

Lecture 18(b): LASSO and Ridge regression

Foundations of Data Science:

Algorithms and Mathematical Foundations

Mihai Cucuringu
mihai.cucuringu@stats.ox.ac.uk

CDT in Mathematics of Random System
University of Oxford

28 September, 2023

Overview

Ridge regression

LASSO

³ The Trade-Off Between Prediction Accuracy and Model Interpretability

- ▶ linear regression: fairly inflexible
- ▶ splines: considerably more flexible (can fit a much wider range of possible shapes to estimate f)

Inference:

- ▶ linear model: easy to understand the relationship between Y and X_1, X_2, \dots, X_p

Very flexible approaches (splines, SVM, etc)

- ▶ can lead to such complicated estimates of f
- ▶ hard to understand how any individual predictor is associated with the response (less interpretable)

Example: LASSO

- ▶ less flexible
- ▶ linear model + sparsity of $[\beta_0, \beta_1, \dots, \beta_p]$
- ▶ more interpretable; only a small subset of predictors matter

Flexibility vs. Interpretability

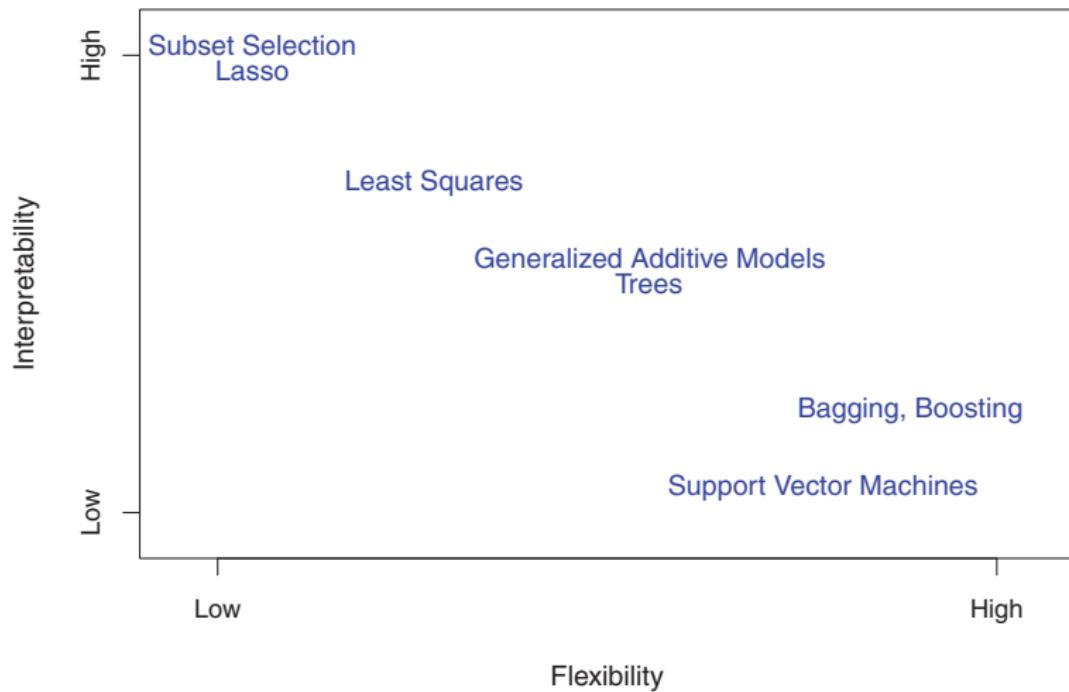


Figure: A representation of the trade-off between flexibility and interpretability, using different statistical learning methods. In general, as the flexibility of a method increases, its interpretability decreases.

