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Abstract By introducing twists into the iterated function system that defines the
Sierpinski gasket, we are able to construct a unique regular energy form that satisfies
a self–similar identity with any prescribed projective weights. Our construction
is explicit (involving finding a root of a 4th order polynomial), and we are able
to find explicitly a polynomial identity for the algebraic variety containing the
smooth manifold of admissible weights. Without the twists, there are obstructions
to existence, and a complete description due to Sabot is quite complicated.
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1 Introduction

One approach to analysis on fractals, as developed by Kigami [4–7] (see [19, 21] for
expository accounts), is to construct an energy form, analogous to

E(u) =
∫ 1

0
|u′(x)|2dx (1)

on the unit interval. To be specific, suppose the fractal is given as the invariant set K
of an iterated function system (IFS) of contractive similarities {Fi} on some Euclidean
space, so

K =
⋃

i

Fi K. (2)

We seek a strongly local regular Dirichlet form E on a domain (dom E) dense in the
continuous functions, that satisfies a self–similar identity

E(u) =
∑

i

r−1
i E(u ◦ Fi) (3)

for a set of weights {ri} satisfying

0 < ri < 1. (4)

We restrict attention to a class of fractals, called postcritically finite, with the following
properties: K is connected and contains a finite set V0 (called the boundary of K)
such that

Fi K ∩ F jK ⊆ FiV0 ∩ F jV0. (5)

Then we approximate K from within by a sequence of graphs {�m} with vertices {Vm}
and edge relation x ∼

m
y as follows: �0 is the complete graph on V0, and

Vm =
m⋃

i=1

Vm−1 =
⋃

|w|=m

FwV0,

where w = (w1, . . . , wm) is a word of length |w| = m, and Fw = Fw1 ◦ · · · ◦ Fwm . We
define x ∼

m
y if and only if there exists w of length m with x, y ∈ FwV0.

The existence of a self–similar energy form is equivalent to the existence of a
solution to the following renormalization problem. Consider the space of all discrete
energy forms on �0,

E0(u) =
∑
x∼

0
y

c(x, y)(u(x) − u(y))2 (6)

for nonnegative conductances c(x, y) on the edges of V0. We will say that E0 is
nondegenerate if enough of the conductances are positive so that E0(u) = 0 if and
only if u is constant on V0. We then extend E0 to E1 on V1 by

E1(u) =
∑

i

r−1
i E(u ◦ Fi). (7)



Self–similar energy forms on the Sierpinski gasket with twists 47

Explicitly,

E1(u) =
∑
x∼

1
y

c1(x, y)(u(x) − u(y))2 (8)

for

c1(Fix, Fi y) = r−1
i c(x, y) if x, y ∈ V0. (9)

Given the values of u on V0, we define the harmonic extension ũ of u to V1 to be the
extension that minimizes E1(u). We say that E0 solves the renormalization problem
with weights {ri} if

E1( ũ ) = E0(u) (10)

for all u defined on V0. If this holds, we may define the energy

Em(u) =
∑

|w|=m

r−1
w E0(u ◦ Fw) (11)

on �m and show that Em(u) is monotone increasing in m, with constant values for
harmonic functions (the functions that minimize Em(u) for given values on V0). Then

E(u) = lim
m→∞ Em(u) (12)

is well defined as an extended real number, and we may define dom E as the functions
with E(u) < ∞. It can be shown that dom E is a dense subspace of C(K), so all such
functions are determined by their values on V∗ =

⋃
m

Vm, which is dense in K.

The energy defined above satisfies the self–similar identity Eq. 3 by construction.
Conversely, every self–similar energy arises in this manner. Thus the existence of
self–similar energy on K is equivalent to the solvability of the renormalization
problem, which is just a fixed point problem for a mapping in a finite dimensional
space. Note that any solution can be multiplied by a positive constant, so it is better
to think of the space of energy forms E0 onV0 as a projective space, and to say the
solution is unique if there is only a single ray of solutions. Likewise it is better to
projectivize the set of weights: given projective weights {ri} we try to solve

E1( ũ ) = λE0(u) for some λ > 0, (13)

and then choose { r̃i} = {λ−1ri} as the actual weights to define the self–similar energy.
Typically there will be at most one possible λ, so every ray of projective weights will
contain at most one set of weights for which the renormalization problem is solvable.

