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Vector Diffusion Maps

Anisotropic diffusion maps
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Recall: Diffusion Maps
I consider a set of N points V = {x1, x2, . . . , xN} in an

p-dimensional space Rp

I each point (typically) characterizes an image (or an audio stream,
text string, etc.)

I if two images xi and xj are similar, then ||xi − xj || is small
I a popular measure of similarity between points in Rp is defined

using the Gaussian kernel

wij = e−||xi−xj ||2/ε, (i , j) ∈ E

so that the closer xi is from xj , the larger wij
I the matrix W = (wij)1≤i,j≤N is symmetric and has positive

coefficients
I to normalize W , we define the diagonal matrix D, with

Dii =
∑N

j=1 wij and define L by

L = D−1W

such that every row of L sums to 1.
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Diffusion Maps
I interpre the eigenvectors as functions over our data set
I the diffusion map maps points from the original space to the first k

eigenvectors of L (k << p), L : V 7→ Rk

Lt (xj) = (λt
1ψ1(j), λt

2ψ2(j), . . . , λt
kψk (j)) (1)

I the Euclidean distance in the diffusion map space

||L(xi)− L(xj)||2 =
N−1∑
r=1

(
λt

rψr (i)− λt
rψr (j)

)2 (2)

I can be shown to equal the diffusion distance D2
t (i , j)

Lt
ij = Pr{x(t) = xj |x(0) = xi}

I quantify the similarity between two points according to the
evolution of their probability distributions

D2
t (i , j) =

N∑
k=1

(Lt
ik − Lt

jk )2 1
dk
,

I Dt (i , j) is the diffusion distance at time t
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Vector Diffusion Maps (VDM) (Singer and Wu, 2011)

I relationships between data points are represented as a weighted
graph

I weights wij describe the affinities between data points

I together with linear orthogonal transformations Oij

I the additional information captured by the orthogonal matrices Oij
can be exploited in such a way that the final low-dimensional
representation of the graph is
I significantly more robust to noise
I extremely effective in discovering the structure of the underlying

manifold

I the orthogonal matrices Oij are obtained via a 2-step procedure
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(a) (b)

A. Singer, H.-T. Wu, “Vector Diffusion Maps and the Connection Laplacian”, Communications on Pure and Applied Mathematics,

65 (8), pp. 1067–1144 (2012)

I symmetric matrix S (n × n blocks, each of size d × d)

S(i , j) =

{
wijOij if (i , j) ∈ E
0d×d if (i , j) /∈ E ,

(3)

I build the graph Connection Laplacian

L = D−1S
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Vector Diffusion Maps (VDM) (Singer & Wu)
I Step 1: perform local Principal Component Analysis
I gives an approximation for the orthonormal basis Oi for the

tangent space of the manifold at point xi

I the matrix Oi is a p × d matrix with orthonormal columns
OT

i Oi = Id×d , where d is the ambient space dimension
I Step 2: perform a local alignment by solving

Oij = argminO∈O(d)||O −OT
i Oj ||,

which can be easily computed via SVD of OT
i Oj

I perform the above two steps for each pair of points situated close
enough on the manifold

I build the symmetric matrix

S(i , j) =

{
wijOij if (i , j) ∈ E
0d×d if (i , j) /∈ E ,

(4)

composed of n × n blocks, each of size d × d
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Vector Diffusion Maps (VDM) (Singer and Wu)
I build the graph Connection Laplacian

L = D−1S

I the vector diffusion mapping is defined as

Vt : i 7→
(
(λlλr )t〈vl(i), vr (i)〉

)nd
l,r=1 , (5)

I the vector diffusion distance is given by
d2

VDM(i , j) = 〈Vt (i),Vt (i)〉+ 〈Vt (j),Vt (j)〉 − 2〈Vt (i),Vt (j)〉
I VD mapping and distances can be well approximated by using

only the top eigenvalues and eigenvectors of the Connection
Laplacian D−1S

I use this embedding as a low-dimensional representation of our
given data

I adjust this framework depending on the target application
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Anisotropic diffusion maps

I detect intrinsic slow variables in high-dimensional stochastic
chemical reaction networks. It combines:

I anisotropic diffusion maps (ADM): A. Singer, R. Erban, I. G.
Kevrekidis, and R. R. Coifman, PNAS (2009)

I with approximations based on the chemical Langevin equation
(CLE)

