

Lecture: Vector Diffusion Maps & Anisotropic Diffusion Maps

Foundations of Data Science:
Algorithms and Mathematical Foundations

Mihai Cucuringu
mihai.cucuringu@stats.ox.ac.uk

CDT in Mathematics of Random System
University of Oxford

27 September, 2023

Vector Diffusion Maps

Anisotropic diffusion maps

Recall: Diffusion Maps

- ▶ consider a set of N points $V = \{x_1, x_2, \dots, x_N\}$ in an p -dimensional space \mathbb{R}^p
- ▶ each point (typically) characterizes an image (or an audio stream, text string, etc.)
- ▶ if two images x_i and x_j are similar, then $\|x_i - x_j\|$ is small
- ▶ a popular measure of similarity between points in \mathbb{R}^p is defined using the Gaussian kernel

$$w_{ij} = e^{-\|x_i - x_j\|^2/\epsilon}, \quad (i, j) \in E$$

so that the closer x_i is from x_j , the larger w_{ij}

- ▶ the matrix $W = (w_{ij})_{1 \leq i, j \leq N}$ is symmetric and has positive coefficients
- ▶ to normalize W , we define the diagonal matrix D , with $D_{ii} = \sum_{j=1}^N w_{ij}$ and define L by

$$L = D^{-1} W$$

such that every row of L sums to 1.

Diffusion Maps

- ▶ interpre the eigenvectors as functions over our data set
- ▶ the *diffusion map* maps points from the original space to the **first k eigenvectors of L** ($k \ll p$), $\mathcal{L} : V \mapsto \mathbb{R}^k$

$$\mathcal{L}_t(x_j) = (\lambda_1^t \psi_1(j), \lambda_2^t \psi_2(j), \dots, \lambda_k^t \psi_k(j)) \quad (1)$$

- ▶ the Euclidean distance in the diffusion map space

$$\|\mathcal{L}(x_i) - \mathcal{L}(x_j)\|^2 = \sum_{r=1}^{N-1} (\lambda_r^t \psi_r(i) - \lambda_r^t \psi_r(j))^2 \quad (2)$$

- ▶ can be shown to equal the diffusion distance $D_t^2(i, j)$

$$L_{ij}^t = \Pr\{x(t) = x_j | x(0) = x_i\}$$

- ▶ quantify the similarity between two points according to the evolution of their probability distributions

$$D_t^2(i, j) = \sum_{k=1}^N (L_{ik}^t - L_{jk}^t)^2 \frac{1}{d_k},$$

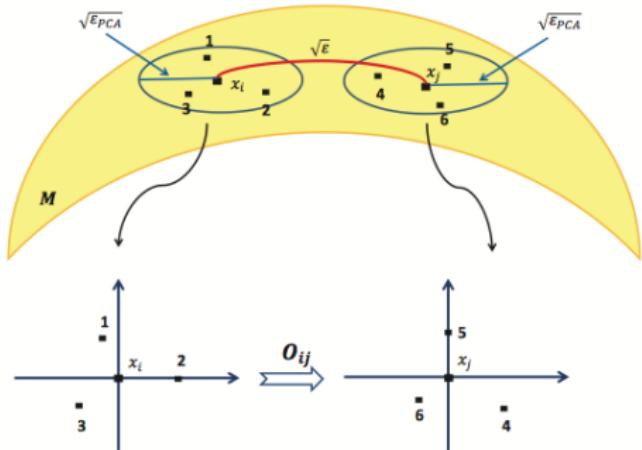
- ▶ $D_t(i, j)$ is the *diffusion distance* at time t

Vector Diffusion Maps

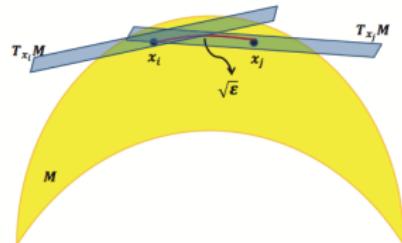
Anisotropic diffusion maps

Vector Diffusion Maps (VDM) (Singer and Wu, 2011)