There is an extensive literature on the renormalization problem (for example
[3, 8–18]). Two types of problems considered are the following:

i) given {Fi}, does there exist a choice of weights for which the renormalization
problem is solvable?

ii) given {Fi}, characterize those weights for which the problem is solvable, and
decide if the solution is unique. Both problems have been completely solved for
the case of the Sierpinski gasket (SG), where Fi = 1

2 x + 1
2 qi,i = 0, 1, 2, where

{qi} are vertices of an equilateral triangle in the plane. In [4] the renormalization
problem was solved for projective weights (1, 1, 1). It turns out that λ = 5/3 is
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the unique value in Eq. 13, so the actual weights are ( 3
5 , 3

5 , 3
5 ), and the unique

conductances in Eq. 6 are c(qi, qj) = 1, i �= j. Sabot [18] answered the second
question in detail, providing necessary and sufficient conditions on the projective
weights for a solution to exist, and showing that it is unique when the conditions
hold. (That there are obstructions to existence had been previously known,
since the symmetric case r1 = r2 can be analyzed explicitly by hand.) Sabot’s
solutions are not entirely explicit, and his proof is rather long and difficult. This
paper is a footnote to his work, and the message is: add twists, and everything
becomes easy!

It is well–known that the same fractal may be generated by many different IFSs.
For example, one can always take iterations of the original mappings. But if the
fractal has symmetries, it may be possible to replace the original IFS by a quite
different one. In the case of SG, let Ri denote the reflection that fixes qi and
interchanges the other two boundary points. These are the twists. (See [20] Section 6
and [22] for other contexts in which these twists are important.) Let F̃i = Fi ◦ Ri.
Then {F̃i} is an IFS that generates SG. We ask, what are the self–similar energies on
SG with respect to this IFS? (Note that these are not the same as the self–similar
energies for the original IFS, except in the case of equal weights.) The answer is
that for every choice of projective weights there is a unique λ and a unique solution.
In Section 2 we give an explicit description of the solution, which involves nothing
more complicated than solving an explicit 4th order polynomial equation. (We also
show that existence and uniqueness follow from general results in [18].) In Section 3
we show that the set of admissible weights forms a smooth surface in R

3 that is a
piece of an explicit algebraic variety, and we write down the 6th order polynomial
that defines it. This computation required the use of Macaulay2 [2], but everything
else is done by hand. In Section 4 we briefly discuss what happens if we use an IFS
with two twists. (Numerical evidence may be found at the website http://www.math.
cornell.edu/∼cucuringum.) We also show that this does not hold for an IFS with just
one twist.

Each self–similar energy gives rise to a self–similar Laplacian (this requires the
choice of a self–similar measure, with contraction ratios related naturally to the
weights {ri}). The spectra of those Laplacians will be discussed in [1].

To give a hint why the IFS with twists should be better than the IFS without twists,
we consider the following geometric problem: given a triangle T with vertices q0, q1,
q2, can we find similar triangles T0, T1, T2 such that qj is a vertex of T j and T j and Tk

intersect at a single point for j �= k? What are the possible similarity ratios r0, r1, r2? If
we require the similarities to be orientation preserving, the only possibility is to take
r0 = r1 = r2 = 1

2 , and we get an affine image of the usual SG if we form an IFS of the
three similarities. However, if we require the similarities to be orientation reversing,
then we get an interesting solution for any acute triangle. If α0,α1, α2 are the angles at
the vertices q0, q1, q2, then we may take (r0, r1, r2) = (cos α0, cos α1, cos α2) as shown
in Fig. 1. Indeed, it is easy to check that

r1 sin α2 + r2 sin α1 = sin α0

r0 sin α2 + r2 sin α0 = sin α1

r0 sin α1 + r1 sin α0 = sin α2

http://www.math.cornell.edu/~cucuringum
http://www.math.cornell.edu/~cucuringum


Self–similar energy forms on the Sierpinski gasket with twists 49

Fig. 1

r0sin α1 r0sin α2

α0

α2 r0sin α0 α1

α2 α1

r2sin α0r1sin α 0 r1sin α1 r2sin α2

α1 α0 α0
r2sin α1r1sin α2

α 2

using the addition formula for sines and α0 + α1 + α2 = π . If we take the IFS
consisting of these three similarities, the invariant set will be a topological SG with a
different geometric structure. It is easy to check that the contraction ratios (r0, r1, r2)

