Overview

Ridge regression

LASSO
The Trade-Off Between Prediction Accuracy and Model Interpretability

- linear regression: fairly inflexible
- splines: considerably more flexible (can fit a much wider range of possible shapes to estimate f)

Inference:
- linear model: easy to understand the relationship between Y and X_1, X_2, \ldots, X_p

Very flexible approaches (splines, SVM, etc)
- can lead to such complicated estimates of f
- hard to understand how any individual predictor is associated with the response (less interpretable)

Example: LASSO
- less flexible
- linear model + sparsity of $[\beta_0, \beta_1, \ldots, \beta_p]$
- more interpretable; only a small subset of predictors matter
Figure: A representation of the trade-off between flexibility and interpretability, using different statistical learning methods. In general, as the flexibility of a method increases, its interpretability decreases.
R^2

- also called the coefficient of determination
- pronounced "R squared",
- gives the proportion of the variance in the dependent variable that is predictable from the independent variable/s

\[
R^2 = \frac{TSS - RSS}{TSS}
\]

where

\[
RSS = \sum_{i=1}^{n} \left(y_i - \beta_0 - \sum_{j=1}^{p} \beta_j x_{ij} \right)^2
\]

\[
TSS = \sum_i (y_i - \bar{y})^2
\]
Variable selection

Which predictors are associated with the response? (in order to fit a single model involving only those \(d \) predictors)

- Note: \(R^2 \) always increase as you add more variables to the model
- adjusted \(R^2 \):
 \[
 1 - \frac{\text{RSS}/(n-p-1)}{\text{TSS}/(n-1)} = 1 - (1 - R^2) \frac{n-1}{n-p-1}
 \]
- Mallow’s:
 \[
 C_p = \frac{1}{n} (\text{RSS} + 2p\hat{\sigma}^2)
 \]
- Akaike Information criterion AIC:
 \[
 \frac{1}{n\hat{\sigma}^2} (\text{RSS} + 2p\hat{\sigma}^2)
 \]

Cannot consider all \(2^p \) models...

- **Best Subset Selection**: fit a separate least squares regression for each possible \(k \)-combination of the \(p \) predictors, and select the best one
- **Forward selection**: start with the null model and keep adding predictors one by one
- **Backward selection**: start with all variables in the model, and remove the variable with the largest p-value
Prediction Accuracy

\[\text{MSE} = \mathbb{E}[(h(x^*) - \bar{h}(x^*))^2] + (f(x^*) - \bar{h}(x^*))^2 + \text{Var}[\epsilon], \]

\(x^* \): new data point, \(f \): ground truth, \(h \): our estimator

\[\text{MSE} = \text{Var}[h(x^*)] + \text{Bias}(h(x^*))^2 + \text{Var}[\epsilon] \]

- if true relationship is \(\approx \) linear, the OLS will have low bias
- if \(n >> p \): OLS also has low variance, and performs well on \(X_{test} \)
- if \(n \sim p \): OLS has high variability, leads to overfitting/poor predictions on \(X_{test} \)
- if \(n < p \): OLS estimate is no longer unique!

Today:

- by shrinking the estimated coefficients, we can often substantially reduce the variance at the cost of a negligible increase in bias
- can lead to substantial improvements in the accuracy with which we can predict the response for \(X_{test} \)
Model Interpretability

- some or most of the variables used in a multiple linear regression may not be associated with the response

- excluding them from the fit leads to a model that is more easily interpreted

Shrinkage/Regularization:

- by setting the corresponding coefficient estimates to zero — we can obtain a model that is more easily interpreted

- approach for automatically performing feature/variable selection and thus excluding irrelevant variables from a multiple regression model
Variable selection

- **Subset Selection**: identify a subset of p predictors that best relate to the response, and perform OLS on them.

- **Shrinkage/Regularization**: fit a model involving all p predictors, but the estimated coefficients are shrunken towards zero, or end up even equal to zero.

- **Dimensionality Reduction**: first project the p predictors into a d-dimensional subspace, with $d < p$. The d linear combinations, or projections are subsequently used as predictors in OLS (principal component regression PCR).
Shrinkage Methods

▶ fit a model containing all p predictors using a technique that constrains or regularizes the coefficient estimates, or equivalently, that shrinks the coefficient estimates towards zero

▶ shrinking the coefficient estimates can significantly reduce their variance

▶ the two best-known techniques for shrinking the regression coefficients towards zero are
 ▶ ridge regression
 ▶ lasso regression

See Section 6.2 in the ISLR textbook.
Regularization penalty

Idea: impose an ℓ_q penalty on the vector of beta coefficients, to promote shrinking them towards zero.