- ▶ relationships between data points are represented as a weighted graph
- ▶ weights w_{ij} describe the affinities between data points
- ▶ together with **linear orthogonal transformations** O_{ij}
- ▶ the additional information captured by the orthogonal matrices O_{ij} can be exploited in such a way that the final low-dimensional representation of the graph is
 - ▶ significantly more robust to noise
 - ▶ extremely effective in discovering the structure of the underlying manifold
- ▶ the orthogonal matrices O_{ij} are obtained via a 2-step procedure



(a)



(b)

A. Singer, H.-T. Wu, "Vector Diffusion Maps and the Connection Laplacian", Communications on Pure and Applied Mathematics, 65 (8), pp. 1067–1144 (2012)

- ▶ symmetric matrix S ($n \times n$ blocks, each of size $d \times d$)

$$S(i, j) = \begin{cases} w_{ij} O_{ij} & \text{if } (i, j) \in E \\ 0_{d \times d} & \text{if } (i, j) \notin E, \end{cases} \quad (3)$$

- ▶ build the **graph Connection Laplacian**

$$L = D^{-1} S$$

Vector Diffusion Maps (VDM) (Singer & Wu)

- ▶ Step 1: perform **local Principal Component Analysis**
- ▶ gives an approximation for the orthonormal basis O_i for the tangent space of the manifold at point x_i
- ▶ the matrix O_i is a $p \times d$ matrix with orthonormal columns $O_i^T O_i = I_{d \times d}$, where d is the ambient space dimension
- ▶ Step 2: perform a **local alignment** by solving

$$O_{ij} = \operatorname{argmin}_{O \in O(d)} \|O - O_i^T O_j\|,$$

which can be easily computed via SVD of $O_i^T O_j$

- ▶ perform the above two steps for each pair of points situated close enough on the manifold
- ▶ build the symmetric matrix

$$S(i, j) = \begin{cases} w_{ij} O_{ij} & \text{if } (i, j) \in E \\ 0_{d \times d} & \text{if } (i, j) \notin E, \end{cases} \quad (4)$$

composed of $n \times n$ blocks, each of size $d \times d$

Vector Diffusion Maps (VDM) (Singer and Wu)

- ▶ build the **graph Connection Laplacian**

$$L = D^{-1}S$$

- ▶ the **vector diffusion mapping** is defined as

$$V_t : i \mapsto ((\lambda_l \lambda_r)^t \langle v_l(i), v_r(i) \rangle)_{l,r=1}^{nd}, \quad (5)$$

- ▶ the vector diffusion distance is given by

$$d_{VDM}^2(i, j) = \langle V_t(i), V_t(i) \rangle + \langle V_t(j), V_t(j) \rangle - 2 \langle V_t(i), V_t(j) \rangle$$
- ▶ VD mapping and distances can be well approximated by using only the top eigenvalues and eigenvectors of the Connection Laplacian $D^{-1}S$
- ▶ use this embedding as a low-dimensional representation of our given data
- ▶ adjust this framework depending on the target application

Vector Diffusion Maps

Anisotropic diffusion maps

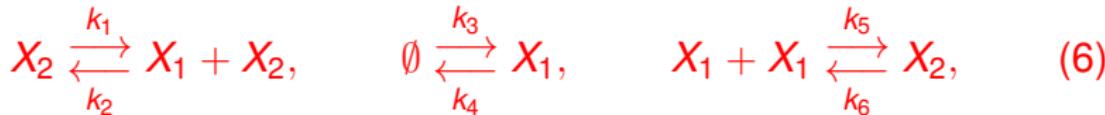
Anisotropic diffusion maps

- ▶ detect intrinsic slow variables in high-dimensional stochastic chemical reaction networks. It combines:
- ▶ **anisotropic diffusion maps** (ADM): A. Singer, R. Erban, I. G. Kevrekidis, and R. R. Coifman, PNAS (2009)
- ▶ with **approximations based on the chemical Langevin equation (CLE)**
- ▶ **without any a-priori knowledge of the the slow variable**