- ▶ also called the *coefficient of determination*
- ▶ pronounced "R squared",
- ▶ gives the proportion of the variance in the dependent variable that is predictable from the independent variable/s

$$R^2 = \frac{\text{TSS} - \text{RSS}}{\text{TSS}}$$

where

$$\text{RSS} = \sum_{i=1}^n \left(y_i - \beta_0 - \sum_{j=1}^p \beta_j x_{ij} \right)^2$$

$$\text{TSS} = \sum_i (y_i - \bar{y})^2$$

Variable selection

Which predictors are associated with the response? (in order to fit a single model involving only those d predictors)

- ▶ Note: R^2 always increase as you add more variables to the model
- ▶ adjusted R^2 : $1 - \frac{\text{RSS}/(n-p-1)}{\text{TSS}/(n-1)} = 1 - (1 - R^2) \frac{n-1}{n-p-1}$
- ▶ Mallow's: $C_p = \frac{1}{n}(\text{RSS} + 2p\hat{\sigma}^2)$
- ▶ Akaike Information criterion AIC = $\frac{1}{n\hat{\sigma}^2}(\text{RSS} + 2p\hat{\sigma}^2)$

Cannot consider all 2^p models...

- ▶ **Best Subset Selection**: fit a separate least squares regression for each possible k -combination of the p predictors, and select the best one
- ▶ **Forward selection**: start with the null model and keep adding predictors one by one
- ▶ **Backward selection**: start with all variables in the model, and remove the variable with the largest p-value

Prediction Accuracy

$$\text{MSE} = \mathbb{E}[(h(x^*) - \bar{h}(x^*))^2] + [f(x^*) - \bar{h}(x^*)]^2 + \text{Var}[\epsilon],$$

x^* : new data point, f : ground truth, h : our estimator

$$\text{MSE} = \text{Var}[h(x^*)] + \text{Bias}(h(x^*))^2 + \text{Var}[\epsilon]$$

- ▶ if true relationship is \approx linear, the OLS will have low bias
- ▶ if $n >> p$: OLS also has low variance, and performs well on X_{test}
- ▶ if $n \sim p$: OLS has high variability, leads to overfitting/poor predictions on X_{test}
- ▶ if $n < p$: OLS estimate is no longer unique!

Today:

- ▶ by shrinking the estimated coefficients, we can often substantially reduce the variance at the cost of a negligible increase in bias
- ▶ can lead to substantial improvements in the accuracy with which we can predict the response for X_{test}

Model Interpretability

- ▶ some or most of the variables used in a multiple linear regression may not be associated with the response
- ▶ excluding them from the fit leads to a model that is more easily interpreted

Shrinkage/Regularization:

- ▶ by setting the corresponding coefficient estimates to zero — we can obtain a model that is more easily interpreted
- ▶ approach for automatically performing feature/variable selection and thus excluding irrelevant variables from a multiple regression model

Variable selection

- ▶ **Subset Selection**: identify a subset of p predictors that best relate to the response, and perform OLS on them
- ▶ **Shrinkage/Regularization**: fit a model involving all p predictors, but the estimated coefficients are shrunk towards zero, or end up even equal to zero
- ▶ **Dimensionality Reduction**: first project the p predictors into a d -dimensional subspace, with $d < p$. The d linear combinations, or projections are subsequently used as predictors in OLS (principal component regression PCR)

10 Shrinkage Methods

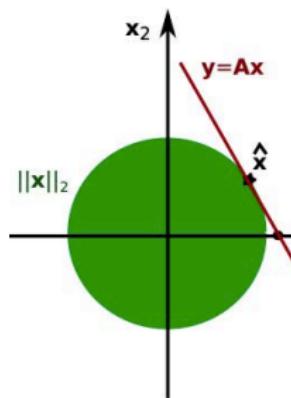
- ▶ fit a model containing all p predictors using a technique that constrains or **regularizes** the coefficient estimates, or equivalently, that **shrinks** the coefficient estimates towards zero
- ▶ shrinking the coefficient estimates can significantly reduce their variance
- ▶ the two best-known techniques for shrinking the regression coefficients towards zero are
 - ▶ **ridge regression**
 - ▶ **lasso regression**

See Section 6.2 in the ISLR textbook.

