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Vector Diffusion Maps
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Recall: Diffusion Maps
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consider a set of N points V = {xy, X2, ..., xy} inan
p-dimensional space RP

each point (typically) characterizes an image (or an audio stream,
text string, etc.)

if two images x; and x; are similar, then ||x; — x;|| is small

a popular measure of similarity between points in RP is defined
using the Gaussian kernel

wj = e~ Ii—xlP/e (i) e E

so that the closer x; is from x;, the larger w;;

the matrix W = (wj)1<; j<n is symmetric and has positive
coefficients

to normalize W, we define the diagonal matrix D, with

Dj = Y-, w; and define L by

L=D"'w

such that every row of L sums to 1.



Diffusion Maps
» interpre the eigenvectors as functions over our data set
» the diffusion map maps points from the original space to the first k
eigenvectors of L (k << p), L: V — RX

Li(x) = (A1 (), Agv2(f). - - - Mvk(f) (1)

» the Euclidean distance in the diffusion map space
N—1

1£0x6) = L0 =3 (Mabr(i) — A () 2)

r=1
» can be shown to equal the diffusion distance D2(i, j)
Ljj = Pr{x(t) = x|x(0) = x;}

» quantify the similarity between two points according to the
evolution of their probability distributions
N

. 1
DR(LI) = > (Lh ~ L 5
k=1
» Dy(i,j) is the diffusion distance at time t



Vector Diffusion Maps
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Vector Diffusion Maps (VDM) (Singer and Wu, 2011)

> relationships between data points are represented as a weighted
graph

> weights wj; describe the affinities between data points

» together with linear orthogonal transformations Oy

» the additional information captured by the orthogonal matrices O
can be exploited in such a way that the final low-dimensional
representation of the graph is

> significantly more robust to noise
> extremely effective in discovering the structure of the underlying
manifold

» the orthogonal matrices Oj are obtained via a 2-step procedure
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A. Singer, H.-T. Wu, “Vector Diffusion Maps and the Connection Laplacian”, Communications on Pure and Applied Mathematics,
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65 (8), pp. 1067—1144 (2012)
» symmetric matrix S (n x n blocks, each of size d x d)

S w;O; if (f,j) eE
S(””‘{ Ouna if (1)) & E. ®

» build the graph Connection Laplacian
L=D7'S



Vector Diffusion Maps (VDM) (Singer & Wu)
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Step 1: perform local Principal Component Analysis

gives an approximation for the orthonormal basis O; for the
tangent space of the manifold at point x;

the matrix O; is a p x d matrix with orthonormal columns
O,-TO,- = Iy« 4, Where d is the ambient space dimension

Step 2: perform a local alignment by solving
Oj = argmin o o) |0 — O] O},

which can be easily computed via SVD of O,-TO,-

perform the above two steps for each pair of points situated close
enough on the manifold

build the symmetric matrix

SN W,“O," if (i,j) cE
sin={ Goh ihee “

composed of n x n blocks, each of size d x d



7Vector Diffusion Maps (VDM) (Singer and Wu)

» build the graph Connection Laplacian

L=D's

» the vector diffusion mapping is defined as

Vi i (WA ), ve(0)) oy (5)

» the vector diffusion distance is given by
dipm(if) = (Ve(i), Vi(D)) + (Ve(i), V(i) — 2(Vi(i), Vii)
» VD mapping and distances can be well approximated by using

only the top eigenvalues and eigenvectors of the Connection
Laplacian D~'S

» use this embedding as a low-dimensional representation of our
given data

» adjust this framework depending on the target application



Anisotropic diffusion maps



8Anisotropic diffusion maps

» detect intrinsic slow variables in high-dimensional stochastic
chemical reaction networks. It combines:

» anisotropic diffusion maps (ADM): A. Singer, R. Erban, I. G.
Kevrekidis, and R. R. Coifman, PNAS (2009)

» with approximations based on the chemical Langevin equation
(CLE)

