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Outlook

I inferring meaningful spatial and structural information from
incomplete data sets of pairwise interactions between
nodes in a network

I the way people interact in many aspects of everyday life
often reflect surprisingly well geopolitical boundaries

I inhomogeneity of connections in networks leads to natural
divisions, and identifying such divisions can provide
valuable insight into how interactions in a network are
influenced by its topology

I finding network communities (groups of tightly connected
nodes) has been extensively studied in recent years

Real-world network:
I a county-to-county migration network constructed from

1995-2000 US Census data
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Diffusion maps

I diffusion maps were introduced in S. Lafon’s Ph.D. Thesis
in 2004 as a dimensionality reduction tool

I connected data analysis and clustering techniques based
on eigenvectors of similarity matrices with the geometric
structure of non-linear manifolds

I in recent years, diffusion maps have gained a lot of
popularity

I often called Laplacian eigenmaps, these manifold learning
techniques identify significant variables that live in a lower
dimensional space, while preserving the local proximity
between data points
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Laplacian Eigenmaps
I consider a set of N points V = {x1, x2, . . . , xN} in an

n-dimensional space Rn

I each point (typically) characterizes an image (or an audio
stream, text string, etc.)

I if two images xi and xj are similar, then ||xi − xj || is small
I a popular measure of similarity between points in Rn is

defined using the Gaussian kernel

wij = e−||xi−xj ||2/ε

so that the closer xi is from xj , the larger wij
I the matrix W = (wij)1≤i,j≤N is symmetric and has positive

coefficients
I to normalize W , we define the diagonal matrix D, with

Dii =
∑N

j=1 wij and define L by

L = D−1W

such that every row of L sums to 1.
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Laplacian Eigenmaps
I define the symmetric matrix S = D−1/2WD−1/2

I note S is similar to L, since one can write

S = D1/2D−1 WD−1/2 = D1/2LD−1/2

I as a symmetric matrix, S has an orthogonal basis of
eigenvectors v0, v1, . . . , vN−1, and N real eigenvalues
1 = λ0 ≥ λ1 ≥ . . . ≥ λN−1

I If we decompose S as

S = V ΛV T

with
VV T = V T V = I

Λ = Diag(λ0, λ1, . . . , λN−1)

then L becomes
L = ΨΛΦT

where Ψ = D−1/2V and Φ = D1/2V .
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Laplacian Eigenmaps
I L is a row-stochastic matrix, λ0 = 1 and
ψ0 = (1,1, . . . ,1)T , we disregard this trivial pair

I interpret L as a random walk matrix on a weighted graph
G = (V ,E ,W ), where the set of nodes consists of the
points xi , and there is an edge between nodes i and j if
and ony if wij > 0

I Lij denotes the transition probability from point xi to xj in
one step time ∆t = ε

Pr{x(t + ε) = xj |x(t) = xi} = Lij .

wij = e−||xi−xj ||2/ε

I ε is the squared radius of the neighborhood used to infer
local geometric and density information

I wij is O(1) when xi and xj are in a ball of radius
√
ε, but it is

exponentially small for points that are more than
√
ε apart

I ε represents the discrete time step at which the random
walk jumps from one point to another
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Laplacian Eigenmaps

I Interpreting the eigenvectors as functions over our data
set, the diffusion map (also called Laplacian eigenmap)
maps points from the original space to the first k
eigenvectors, L : V 7→ Rk , is defined as

Lt (xj) = (λt
1ψ1(j), λt

2ψ2(j), . . . , λt
kψk (j)) (1)



8

I using the left and right eigenvectors of L

Lij =
N−1∑
r=0

λrφr (i)ψr (j)

I note that Lt
ij =

∑N−1
r=0 λt

rφr (i)ψr (j)
I the probability distribution of a random walk landing at

location xj after exactly t steps, starting at xi

Lt
ij = Pr{x(t) = xj |x(0) = xi}

I given the random walk interpretation, quantify the similarity
between two points according to the evolution of their
probability distributions

D2
t (i , j) =

N∑
k=1

(Lt
ik − Lt

jk )2 1
dk
,

where the weight 1
dk

takes into account the empirical local
density of the points by giving larger weight to the vertices
of lower degree. Dt (i , j) is the diffusion distance at time t .
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Diffusion Maps

I a matter of choice to tune the parameter t corresponding to
the number of time steps of the random walk (used t = 1)

I using different values of t corresponds to rescaling the axis
I the Euclidean distance between two points in the diffusion

map space introduced in (1) is given by

||L(xi)− L(xj)||2 =
N−1∑
r=1

(
λt

rψr (i)− λt
rψr (j)

)2
. (2)

I Nadler et al. (2005) have shown that the expression (2)
equals the diffusion distance D2

t (i , j), when k = N − 1
(when using N − 1 eigenvectors)

I for ease of visualization, use the top k = 2 eigenvectors for
the projections
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Diffusion distance vs Euclidean distance
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Limitations of the Euclidean distance

Figure: Euclidean distance may not be relevant to properly
understand the distance (or similarity) between two points.