I without any a-priori knowledge of the the slow variable

M. Cucuringu and R. Erban, Detecting slow variables and their stationary distribution
in continuous time Markov chains and dynamic data via anisotropic diffusion maps,
SIAM Journal on Scientific Computing, 39(1), B76-B101, arXiv: 1504.01786
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Illustrative example - system
I consider the following system

X2

k1−→←−
k2

X1 + X2, ∅
k3−→←−
k4

X1, X1 + X1

k5−→←−
k6

X2, (6)

I involving two molecular species X1 and X2

I reactions R1,R2, . . . ,R6 have the propensity functions

α1(t) = k1X2(t), α2(t) = k2X1(t)X2(t)/V , α3(t) = k3V ,

α4(t) = k4X1(t), α5(t) = k5
X1(t)(X1(t)−1)

V , α6(t) = k6X2(t)

I V denotes the system volume (we used V = 8)
with dimensionless parameters

k1 = 32, k2 = 0.04V ; k3V = 1475; k4 = 19.75; k5 = 10V ; k6 = 4000;

I R5,R6 occur on a much faster timescale than R1,R2,R3,R4

I S = X1 + 2X2 (invariant with respect to all fast reactions)
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Illustrative example - transition diagram
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Figure: Transition diagrams for a chemical system.

Here x denotes X1, and y denotes X2

S = X1 + 2X2 (invariant with respect to all fast reactions)
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Illustrative example
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Figure: Left: transition diagram for a 2-dimensional chemical system (with two
molecular species) and reactions R1, . . . ,R6. Right: coloring of the nodes of
G (states of the observable space) according to their corresponding entry in
the top eigenvector Φ1 of L.
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Illustrative example
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Figure: Left: trajectories of the CS, showing the slow behavior of the variable
S = X1 + 2X2 in contrast to the fast behavior of variables X1 and X2. Right:
the final estimated stationary distribution of the slow variable S, computed
without knowledge of the slow variable (blue histograms). Red solid lines
shows the exact solution.
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Fast and slow variables

I assume that s = s(x1, x2) = x1 + 2x2 and f = f (x1, x2) = x1 are
the slowly and rapidly changing variables, respectively

I together they define a mapping g : (x1, x2) 7→ (s, f )

I from the observable state variables x1 and x2 in the accessible
space O

I to the “dynamically meaningful” (but in more complicated examples
inaccessible) slow variable s and the fast accessible variable f ,
both in space H

I in other words, g maps (x1, x2) 7→ (x1 + 2x2, x1), and conversely
its inverse h := g−1 : (s, f ) 7→ (f , s−f

2 ).
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Contribution

1. avoid local bursts of simulations at each point to estimate the local
covariances via (analytical) CLE approximation

2. build a sparse ellipsoid-like neighborhood graph at each point in
the data set (leads to a sparse graph Laplacian) by exploiting the
spectrum of each local covariance matrix
I associate a state (i.e., node in the initial graph) to each possible

combination of pairs of states (x1, x2) (not feasible whenever the
range of the variables is large)

I avoid computing the similarity between all
(n

2

)
pairs of points in the

domain

3. introduced an unsupervised spectral-based method for inferring
the slow variable

4. proposed a Markov-based approach for estimating the stationary
distribution of the slow variable
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Covariance-dependent distance

I The Σ-dependent distance between two O-states is given by

d2
Σ

(
(x1, x2)(i), (x1, x2)(j)

)
=

1
2

(
(x1, x2)(i) − (x1, x2)(j)

)
×(

Σ−1
(x1,x2)(i) + Σ−1

(x1,x2)(j)

) (
(x1, x2)(i) − (x1, x2)(j))T

(7)

I represents a second order approximation of the Euclidean
distance in the inaccessible (s, τ f )-space

d2
Σ[(x1, x2)(i), (x1, x2)(j)] ≈ (s(i)−s(j))2+τ2(f (i)−f (j))2 ≈ (s(i)−s(j))2 (8)
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Anisotropic diffusion maps

Wij = exp(−d2
Σ(x (i), x (j))/ε2) (9)

Random-walk Laplacian: L = D−1W
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(a) Local neighborhood graph
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(b) Top eigenvector of the ADM

Figure: Left: the local neighborhood graph at a node; its shape is an ellipsoid
whose axis ratio is given by the ratio of the eigenvalues of the covariance
matrix. Right: Eigenvector coloring of the nodes in the state space according
to their corresponding entry in the top eigenvector of the anisotropic diffusion
map.
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