$q = 2$

Credit: Peter Gerstoft
Ridge Regression

Recall: OLS estimates $\beta_0, \beta_1, \ldots, \beta_p$ such that it minimizes

$$RSS = \sum_{i=1}^{n} \left(y_i - \beta_0 - \sum_{j=1}^{p} \beta_j x_{ij} \right)^2$$

Ridge regression shrinks β_1, \ldots, β_p towards zero. Given a response vector $y \in \mathbb{R}^n$ and a predictor matrix $X \in \mathbb{R}^{n \times p}$

$$\hat{\beta}^{(ridge)} = \arg \min_{\beta \in \mathbb{R}^p} \underbrace{RSS}_{\text{Loss}} + \lambda \underbrace{\sum_{j=1}^{p} \beta_j^2}_{\text{Penalty}}$$

$$= \arg \min_{\beta \in \mathbb{R}^p} \sum_{i=1}^{n} \left(y_i - \sum_{j=1}^{p} \beta_j x_{ij} \right)^2 + \lambda \sum_{j=1}^{p} \beta_j^2$$

$$= \arg \min_{\beta \in \mathbb{R}^p} \sum_{i=1}^{n} \left(y_i - x_i^T \beta \right)^2 + \lambda \sum_{j=1}^{p} \beta_j^2$$

$$= \arg \min_{\beta \in \mathbb{R}^p} \left\| y - X \beta \right\|_2^2 + \lambda \left\| \beta \right\|_2^2$$
\[
\hat{\beta}^{(\text{ridge})} = \arg \min_{\beta \in \mathbb{R}^p} \left(\| y - X\beta \|^2_2 + \lambda \| \beta \|^2_2 \right)
\]

Here \(\lambda \geq 0 \) is a tuning parameter

▶ controls the strength of the penalty term

▶ \(\lambda = 0 \) recovers the linear regression estimate

▶ \(\lambda = \infty \) leads to \(\hat{\beta}^{(\text{ridge})} = 0 \)

▶ \(\lambda \in (0, \infty) \) trades-off two ideas: fitting a linear model of \(y \) on \(X \) versus shrinking the coefficients
Experimental setup

Given fixed covariates $x_i \in \mathbb{R}^p, i = 1, \ldots, n$
We observe:

- $y_i = f(x_i) + \epsilon_i, i = 1, \ldots, n,$

- for a linear model $f(x_i) = x_i^T \beta$

- $\epsilon_i \in \mathbb{R}$

- $\mathbb{E}[\epsilon_i] = 0$

- $\text{Var}[\epsilon_i] = \sigma^2$

- $\text{Cov}(\epsilon_i, \epsilon_j) = 0$
Experimental setup

- $n = 50$, $p = 30$, and $\sigma^2 = 1$
- The true model is linear with
 - 10 large coefficients (between 0.5 and 1) and
 - 20 small ones (between 0 and 0.3)
- Histogram of true coefficients

Source: R. Tibshirani
Experimental setup

- $n = 50$, $p = 30$, and $\sigma^2 = 1$
- The true model is linear with
 - 10 large coefficients (between 0.5 and 1) and
 - 20 small ones (between 0 and 0.3)
- Histogram of true coefficients

- the linear regression fit yields:
 - Squared bias ≈ 0.006
 - Variance ≈ 0.627
 - Pred. error $\approx 1 + 0.006 + 0.627 \approx 1.633$
Improved prediction via shrinking

Squared bias
≈ 0.006
≈ 0.077

Variance
≈ 0.627
≈ 0.403

Pred. error
≈ 1 + 0.006 + 0.627
≈ 1 + 0.077 + 0.403
≈ 1.633
≈ 1.48
Ridge regression in R

The function \texttt{lm.ridge} in the package \texttt{MASS}:

\begin{itemize}
 \item \texttt{lambdas = seq(0,25,length = 100)}
 \item \texttt{aa = lm.ridge(y \sim x + 0, lambda = lambdas)}
 \item \texttt{b.ridge = coef(aa)}
 \item \texttt{fit.ridge = b.ridge \%\% t(x)}
\end{itemize}

The \texttt{glmnet} function/package is also available in R.
Bias and variance of ridge regression

\[\hat{\beta}^{(\text{ridge})} = \arg \min_{\beta \in \mathbb{R}^p} \left(\Vert y - X\beta \Vert_2^2 + \lambda \Vert \beta \Vert_2^2 \right) \]

Bias and variance:

- not as simple to derive for ridge regression as they are for linear regression
- but closed-form expressions are still possible

The general trend is:

- The bias increases as \(\lambda \) increases
- The variance decreases as \(\lambda \) increases
Bias and variance of ridge regression
Mean squared error (MSE), bias and variance
Recap: ridge regression