that arise in this way satisfy the identity

r2
0 + r2

1 + r2
2 + 2r0r1r2 = 1, (14)

and conversely any positive solution to Eq. 14 is of the form (cos α0, cos α1, cos α2) for
some acute triangle. Of course Eq. 14 defines an algebraic variety, and we are taking
the intersection of this variety with the positive octant. It is also easy to see that every
ray in the positive octant intersects this variety in a unique point.

2 Existence and Uniqueness

Theorem 2.1 For any positive projective weights (r0, r1, r2), there exists a unique
positive λ such that for the weights λ−1(r0, r1, r2) = ( r̃0, r̃1, r̃2) there is a unique (up
to a constant multiple) nondegenerate energy E satisfying

E(u) =
2∑

i=0

r̃−1
i E(u ◦ F̃i). (15)

Moreover we have

0 < r̃i < 1 for i = 0, 1, 2. (16)

Proof Without loss of generality we may take r0 = 1. By the well-known � − Y
transform, we may represent the energy E0 by the resistance network shown in Fig. 2
(without loss of generality we have taken s0 = 1). Then the energy E1 is represented
by the resistance network shown in Fig. 3. We then transform this network into an
equivalent one in the same configuration as Fig. 2, by adding resistances in series and
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Fig. 2 q0

s2

q2q1

s1

1

using the � − Y transformation. This three stage procedure is shown in Fig. 4, where
we use the abbreviation

� = r1 + r2 + s1 + s2 + r1s2 + r2s1. (17)

The renormalization equation says that the resulting network must be a multiple of
the original network. This leads to the set of equations.

� + (1 + r1)(1 + r2)s1s2 = λ� (18)

r1s1� + (r1 + r2)(1 + r1)s2 = λs1� (19)

r2s2� + (r1 + r2)(1 + r2)s1 = λs2�. (20)

Note that to have a nondegenerate solution both s1 and s2 must be positive. We can
use Eq. 18 to determine λ. Since obviously λ > 1, we conclude r̃0 = λ−1 < 1, so any
solution we find will automatically satisfy Eq. 16 (the problem is symmetric so also
r̃1 < 1 and r̃2 < 1).

The remaining equations are just

r1s1� + (r1 + r2)(1 + r1)s2 = s1� + (1 + r1)(1 + r2)s2
1s2 (21)

r2s2� + (r1 + r2)(1 + r2)s1 = s2� + (1 + r1)(1 + r2)s1s2
2. (22)

To complete the proof we need to show that for every positive (r1, r2) there exists
a unique positive solution (s1, s2). This is a pair of cubic equations in two variables,
but rather luckily we observe that the first equation is linear in s2, and the second is

Fig. 3

r1s1

r2s1

r2s2

r1s2

s1s2

q0

q2
q1

1

r1 r2
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a

1

s2(1+r1) s1(1+r2)

r1s1 r2s2
r1+r2

b

1

r1s1 r2s2

Σ
(1+r1)(1+r2)s1s2

Σ
(r1+r2)(1+r1)s2

Σ
(r1+r2)(1+r2)s1

c

r1s1   +(r1+r2)(1+r1)s2
Σ

Σ

  +(1+r1)(1+r2)s1s2
Σ

Σ

r2s2   +(r1+r2)(1+r2)s1
Σ

Σ

Fig. 4

linear in s1. (This good luck does not occur without the twists.) So let’s solve Eq. 21
for s2:

s2 =
(

r1 − 1
r1 + 1

)
s1((1 + r1)s1 + (r1 + r2))

(s1 + 1)((1 + r2)s1 − (r1 + r2))
(23)

provided the denominator does not vanish. Then we substitute Eq. 23 into Eq. 22
and multiply by the denominator to obtain a quartic equation in s1. For simplicity we
drop the subscript and use the abbreviations

L = (1 + r2)s + (r1 + r2) (24)