M. Cucuringu and R. Erban, *Detecting slow variables and their stationary distribution in continuous time Markov chains and dynamic data via anisotropic diffusion maps*, SIAM Journal on Scientific Computing, 39(1), B76-B101, arXiv: 1504.01786

Illustrative example - system

- consider the following system



- involving two molecular species X_1 and X_2
- reactions R_1, R_2, \dots, R_6 have the propensity functions

$$\begin{array}{lll}
 \alpha_1(t) = k_1 X_2(t), & \alpha_2(t) = k_2 X_1(t)X_2(t)/V, & \alpha_3(t) = k_3 V, \\
 \alpha_4(t) = k_4 X_1(t), & \alpha_5(t) = k_5 \frac{X_1(t)(X_1(t)-1)}{V}, & \alpha_6(t) = k_6 X_2(t)
 \end{array}$$

- V denotes the system volume (we used $V = 8$) with dimensionless parameters

$$k_1 = 32, \quad k_2 = 0.04V; \quad k_3 V = 1475; \quad k_4 = 19.75; \quad k_5 = 10V; \quad k_6 = 4000;$$

- R_5, R_6 occur on a much faster timescale than R_1, R_2, R_3, R_4
- $S = X_1 + 2X_2$ (invariant with respect to all fast reactions)

Illustrative example - transition diagram

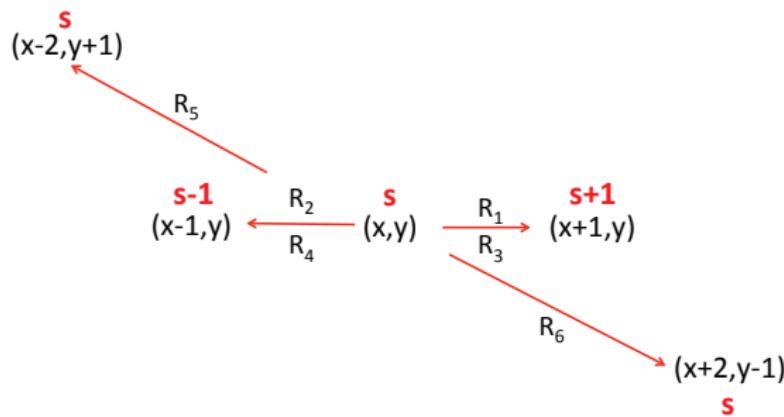
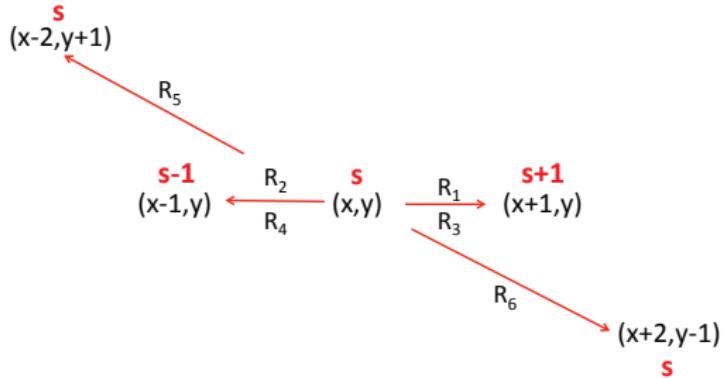


Figure: Transition diagrams for a chemical system.