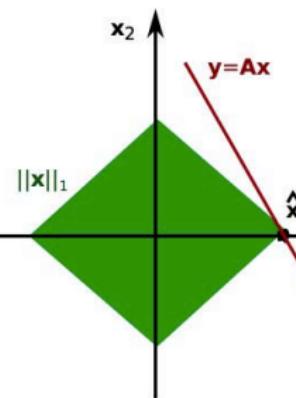
11 Regularization penalty

Idea: impose an ℓ_q penalty on the vector of beta coefficients, to promote shrinking them towards zero

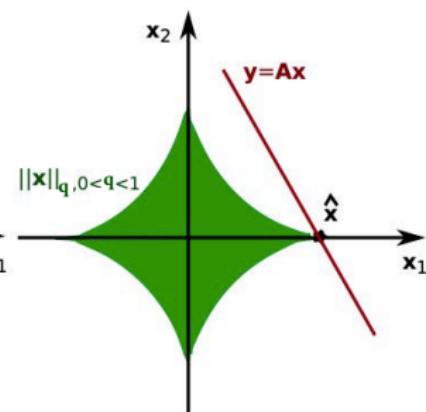
$$q = 2$$



$$q = 1$$



$$0 < q < 1$$



Credit: Peter Gerstoft

12 Ridge Regression

Recall: OLS estimates $\beta_0, \beta_1, \dots, \beta_p$ such that it minimizes

$$RSS = \sum_{i=1}^n \left(y_i - \beta_0 - \sum_{j=1}^p \beta_j x_{ij} \right)^2$$

Ridge regression shrinks β_1, \dots, β_p towards zero. Given a response vector $y \in \mathbb{R}^n$ and a predictor matrix $X \in \mathbb{R}^{n \times p}$

$$\begin{aligned}\hat{\beta}^{(\text{ridge})} &= \arg \min_{\beta \in \mathbb{R}^p} \underbrace{\sum_{i=1}^n \left(y_i - \sum_{j=1}^p \beta_j x_{ij} \right)^2}_{\text{RSS}} + \lambda \sum_{j=1}^p \beta_j^2 \\ &= \arg \min_{\beta \in \mathbb{R}^p} \sum_{i=1}^n (y_i - x_i^T \beta)^2 + \lambda \sum_{j=1}^p \beta_j^2 \\ &= \arg \min_{\beta \in \mathbb{R}^p} \underbrace{\|y - X\beta\|_2^2}_{\text{Loss}} + \underbrace{\lambda \|\beta\|_2^2}_{\text{Penalty}}\end{aligned}$$

$$\hat{\beta}^{(\text{ridge})} = \arg \min_{\beta \in \mathbb{R}^p} \underbrace{||y - X\beta||_2^2}_{\text{Loss}} + \underbrace{\lambda ||\beta||_2^2}_{\text{Penalty}}$$

$$\hat{\beta}^{(\text{ridge})} = (X^T X + \lambda I)^{-1} X^T y$$

Here $\lambda \geq 0$ is a tuning parameter

- ▶ controls the strength of the penalty term
- ▶ $\lambda = 0$ recovers the linear regression estimate
- ▶ $\lambda = \infty$ leads to $\hat{\beta}^{(\text{ridge})} = 0$
- ▶ $\lambda \in (0, \infty)$ trades-off two ideas: fitting a linear model of y on X versus shrinking the coefficients

14 Experimental setup

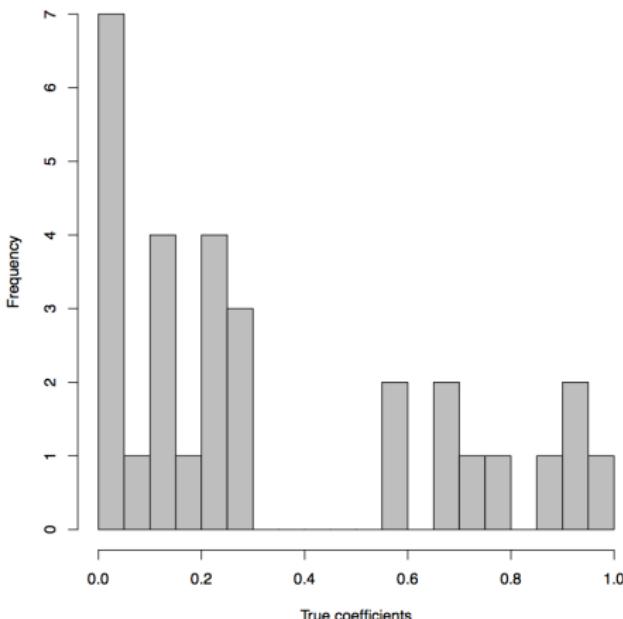
Given fixed covariates $x_i \in \mathbb{R}^p, i = 1, \dots, n$

We observe:

- ▶ $y_i = f(x_i) + \epsilon_i, i = 1, \dots, n,$
- ▶ for a linear model $f(x_i) = x_i^T \beta$
- ▶ $\epsilon_i \in \mathbb{R}$
- ▶ $\mathbb{E}[\epsilon_i] = 0$
- ▶ $\text{Var}[\epsilon_i] = \sigma^2$
- ▶ $\text{Cov}(\epsilon_i, \epsilon_j) = 0$

15 Experimental setup

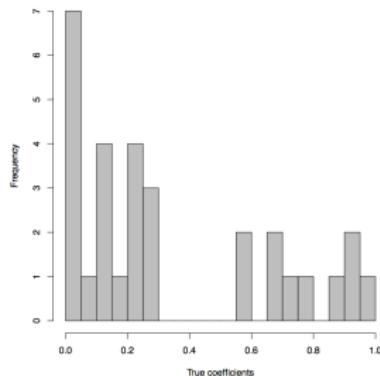
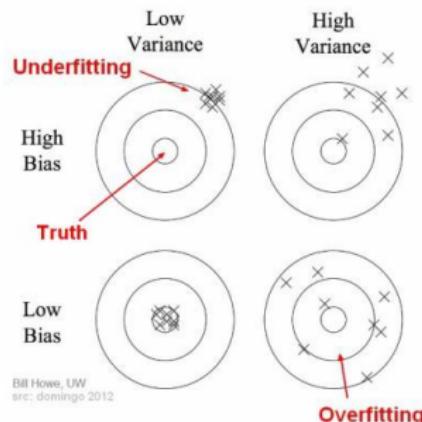
- ▶ $n = 50$, $p = 30$, and $\sigma^2 = 1$
- ▶ The true model is linear with
 - ▶ 10 large coefficients (between 0.5 and 1) and
 - ▶ 20 small ones (between 0 and 0.3)
- ▶ Histogram of true coefficients



Source: R. Tibshirani

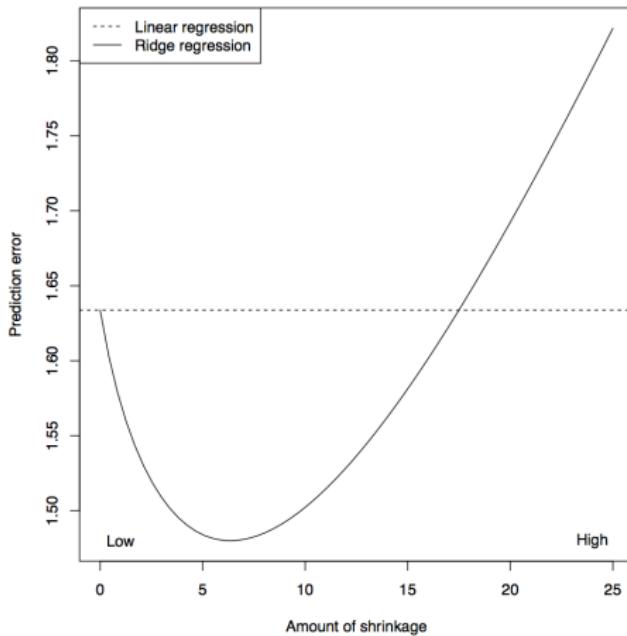
16 Experimental setup

- ▶ $n = 50$, $p = 30$, and $\sigma^2 = 1$
- ▶ The true model is linear with
 - ▶ 10 large coefficients (between 0.5 and 1) and
 - ▶ 20 small ones (between 0 and 0.3)
- ▶ Histogram of true coefficients



- ▶ the linear regression fit yields:
 - ▶ Squared bias ≈ 0.006
 - ▶ Variance ≈ 0.627
 - ▶ Pred. error $\approx 1 + 0.006 + 0.627 \approx 1.633$

Improved prediction via shrinking



	Linear Regression	Ridge Reg. (at its best)
--	-------------------	--------------------------

Squared bias	≈ 0.006	≈ 0.077
--------------	-----------------	-----------------

Variance	≈ 0.627	≈ 0.403
----------	-----------------	-----------------

Pred. error	$\approx 1 + 0.006 + 0.627$	$\approx 1 + 0.077 + 0.403$
-------------	-----------------------------	-----------------------------

	≈ 1.633	≈ 1.48
--	-----------------	----------------

Ridge regression in R

The function lm.ridge in the package MASS:

- ▶ `lambdas = seq(0,25,length = 100)`
- ▶ `aa = lm.ridge(y ~ x + 0, lambda = lambdas)`
- ▶ `b.ridge = coef(aa)`
- ▶ `fit.ridge = b.ridge %*% t(x)`

The glmnet function/package is also available in R.