Q = (s + 1)((1 + r2)s − (r1 + r2)), (25)

and the equation becomes

(1 + r2)((r1 − 1)sL + (r1 + 1)Q)((r1 − 1)sL − (r1 + r2)Q)

+ (1 − r2)(r1 − 1)L((r1 − 1)sL + (r1 + r2)Q) = 0. (26)

It is convenient now to consider the three cases r1 = 1, r1 < 1 and r1 > 1. In
the case r1 = 1, Eq. 21 simplifies to 2(1 + r2)s2 = 2(1 + r2)s2

1s2, so s1 = ±1. Since we
want positive solutions we must have s1 = 1, and then Eq. 22 becomes the quadratic
equation

4s2
2 + (

2 − 2r2
2

)
s2 − (1 + r2)

2 = 0 (27)
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with two real solutions

s2 = r2
2 − 1 ±

√(
1 − r2

2

)2 + 4(1 + r2)2

4
. (28)

Clearly the choice of the plus sign gives the unique positive solution. So that is the
complete explicit solution in this case.

In the other two cases, when r1 �= 1, we will see that the denominator does
not vanish in Eq. 23 for the solution of Eq. 26. Indeed, the denominator van-
ishes exactly when s1 = r1+r2

1+r2
, and moreover when r1 < 1 we have s2 > 0 provided

s1 < r1+r2
1+r2

, while when r1 > 1 we have s2 > 0 provided s1 > r1+r2
1+r2

. So our problem has
a positive solution provided that Eq. 26 has a solution in

(
0, r1+r2

1+r2

)
when r1 < 1 and

in
( r1+r2

1+r2
,∞)

when r1 > 1. In fact we will show that for r1 �= 1, Eq. 26 has exactly one
solution in each of these intervals.

The key observation is that we can compute the polynomial P(s) in Eq. 26 exactly
at the points r1+r2

1+r2
, 0, −1 and ±∞, and see that it changes sign. It then follows that it

has zeroes in the two positive intervals and the two negative intervals, and since it is
a quartic polynomial the roots in each interval are unique. (It is easy to see that the
four roots correspond to all four possible signs (±,±) for (s1, s2).)

The reader who is willing to do a little algebra by hand can easily check the
following facts about P(s):

P(s) = −2(r1 + r2)
4s4 + lower order terms (29)

P(−1) = 2r2(1 − r1)
4 (30)

P(0) = −2(r1 + r2)
4 (31)

P
(

r1 + r2

1 + r2

)
= 4(r1 − 1)2(1 + r1)(r1 + r2)

3

(1 + r2)
(32)

(note that Q = 0 in Eqs. 30 and 32). This gives the desired result when r1 �= 1. (Note
that when r1 = 1 that P has double roots at s = ±1.) �

From the form of the solution we see that r1 > 1 = r0 implies s1 > 1 = s0, and so
the order of the resistances s0, s1, s2 is the same as the order of the weights r0, r1, r2.

We can also express the solution in terms of the initial conductances in

E0(u) = c01(u(q0) − u(q1))
2 + c12(u(q1) − u(q2))

2 + c20(u(q2) − u(q0))
2. (33)

Using the � − Y transform we obtain

c01 = s2

s1 + s2 + s1s2
, c12 = 1

s1 + s2 + s1s2
, c20 = s1

s1 + s2 + s1s2
. (34)

We could equivalently take

c01 = s2, c12 = 1, c20 = s1. (35)

We remark that Theorem 2.1 is also a consequence of Theorem 5.1 (ii) of Sabot
[18]. To see this we observe (in the notation of [18]) that the only nontrivial preserved
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G–relations are the one that identifies q1 and q2, and permutations of this one.
Thus assumption (H) is valid. We need to verify ρ J < ρ

F/J
for this relation (the

computation for the others is identical). In this case, both TJ and TF/J are multiplies
of the identity, so both ρ values are just the multiples. For F/J, the multiple is r0,

while for J it is
(

1
r0

+ 1
r1

+ 1
r2

)−1
, so the inequality is obvious. The same argument

works for the case of two twists (in that case there is only one preserved G-relation,
and the computations are identical). Of course this is just an abstract existence and
uniqueness statement, and doesn’t yield the explicit formulas we have found.

