; β) being independent of θ is equivalent to x being equal to y

up to permutation. Therefore the order statistic is minimal sufficient; in particular as

n grows so does the dimension of any sufficient statistic. A 2-parameter exponential

family admits a 2-dimensional sufficient statistic independent of the size of the sample

(see Corollary 2.3 and the remark thereafter), thus giving us a contradiction.
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