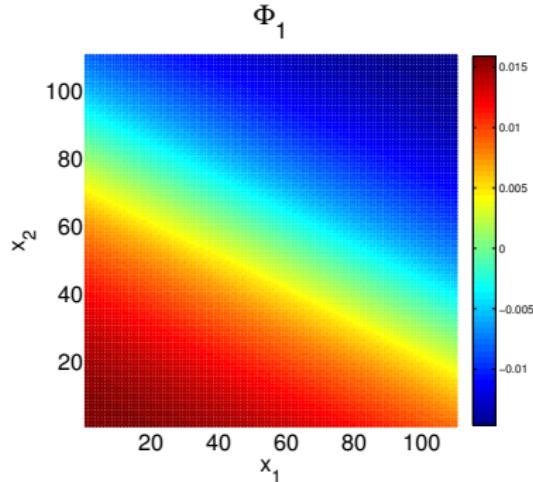
Here x denotes X_1 , and y denotes X_2

$S = X_1 + 2X_2$ (invariant with respect to all fast reactions)

Illustrative example



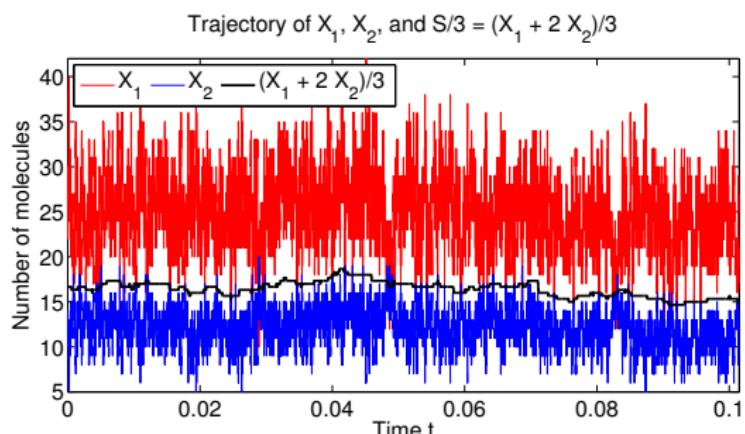
(a)



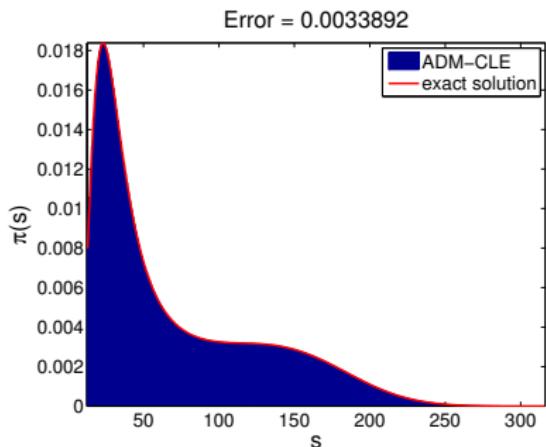
(b)

Figure: Left: transition diagram for a 2-dimensional chemical system (with two molecular species) and reactions R_1, \dots, R_6 . Right: coloring of the nodes of G (states of the observable space) according to their corresponding entry in the top eigenvector Φ_1 of L .

Illustrative example



(a)



(b)

Figure: Left: trajectories of the CS, showing the slow behavior of the variable $S = X_1 + 2X_2$ in contrast to the fast behavior of variables X_1 and X_2 . Right: the final estimated stationary distribution of the slow variable S , computed without knowledge of the slow variable (blue histograms). Red solid lines shows the exact solution.

Fast and slow variables

- ▶ assume that $s = s(x_1, x_2) = x_1 + 2x_2$ and $f = f(x_1, x_2) = x_1$ are the **slowly** and **rapidly changing** variables, respectively
- ▶ together they define a mapping $g : (x_1, x_2) \mapsto (s, f)$
 - ▶ from the observable state variables x_1 and x_2 in the **accessible** space \mathcal{O}
 - ▶ to the “dynamically meaningful” (but in more complicated examples **inaccessible**) slow variable s and the fast accessible variable f , both in space \mathcal{H}
- ▶ in other words, g maps $(x_1, x_2) \mapsto (x_1 + 2x_2, x_1)$, and conversely its inverse $h := g^{-1} : (s, f) \mapsto (f, \frac{s-f}{2})$.