> ’without any a-priori knowledge of the the slow variable

M. Cucuringu and R. Erban, Detecting slow variables and their stationary distribution
in continuous time Markov chains and dynamic data via anisotropic diffusion maps,
SIAM Journal on Scientific Computing, 39(1), B76-B101, arXiv: 1504.01786



lllustrative example - system
» consider the following system
ki ks

k3
Xo = X1+ Xa, 0 X, X1+ X1 = Xa, (6)
ke K ks

» involving two molecular species X; and X
> reactions Ry, Ry, ..., Rs have the propensity functions

a1(t) = k1X2(t), Oég(t) == k2X1(t)X2(t)/V, 043(1') = k3 V,
aut) = kaXi(t),  as(t) = kOGO ag(t) = ke Xo(t)

» V denotes the system volume (we used V = 8)
with dimensionless parameters

ki =32, ko =0.04V; k3V = 1475; k4 = 19.75; ks = 10V; ks = 4000;

v

Rs, Rg occur on a much faster timescale than Ry, Ry, Rs, Ry
> S = X+ 2X; (invariant with respect to all fast reactions)
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lllustrative example - transition diagram
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Figure: Transition diagrams for a chemical system.

Here x denotes Xi, and y denotes X»

S = Xj + 2X5 (invariant with respect to all fast reactions)
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lllustrative example
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Figure: Left: transition diagram for a 2-dimensional chemical system (with two
molecular species) and reactions Ry, . .., Rs. Right: coloring of the nodes of
G (states of the observable space) according to their corresponding entry in
the top eigenvector ®4 of L.
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lllustrative example

Error = 0.0033892

Trajectory of ><1, X2, and S/3 = (X1 +2 ><2)/3

Il ADM-CLE
— exact solution
401X, X, — (X, +2X)/3 ‘
a3
8
330 :
o — 0.01
E2 e
k]
52
Qo
§ 15]
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Figure: Left: trajectories of the CS, showing the slow behavior of the variable
S = Xi + 2Xs in contrast to the fast behavior of variables X; and X.. Right:
the final estimated stationary distribution of the slow variable S, computed
without knowledge of the slow variable (blue histograms). Red solid lines
shows the exact solution.
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Fast and slow variables

» assume that s = s(xq1,x2) = X1 + 2x2 and f = f(xq, Xo) = xq are
the slowly and rapidly changing variables, respectively

» together they define a mapping g : (x1, x2) — (s, f)

» from the observable state variables x; and x» in the accessible
space O

> to the “dynamically meaningful” (but in more complicated examples
inaccessible) slow variable s and the fast accessible variable f,
both in space H

» in other words, g maps (x1, X2) — (X1 + 2x2, X1), and conversely
its inverse h:=g=': (s, f) = (f, 551).
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Contribution

1.

avoid local bursts of simulations at each point to estimate the local
covariances via (analytical) CLE approximation

. build a sparse ellipsoid-like neighborhood graph at each point in

the data set (leads to a sparse graph Laplacian) by exploiting the
spectrum of each local covariance matrix
> associate a state (i.e., node in the initial graph) to each possible
combination of pairs of states (x1, x2) (not feasible whenever the
range of the variables is large)
> avoid computing the similarity between all (3) pairs of points in the
domain

introduced an unsupervised spectral-based method for inferring
the slow variable

. proposed a Markov-based approach for estimating the stationary

distribution of the slow variable
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Covariance-dependent distance

» The X-dependent distance between two O-states is given by

1

d2 ((x1,x2)() (x1,x2)0)> <(x1,x2)() — (xy, x2)(1)> X

(it Fpan) (G120~ (1. 22)0) 7

(x1 ,Xz)(’

N

> represents a second order approximation of the Euclidean
distance in the inaccessible (s, 7f)-space

a2 [, %), (x1,x0) V] e (80— sV)2472(FD -2 (s —sV))? (8)
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Anisotropic diffusion maps

Wj = exp(~ R (x), x)/é2)

Random-walk Laplacian: L = D~'W
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Figure: Left: the local neighborhood graph at a node; its shape is an ellipsoid

whose axis ratio is given by the ratio of the eigenvalues of the covariance

matrix. Right: Eigenvector coloring of the nodes in the state space according
to their corresponding entry in the top eigenvector of the anisotropic diffusion

map.
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