Bias and variance of ridge regression

$$\hat{\beta}^{(\text{ridge})} = \arg \min_{\beta \in \mathbb{R}^p} \underbrace{\|y - X\beta\|_2^2}_{\text{Loss}} + \lambda \underbrace{\|\beta\|_2^2}_{\text{Penalty}}$$

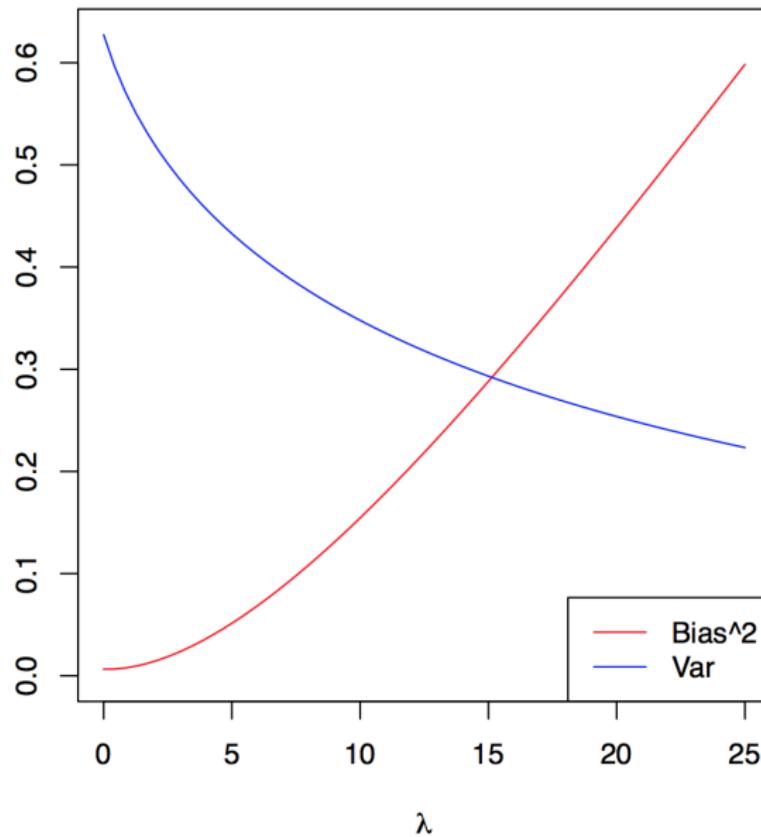
Bias and variance:

- ▶ not as simple to derive for ridge regression as they are for linear regression
- ▶ but closed-form expressions are still possible

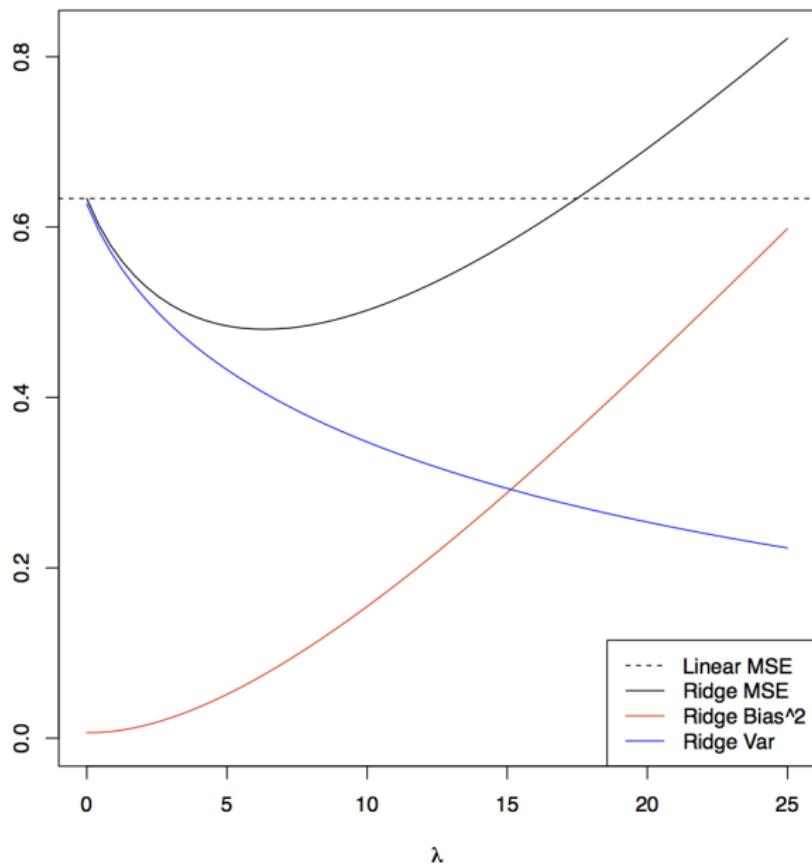
The general trend is:

- ▶ The bias increases as λ increases
- ▶ The variance decreases as λ increases

Bias and variance of ridge regression



Mean squared error (MSE), bias and variance



Recap: ridge regression

- ▶ minimizes the usual regression criterion plus a penalty term on the squared l_2 norm of the coefficient vector
- ▶ shrinks the coefficients towards zero
- ▶ introduces some bias
- ▶ but can greatly reduce the variance
- ▶ overall, it results in a better mean-squared error
- ▶ the amount of shrinkage is controlled by λ
- ▶ performs particularly well when there is a subset of true coefficients that are small or even zero
- ▶ not as great when all of the true coefficients are moderately large (can still outperform OLS over a pretty narrow range of (small) λ values)
- ▶ does NOT set coefficients to zero exactly, and therefore **cannot perform variable selection in the linear model**

LASSO

Recall OLS estimates $\beta_0, \beta_1, \dots, \beta_p$ such that it minimizes

$$RSS = \sum_{i=1}^n \left(y_i - \beta_0 - \sum_{j=1}^p \beta_j x_{ij} \right)^2$$

LASSO sets some of the coefficients β_1, \dots, β_p to zero. Given a response vector $y \in \mathbb{R}^n$ and a predictor matrix $X \in \mathbb{R}^{n \times p}$

$$\begin{aligned} \hat{\beta}^{(\text{lasso})} &= \arg \min_{\beta \in \mathbb{R}^p} \underbrace{\sum_{i=1}^n \left(y_i - \sum_{j=1}^p \beta_j x_{ij} \right)^2}_{\text{RSS}} + \lambda \underbrace{\sum_{j=1}^p |\beta_j|}_{\text{Penalty}} \\ &= \arg \min_{\beta \in \mathbb{R}^p} \sum_{i=1}^n (y_i - x_i^T \beta)^2 + \lambda \sum_{j=1}^p |\beta_j| \\ &= \arg \min_{\beta \in \mathbb{R}^p} \underbrace{\|y - X\beta\|_2^2}_{\text{Loss}} + \lambda \underbrace{\|\beta\|_1}_{\text{Penalty}} \end{aligned}$$

$$\arg \min_{\beta \in \mathbb{R}^p} \underbrace{\|y - X\beta\|_2^2}_{\text{Loss}} + \lambda \underbrace{\|\beta\|_1}_{\text{Penalty}}$$

- The tuning parameter λ controls the strength of the penalty, and (like ridge regression), we get

- ▶ $\hat{\beta}^{(\text{lasso})}$ = the usual OLS estimator, whenever $\lambda = 0$
- ▶ $\hat{\beta}^{(\text{lasso})}$ = 0, whenever $\lambda = \infty$