Is C is more similar to point B or to point A?
I (left) the natural answer is: C is more similar to B.
I (right) less obvious given the other observed data points...

C should be more similar to A. Need a new metric for
which C and A are closer than C and B given the geometry
of the observed data.
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Eigenvector colourings
I denote by Ck the colouring of the N data points given by

the eigenvector ψk

I colour of point xi ∈ V is given by the i-th entry in ψk , i.e.

Ck (xi) = ψk (i), for all k = 0, . . . ,N − 1 and i = 1, . . . ,N.

I Ck : eigenvector colouring of order k
I do not confuse with the “graph colouring” terminology
I colourbar: red denotes high values and blue denotes low

values, in the eigenvector entries
I in practice, only the first k eigenvectors are used in the

diffusion map introduced in (1), with k << N − 1 chosen
such that λt

1 ≥ λt
2 . . . ≥ λt

k > δ but λt
k+1 < δ, where δ is a

chosen tolerance
I show how one can extract relevant information from

eigenvectors of much lower order
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Eigenvector localization

I The phenomenon of eigenvector localization occurs when
most of the components of an eigenvector are zero or
close to zero, and almost all the mass is localized on a
relatively small subset of nodes.

I On the contrary, delocalized eigenvectors have most of
their components small and of roughly the same
magnitude.
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2000 US Census data set
I reports the number of people that migrated from every

county to every other county within US during 1995-2000
I M = (Mij)1≤i,j≤N the total number of people that migrated

between county i and county j (so Mij = Mji )
I N = 3107 denotes the number of counties in mainland US
I let Pi denote the population of county i
I different similarity measures

W (1)
ij =

M2
ij

PiPj
; W (2)

ij =
Mij

Pi + Pj
; W (3)

ij = 5500
Mij

PiPj

I Midwest gets placed closer to the west coast, but further
from the east coast

I colourings based on latitude reveal the north-south
separation

I W (1) does a better job at separating the east and west
coasts, while W (2) highlights best the separation between
north and south



15

Colored by longitude
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Figure: Diffusion map reconstructions from the top two eigenvectors,
for various similarities, with nodes colored by longitude
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Figure: Diffusion map reconstructions from the top two eigenvectors,
for various similarities, with nodes colored by longitude
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Spectrum
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Figure: Histogram of the top 500 eigenvalues of matrix L for different
similarities.
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Figure: Eigenvector colourings for the similarity matrix Wij =
M2

ij
Pi Pj

.
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Figure: Further eigenvector colourings for the similarity matrix

Wij =
M2

ij
Pi Pj

.



20

−0.03 −0.02 −0.01 0 0.01 0.02 0.03
0

20

40

60

80

(a) φ1

−0.08−0.06−0.04−0.02 0 0.02 0.04
0

50

100

150

200

250

300

(b) φ7

−0.05 0 0.05 0.1
0

50

100

150

200

250

300

(c) φ28

−0.1 −0.05 0 0.05
0

200

400

600

800

(d) φ83

Figure: Histogram of eigenvectors φ1, φ7, φ28, φ83 of L = D−1W (1)

I φ1 provides a meaningful partitioning that separates the East from the
Midwest; entries in [−0.03, 0.03] with few entries of zero magnitude.