3 The Surface of Admissible Weights

Let us call the actual weights ( r̃0, r̃1, r̃2) that arise in Theorem 2.1 admissible weights.
For every ray in the positive octant, there is a unique admissible weight lying on it.
Thus the admissible weights from a surface in R

3. In this section we show that it is
smooth (C∞) and is part of an algebraic variety. Let

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

G1(r1, r2, s1, s2) = (r1 − 1)(r1 + r2)s1 + (r1 − 1)(1 + r2)s2
1+ (r1 − 1)(1 + r1)s1s2 + (r1 + r2)(1 + r1)s2

− (1 + r1)(1 + r2)s2
1s2,

G2(r1, r2, s1, s2) = (r2 − 1)(r1 + r2)s2 + (r2 − 1)(1 + r1)s2
2+ (r2 − 1)(1 + r2)s1s2 + (r1 + r2)(1 + r2)s1

− (1 + r1)(1 + r2)s1s2
2.

(36)

Then the equations

{
G1(r1, r2, s1, s2) = 0
G2(r1, r2, s1, s2) = 0 (37)

describe how the variables (r1, r2) determine the variables (s1, s2), and the surface of
admissible weights is given by

(x, y, z) = (λ−1, λ−1r1, λ
−1r2) (38)

for

λ−1 = �

� + (1 + r1)(1 + r2)s1s2
(39)

(� is given by Eq. 17).

Lemma 3.1 (s1, s2) are smooth functions of (r1, r2).

Proof If r1 �= 1 and r2 �= 1, then Eq. 23 shows that s2 is a smooth function of
(s1, r1, r2), and s1 is a smooth function of (r1, r2) since it is a solution of the quartic
equation Eq. 26 that has four distinct roots. To show that the solution remains smooth
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when r1 = 1 or r2 = 1 we will use the implicit function theorem. For this it suffices to
show that the determinant of the matrix

⎛
⎜⎜⎜⎜⎝

∂G1

∂s1

∂G1

∂s2

∂G2

∂s1

∂G2

∂s2

⎞
⎟⎟⎟⎟⎠ (40)

is never zero. We compute

∂G1

∂s1
= (r1 − 1)(r1 + r2) + 2(r1 − 1)(1 + r2)s1 + (r1 − 1)(1 + r1)s2

−2(1 + r1)(1 + r2)s1s2

∂G1

∂s2
= (r1 − 1)(1 + r1)s1 + (r1 + r2)(1 + r1) − (1 + r1)(1 + r2)s2

1

∂G2

∂s1
= (r2 − 1)(1 + r2)s2 + (r1 + r2)(1 + r2) − (1 + r1)(1 + r2)s2

2

∂G2

∂s2
= (r2 − 1)(r1 + r2) + 2(r2 − 1)(1 + r1)s2 + (r2 − 1)(1 + r2)s1

−2(1 + r1)(1 + r2)s1s2.

Now we note that when r1 = 1 (hence s1 = 1) we have ∂G1
∂s2

= 0, so the determinant
of Eq. 40 is just

∂G1

∂s1

∂G2

∂s2
= (−2(1 + r2)

2s2
)
(2(r2 − 1)(1 + r2) − 8s2) . (41)

This can only vanish if s2 = 1
4

(
r2

2 − 1
)
, but this contradicts Eq. 28. By symmetry, a

similar argument works if r2 = 1. �

Theorem 3.2 The surface of admissible weights is smooth.

Proof By Lemma 3.1, (x, y, z) are smooth functions of the parameters (r1, r2). By the
implicit function theorem it suffices to show that the matrix

⎛
⎜⎜⎜⎜⎝

∂x
∂r1

∂y
∂r1

∂z
∂r1

∂x
∂r2

∂y
∂r2

∂z
∂r2

⎞
⎟⎟⎟⎟⎠ (42)
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has rank 2 at every point. Now the three determinants of the 2 × 2 minors of
Eq. 42 are
(

λ−1 + r1
∂λ−1

∂r1

)(
λ−1 + r2

∂λ−1

∂r2

)
−r1r2

∂λ−1

∂r1

∂λ−1

∂r2
=λ−1

(
λ−1 + r1

∂λ−1

∂r1
+ r2

∂λ−1

∂r2

)
,

r1
∂λ−1

∂r1

∂λ−1

∂r2
− ∂λ−1

∂r2

(
λ−1 + r1

∂λ−1

∂r1

)
= −λ−1 ∂λ−1

∂r2
,

r2
∂λ−1

∂r1

∂λ−1

∂r2
− ∂λ−1

∂r1

(
λ−1 + r2

∂λ−1

∂r2

)
= −λ−1 ∂λ−1

∂r1
.