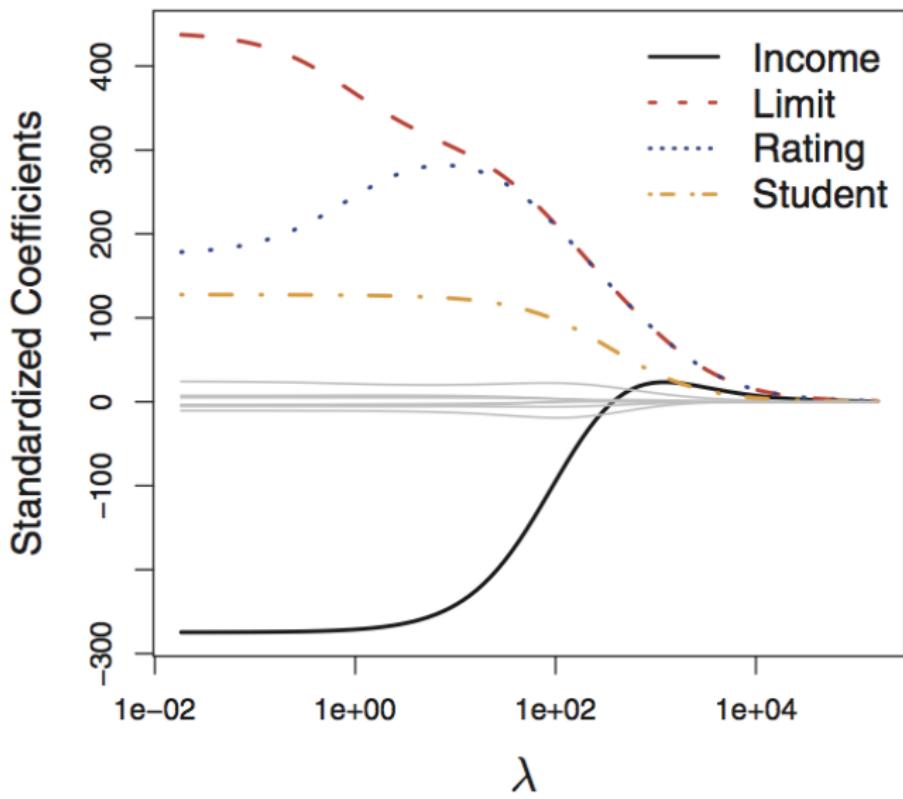
For $\lambda \in (0, \infty)$, we are balancing the trade-offs:

- ▶ fitting a linear model of y on X
- ▶ shrinking the coefficients; but **the nature of the l_1 penalty causes some coefficients to be shrunken to zero exactly**

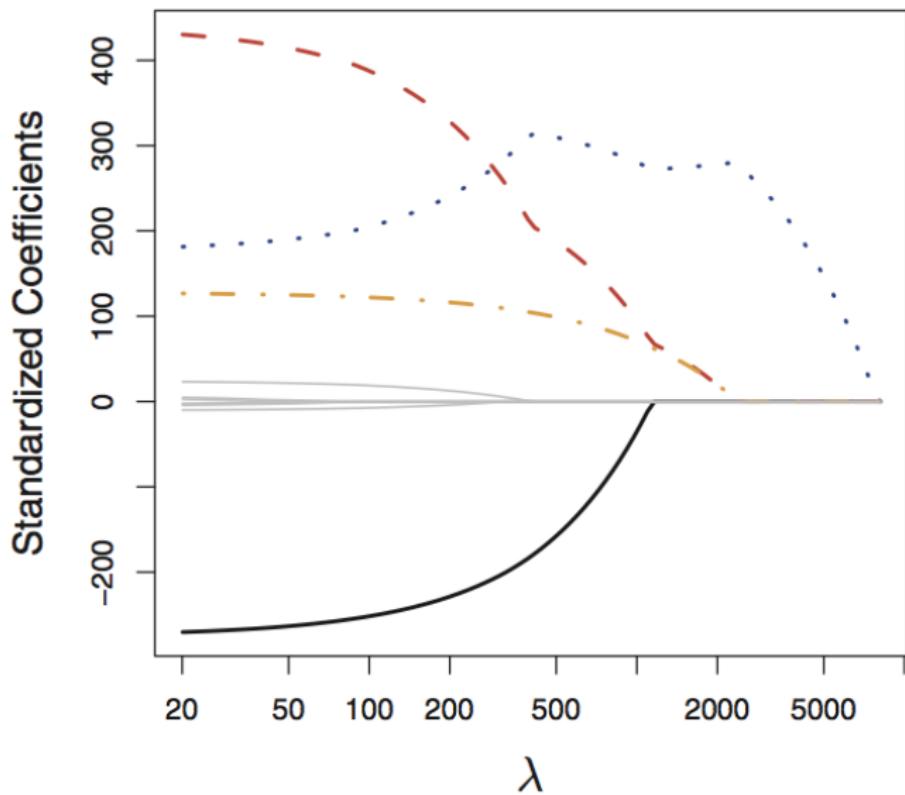
LASSO (vs. Ridge):