Contribution

1. avoid local bursts of simulations at each point to estimate the local covariances via (analytical) CLE approximation
2. build a sparse ellipsoid-like neighborhood graph at each point in the data set (leads to a sparse graph Laplacian) by exploiting the spectrum of each local covariance matrix
 - ▶ associate a state (i.e., node in the initial graph) to each possible combination of pairs of states (x_1, x_2) (not feasible whenever the range of the variables is large)
 - ▶ avoid computing the similarity between all $\binom{n}{2}$ pairs of points in the domain
3. introduced an unsupervised spectral-based method for inferring the slow variable
4. proposed a Markov-based approach for estimating the stationary distribution of the slow variable

Covariance-dependent distance

- The Σ -dependent distance between two \mathcal{O} -states is given by

$$d_{\Sigma}^2 \left((x_1, x_2)^{(i)}, (x_1, x_2)^{(j)} \right) = \frac{1}{2} \left((x_1, x_2)^{(i)} - (x_1, x_2)^{(j)} \right) \times \\ \left(\Sigma_{(x_1, x_2)^{(i)}}^{-1} + \Sigma_{(x_1, x_2)^{(j)}}^{-1} \right) \left((x_1, x_2)^{(i)} - (x_1, x_2)^{(j)} \right)^T \quad (7)$$

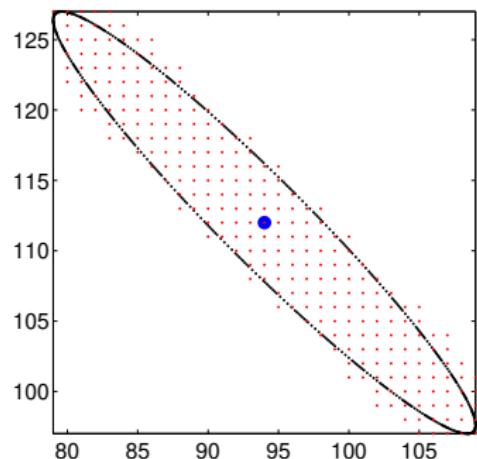
- represents a second order approximation of the Euclidean distance in the inaccessible $(s, \tau f)$ -space

$$d_{\Sigma}^2[(x_1, x_2)^{(i)}, (x_1, x_2)^{(j)}] \approx (s^{(i)} - s^{(j)})^2 + \tau^2 (f^{(i)} - f^{(j)})^2 \approx (s^{(i)} - s^{(j)})^2 \quad (8)$$

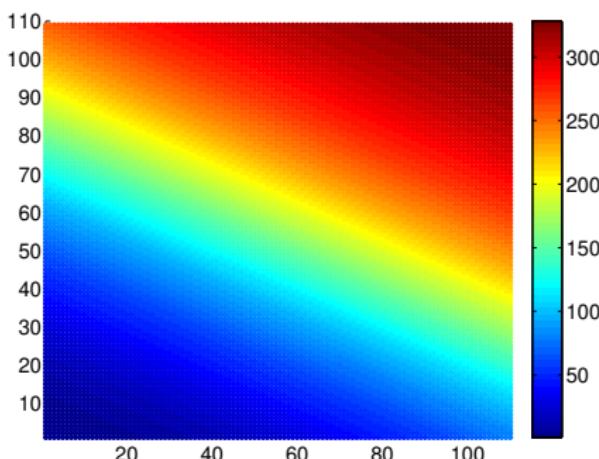
Anisotropic diffusion maps

$$W_{ij} = \exp(-d_{\Sigma}^2(x^{(i)}, x^{(j)})/\epsilon^2) \quad (9)$$

Random-walk Laplacian: $L = D^{-1}W$



(a) Local neighborhood graph



(b) Top eigenvector of the ADM

Figure: Left: the local neighborhood graph at a node; its shape is an ellipsoid whose axis ratio is given by the ratio of the eigenvalues of the covariance matrix. Right: Eigenvector coloring of the nodes in the state space according to their corresponding entry in the top eigenvector of the anisotropic diffusion map.