- minimizes the usual regression criterion plus a penalty term on the squared l_2 norm of the coefficient vector
- shrinks the coefficients towards zero
- introduces some bias
- but can greatly reduce the variance
- overall, it results in a better mean-squared error
- the amount of shrinkage is controlled by λ
- performs particularly well when there is a subset of true coefficients that are small or even zero
- not as great when all of the true coefficients are moderately large (can still outperform OLS over a pretty narrow range of (small) λ values)
- does NOT set coefficients to zero exactly, and therefore **cannot** perform variable selection in the linear model
LASSO

Recall OLS estimates $\beta_0, \beta_1, \ldots, \beta_p$ such that it minimizes

$$RSS = \sum_{i=1}^{n} \left(y_i - \beta_0 - \sum_{j=1}^{p} \beta_j x_{ij} \right)^2$$

LASSO sets some of the coefficients β_1, \ldots, β_p to zero. Given a response vector $y \in \mathbb{R}^n$ and a predictor matrix $X \in \mathbb{R}^{n \times p}$

$$\hat{\beta}(\text{lasso}) = \arg \min_{\beta \in \mathbb{R}^p} \underbrace{\sum_{i=1}^{n} \left(y_i - \sum_{j=1}^{p} \beta_j x_{ij} \right)^2}_{\text{RSS}} + \lambda \underbrace{\sum_{j=1}^{p} |\beta_j|}_{\text{Penalty}}$$

$$= \arg \min_{\beta \in \mathbb{R}^p} \sum_{i=1}^{n} \left(y_i - x_i^T \beta \right)^2 + \lambda \sum_{j=1}^{p} |\beta_j|$$

$$= \arg \min_{\beta \in \mathbb{R}^p} \underbrace{||y - X\beta||^2_2}_{\text{Loss}} + \lambda \underbrace{||\beta||_1}_{\text{Penalty}}$$
The tuning parameter λ controls the strength of the penalty, and (like ridge regression), we get

- $\hat{\beta}^{(\text{lasso})} = \text{the usual OLS estimator, whenever } \lambda = 0$
- $\hat{\beta}^{(\text{lasso})} = 0, \text{ whenever } \lambda = \infty$

For $\lambda \in (0, \infty)$, we are balancing the trade-offs:

- fitting a linear model of y on X
- shrinking the coefficients; but the nature of the l_1 penalty causes some coefficients to be shrunken to zero **exactly**

LASSO (vs. Ridge):

- LASSO performs variable selection in the linear model
- has no closed-form solution (various optimization techniques are employed)
- as λ increases, more coefficients are set to zero (less variables are selected), and among the nonzero coefficients, more shrinkage is employed
Ridge: coefficient paths
LASSO: coefficient paths
Fitting LASSO models in R with the glmnet package

- Lasso and Elastic-Net Regularized Generalized Linear Models
- fits a wide variety of models (linear models, generalized linear models, multinomial models) with LASSO penalties
- the syntax is fairly straightforward, though it differs from \texttt{lm} in that it requires you to form your own design matrix:
 \[
 \textit{fit} = \texttt{glmnet}(X, y)
 \]
- the package also allows you to conveniently carry out cross-validation:
 \[
 \textit{cvfit} = \texttt{cv.glmnet}(X, y); \quad \text{plot}(\textit{cvfit});
 \]
- prediction with cross validation. Example:
 \[
 X = \texttt{matrix(rnorm(100*20), 100, 20)}
 \]
 \[
 y = \texttt{rnorm(100)}
 \]
 \[
 \textit{cv.fit} = \texttt{cv.glmnet}(X, y)
 \]
 \[
 \textit{yhat} = \texttt{predict(\textit{cv.fit, newx}=X[1:5,])}
 \]
 \[
 \text{coef(\textit{cv.fit})}
 \]
 \[
 \text{coef(\textit{cv.fit, s = }”\textit{lambda.min}”)}
 \]
Elastic net - the best of both worlds

Elastic Net combines the penalties of Ridge and LASSO.

\[
\hat{\beta}_{\text{(elastic net)}} = \arg \min_{\beta \in \mathbb{R}^p} \sqrt{\|y - X\beta\|^2} + \lambda_1 \|\beta\|_1 + \lambda_2 \|\beta\|_2
\]

Addresses several shortcomings of LASSO:

▶ for \(n < p \) (more covariates/features than samples) LASSO can select only \(n \) covariates (even if more are truly associated with the response)

▶ it tends to select only one covariate from any set of highly correlated covariates

▶ for \(n > p \), if the covariates are strongly correlated, Ridge tends to perform better

Elastic Net:

▶ highly correlated covariates will tend to have similar regression coefficients (desirable grouping effect)
Simpson’s paradox - beware!

Phenomenon in statistics when certain trends that appear when a dataset is separated into groups are reversed when the data are aggregated.

- can be resolved when confounding variables and causal relations are appropriately addressed in the statistical modeling
- misleading results that the misuse of statistics can generate

Source: Wiki