- ▶ LASSO performs variable selection in the linear model
- ▶ has no closed-form solution (various optimization techniques are employed)
- ▶ as λ increases, more coefficients are set to zero (less variables are selected), and among the nonzero coefficients, more shrinkage is employed

Ridge: coefficient paths



LASSO: coefficient paths



Fitting LASSO models in R with the `glmnet` package

- ▶ Lasso and Elastic-Net Regularized Generalized Linear Models
- ▶ fits a wide variety of models (linear models, generalized linear models, multinomial models) with LASSO penalties
- ▶ the syntax is fairly straightforward, though it differs from `lm` in that it requires you to form your own design matrix:

`fit = glmnet(X, y)`

- ▶ the package also allows you to conveniently carry out cross-validation:
`cvfit = cv.glmnet(X, y); plot(cvfit);`
- ▶ prediction with cross validation. Example:

`X = matrix(rnorm(100*20), 100, 20)`

`y = rnorm(100)`

`cv.fit = cv.glmnet(X, y)`

`yhat = predict(cv.fit, newx=X[1:5,])`

`coef(cv.fit)`

`coef(cv.fit, s = "lambda.min")`

Elastic net - the best of both worlds

Elastic Net combines the penalties of Ridge and LASSO.

$$\hat{\beta}^{(\text{elastic net})} = \arg \min_{\beta \in \mathbb{R}^p} \underbrace{\|y - X\beta\|_2^2}_{\text{Loss}} + \underbrace{\lambda_1 \|\beta\|_1}_{\text{Penalty}} + \underbrace{\lambda_2 \|\beta\|_2}_{\text{Penalty}}$$

Addresses several shortcomings of LASSO:

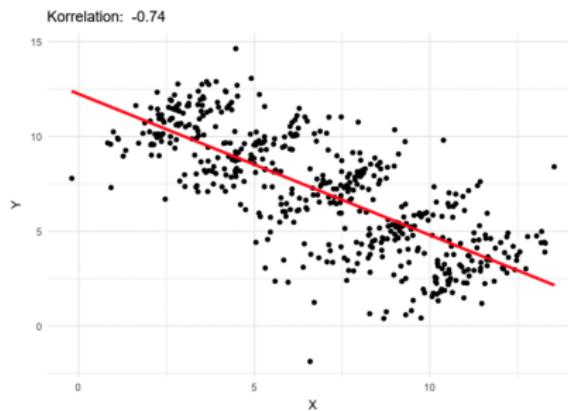
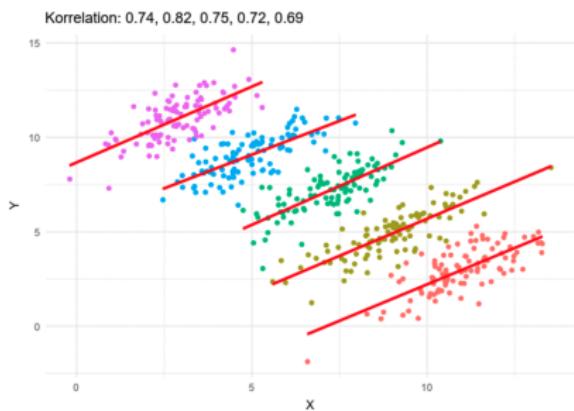
- ▶ for $n < p$ (more covariates/features than samples) LASSO can select only n covariates (even if more are truly associated with the response)
- ▶ it tends to select only one covariate from any set of highly correlated covariates
- ▶ for $n > p$, if the covariates are strongly correlated, Ridge tends to perform better

Elastic Net:

- ▶ highly correlated covariates will tend to have similar regression coefficients (desirable *grouping effect*)

Simpson's paradox - beware!

Phenomenon in statistics when certain trends that appear when a dataset is separated into groups are reversed when the data are aggregated.



- ▶ can be resolved when confounding variables and causal relations are appropriately addressed in the statistical modeling
- ▶ misleading results that the misuse of statistics can generate