But if the last two vanish then we must have ∂λ−1

∂r1
= ∂λ−1

∂r2
= 0, and then the first one

cannot vanish. �

Because G1 and G2 are polynomials and (x, y, z) are rational functions, it follows
easily that Eq. 38 defines an algebraic variety. Our surface is a subset of this variety
specified by the positivity of r1, r2, s1, s2. By symmetry, the polynomial equation
of this variety must be symmetric, hence expressible in terms of the elementary
symmetric polynomials

e1 = x + y + z, e2 = xy + yz + zx, e3 = xyz. (43)

Theorem 3.3 The surface of admissible weights is a subset of the symemtric order 6
algebraic variety given by

−e3
1e2 + e3

1e3 − e2
1e2 + 4e1e2

2 − 3e2
1e3 − 4e1e2e3 + e1e2 + 7e1e3

−4e2e3 + 4e2
3 + e2 − 5e3 = 0. (44)

Proof Equation 44 was found using Macaulay2. A worksheet may be found on the
website. �

A graph of the admissible weights surface is shown in Fig. 5. The data was
generated by solving Eqs. 21 and 22 for various inputs of r values, not by solving
Eq. 44.

A related question is whether or not there are constraints on the s values that arise.
It is not difficult to see that there must be constraints just by considering the diagonal
case s1 = 1, for then s2 >

√
5−1
4 is required. In fact we can give a complete description

of the admissible s–region of all values (s1, s2) in the plane which correspond to
solutions. One boundary curve of the region is obtained by letting r1 → 0+. Setting
r1 = 0 in Eqs. 21 and 22 we obtain

r2
(
s2 − s1 − s2

1 − s2
1s2

) = s2
1 + s1s2 + s2

1s2 (45)

r2
2(s2 + s1s2 + s1) + r2

(
s2

2 − s2 + s1 − s1s2
2

) = s2
2 + s1s2 + s1s2

2. (46)

Note that from Eq. 45 we deduce that

s1 <
s2

1 + s2
(this implies s1 < 1) (47)
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Fig. 5 A graph of the surface
of admissible weights
(̃r0, r̃1, r̃2)

is necessary for r2 ≥ 0. When we eliminate r2 from Eqs. 45 and 46 we obtain

−s3
1s3

2 + s3
1s2

2 + s2
1s3

2 + 2s2
1s2

2 + s3
1s2 + s1s3

2 − s3
1 + s2

1s2 + s1s2
2 − s3

2 = 0. (48)

It is remarkable that Eq. 48 is symmetric in s1 and s2. Thus Eq. 48 also describes the
boundary r2 = 0, but instead of Eq. 47 we have s2 < 1. To find the third boundary
curve corresponding to r0 → 0+ we need to substitute (s1, s2) → (1/s1, s2/s1) in
Eq. 48. Remarkably, this just yields Eq. 48 again. So the same algebraic curve
describes the entire boundary of the admissible s–region. If we let Q(s1, s2) denote
the left side of Eq. 48, then the admissible s–region is described by

Q(s1, s2) > 0, (49)

since (s1, s2) = (1, 1) belongs to the region and satisfies Eq. 49. This region is shown
in Figs. 6 and 7.