I however, eigenvectors φ7, φ28 and φ83 are localized, i.e. they have their
larger entries localized on a specific subregion of the US map
(highlighted in blue or red in the eigenvector colorings), while taking
small values in magnitude on the rest of the domain.
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The graph partitioning problem (GPP)
I Investigate the connection of such geographically cohesive

coloured subgraphs with the (GPP)
I In general, the GPP seeks to decompose a graph into K

disjoint subgraphs (clusters), while minimizing the sum of
the weights of the “cut” edges, i.e., edges with endpoints in
different clusters

I Given the number of clusters K , the Weighted-Min-Cut
problem is an optimization problem that computes a
partition P1, . . . ,PK of the vertex set, by minimizing the
weights of the cut edges

Weighted Cut(P1, . . . ,Pk ) =
k∑

i=1

Ew (Pi ,Pi), (3)

where Ew (X ,Y ) =
∑

i∈X ,j∈Y Wij , and X denotes the
complement of X .
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Spectral clustering
I extensive literature survey on spectral clustering

algorithms: Von Luxburg, Ulrike. ”A tutorial on spectral
clustering.” Statistics and computing 17.4 (2007): 395-416

https://arxiv.org/abs/0711.0189
I & the popular spectral relaxation introduced by Shi and

Malik (early 2000s)
I When dividing a graph into two smaller subgraphs, one

wishes to minimize the sum of the weights on the edges
across two different subgraphs, and simultaneously,
maximize the sum of the weights on the edges within the
subgraphs.

I Alternatively, one tries to maximize the ratio between the
latter quantity and the former, i.e., between the weights of
the inside edges and the weights of the outside edges.

I We regard the US states as the clusters, and investigate
the possibility that the isolated coloured regions that
emerge correspond to local cuts in the weighted graph

https://arxiv.org/abs/0711.0189
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Clustering

I denote by S the matrix of size N × N (N = 49 the number
of mainland US states) that aggregates the similarities
between counties at the level of states

I if state i has k counties with indices x1, . . . , xk , and state j
has l counties with indices y1, . . . , yl , then we consider the
k × l submatrix

W̃i,j = W{x1,...,xk},{y1,...,yl} (4)

and denote by Sij the sum of the kl entries in W̃i,j

I heatmap shows the components of the matrix S on a
logarithmic scale, where the intensity of entry (i , j) denotes
the aggregated similarity between states i and j
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Cluster-Cluster Meta Adjacency Matrix
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. . . . .

.

.

S51 S52 S53 S54 S55

Cluster 1
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Cluster 3

Cluster 4

Cluster 5

Cluste
r 1

Cluste
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Cluste
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Cluste
r 4

Cluste
r 5

S:=
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I Sii is “inside degree” of state i , d in
i = Sii , which measures

the internal similarity between the counties of state i
I denote by dout

i =
∑N

u=1,u 6=i Si,u (i.e., the sum of the
non-diagonal elements in row i) the “outside degree” of
node i , which measures the similarity/migration between
the counties of state i and all other counties outside of
state i

I denote by d ratio
i =

d in
i

dout
i

, the “ratio degree” of node i which
straddles the boundary between intra-state and inter-state
migration

I a large ratio degree is a good indicative that a state is very
well connected internally, and has little connectivity with the
outside world, and thus is a good candidate for a cluster.

I the Table ranks the top 15 states within the US in terms of
their ratio degree.



26

 

 VA
MI

GA
IN
TX
ME
NY
MO
CO
LA

MS
CA
OH
WI
NC
KY
SC
FL
NJ
IL

NE
PA
SD
MT
RI
AL
CT
OK
UT
MN

IA
KS
AR
TN
MA
OR
WV
MD
WA

ID
VT
NM
ND
NV
AZ
NH
DE
DC
WY

−8

−7

−6

−5

−4

−3

−2

−1

Figure: Heatmap of the inter-state migration flows. Rows (and
columns) are sorted by the ratio degrees of the states. The intensity
of entry (i , j) denotes, on a logarithmic scale, the similarity between
states i and j , i.e., the sum of all entries in the submatrix W̃i,j
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rank state ratio degree
1. VA 26.7
2. MI 20.4
3. GA 19.9
4. IN 19.7
5. TX 19.0
6. ME 18.9
7. NY 18.7
8. MO 18.5
9. CO 17.1
10. LA 16.6
11. MS 16.1
12. CA 15.7
13. OH 15.6
14. WI 14.5

Table: Top 15 states within the US, ordered by ratio degree.
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Figure: Top three eigenvectors correspond to global cuts between
various coasts within the US. The only state that stands out
individually is Michigan (MI) for k = 3, which has rank 2.
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Eigenvector colorings vs Ratio Degree

k = 7

I k = 4: the largest entries correspond to counties in Virginia
(VA) which is also ranked 1st

I k = 5: Wisconsin (WI) ranked 14
I k = 6: the states coloured in dark red and dark blue are

Georgia (GA) with rank 3, and Missouri (MO) of rank 8
I k = 7: Michigan (MI), of rank 2, stands out as the only dark

blue coloured state.