Another way of looking at it is that we should consider the cone in the positive
octant in R

3 of all values (s0, s1, s2) that arise, without the normalization s0 = 1. Then
the admissible s–region is the intersection of the cone with the plane s0 = 1. To get
the equation for the cone we just have to homogenize Eq. 48. We obtain

2s2
0s2

1s2
2 − (

s3
1s3

2 − s3
0s3

1 + s3
0s3

2

)
+ (

s0s2
1s3

2 + s0s3
1s2

2 + s2
0s1s3

2 + s2
0s3

1s2 + s3
0s1s2

2 + s3
0s2

1s2
)

> 0. (50)

In terms of the elementary symmetric polynomials e1, e2, e3 (in the variables
s0, s1, s2) this may be written

4e1e2e3 − e3
2 − 4e2

3 > 0. (51)
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Fig. 6 The admissible
s-region, bounded by three
branches of the curve Eq. 48

4 The Case of Two Twists

In this section we briefly discuss self–similar energies with respect to the IFS
{F0, F̃1, F̃2}. Note that we use exactly two twists, rather than three. As mentioned in
Section 2, the results of [18] imply the following: for any positive projective weights
(r0, r1, r2) there exists a unique positive λ′ such that for the weights (λ′)−1(r0, r1, r2) =

Fig. 7 The same region as in
Fig. 6, but on a logarithmic
scale (log s1, log s2)
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(r′
0, r′

1, r′
2) there is a unique (up to a constant multiple) nondegenerate energy E ′

satisfying

E ′(u) = (
r′

0

)−1 E ′(u ◦ F0) + (
r′

1

)−1 E ′ (u ◦ F̃1
) + (

r′
2

)−1 E ′ (u ◦ F̃2
)
, (52)

and

0 < r′
i < 1 for i = 0, 1, 2. (53)

We would also like to have an explicit formula in this case.
If we follow the argument in the proof of Theorem 2.1 we obtain a slightly

different set of equations. In Fig. 3 we have to interchange the conductances s1 and
s2 at the top of the hexagon. In place of Eqs. 18, 19, and 20 we obtain

� + (s1 + r1s2)(s2 + s1r2) = λ′� (54)

r1s1� + (r1 + r2)(s1 + r1s2) = λ′s1� (55)

r2s2� + (r1 + r2)(s2 + r2s1) = λ′s2�, (56)

where � is still given by Eq. 17. We let Eq. 54 define λ′, and then substitute into Eqs.
55 and 56 to obtain

r1s1� + (r1 + r2)(s1 + r1s2) = s1� + s1(s1 + r1s2)(s2 + r2s1) (57)

r2s2� + (r1 + r2)(s2 + r2s1) = s2� + s2(s1 + r1s2)(s2 + r2s1), (58)

in place of Eqs. 21 and 22. However, we have not been able to solve this system
explicitly, as neither Eq. 57 nor Eq. 58 is linear in either s–variable.

Instead, we have solved the system Eqs. 57 and 58 numerically for many choices
of the r–variables. We further computed λ′ and the admissible weights

(
r′

0, r′
1, r′

2

)
for

this problem. A graph of this surface is shown in Fig. 8. This is the analog of Fig. 5.
See the website www.math.cornell.edu/∼cucuringum for details.

We note that in the case that r1 = r2, the problem is symmetric and the two-
twist and three-twist problems are equivalent, so the s-values are the same and
λ′ = λ. In general, we do not expect that the solutions of the two problems will be
identical. Similar reasoning shows that, in the symmetric case r1 = r2, the one-twist
IFS

{
F̃0, F1, F2

}
and the zero-twist IFS {F0, F1, F2} yield identical problems. Since it

is known that the zero-twist IFS does not allow solutions for r1 = r2 ≤ 2
3 , we conclude

that the analog of Theorem 2.1 does not hold for the one-twist IFS.
We also note that the geometric problem discussed at the end of the introduction

also has a solution for any acute triangle if we require exactly two of the similarities to
be orientation reversing. In this case the only change in Fig. 1 is that the top triangle
is reflected, so the equations become

r1 sin α2 + r2 sin α1 = sin α0

r0 sin α1 + r2 sin α0 = sin α1

r0 sin α2 + r1 sin α0 = sin α2,

http://www.math.cornell.edu/~cucuringum
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Fig. 8 A graph of the surface
of admissible weights
(r′

0, r′
1, r′

2)

and the unique solution is

r0 = sin2 α1 + sin2 α2 − sin2 α0

sin2 α1 + sin2 α2

r1 = sin α0 sin α2

sin2 α1 + sin2 α2

r2 = sin α0 sin α2

sin2 α1 + sin2 α2
.
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