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Overview

Ridge regression

LASSO



3 The Trade-Off Between Prediction Accuracy and
Model Interpretability
▶ linear regression: fairly inflexible
▶ splines: considerably more flexible (can fit a much wider range of

possible shapes to estimate f )
Inference:
▶ linear model: easy to understand the relationship between Y and

X1,X2, . . . ,Xp

Very flexible approaches (splines, SVM, etc)
▶ can lead to such complicated estimates of f
▶ hard to understand how any individual predictor is associated

with the response (less interpretable)

Example: LASSO
▶ less flexible
▶ linear model + sparsity of [β0, β1, . . . , βp]
▶ more interpretable; only a small subset of predictors matter
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FIGURE 2.7. A representation of the tradeoff between flexibility and inter-
pretability, using different statistical learning methods. In general, as the flexibil-
ity of a method increases, its interpretability decreases.

Other methods, such as the thin plate splines shown in Figures 2.5 and 2.6,
are considerably more flexible because they can generate a much wider
range of possible shapes to estimate f .

One might reasonably ask the following question: why would we ever
choose to use a more restrictive method instead of a very flexible approach?
There are several reasons that we might prefer a more restrictive model.
If we are mainly interested in inference, then restrictive models are much
more interpretable. For instance, when inference is the goal, the linear
model may be a good choice since it will be quite easy to understand
the relationship between Y and X1, X2, . . . , Xp. In contrast, very flexible
approaches, such as the splines discussed in Chapter 7 and displayed in
Figures 2.5 and 2.6, and the boosting methods discussed in Chapter 8, can
lead to such complicated estimates of f that it is difficult to understand
how any individual predictor is associated with the response.

Figure 2.7 provides an illustration of the trade-off between flexibility and
interpretability for some of the methods that we cover in this book. Least
squares linear regression, discussed in Chapter 3, is relatively inflexible but
is quite interpretable. The lasso, discussed in Chapter 6, relies upon the

lasso
linear model (2.4) but uses an alternative fitting procedure for estimating
the coefficients β0, β1, . . . , βp. The new procedure is more restrictive in es-
timating the coefficients, and sets a number of them to exactly zero. Hence
in this sense the lasso is a less flexible approach than linear regression.
It is also more interpretable than linear regression, because in the final
model the response variable will only be related to a small subset of the
predictors—namely, those with nonzero coefficient estimates. Generalized

Figure: A representation of the trade-off between flexibility and
interpretability, using different statistical learning methods. In general, as the
flexibility of a method increases, its interpretability decreases.



5 R2

▶ also called the coefficient of determination
▶ pronounced ”R squared”,
▶ gives the proportion of the variance in the dependent variable

that is predictable from the independent variable/s

R2
=

TSS − RSS
TSS

where

RSS =

n

∑
i=1
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⎜
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βjxij
⎞
⎟
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2

TSS =∑
i

(yi − ȳ)2



6 Variable selection
Which predictors are associated with the response? (in order to fit a
single model involving only those d predictors)

▶ Note: R2 always increase as you add more variables to the model

▶ adjusted R2: 1 − RSS/(n−p−1)
TSS/(n−1) = 1 − (1 − R2) n−1

n−p−1

▶ Mallow’s: Cp =
1
n(RSS + 2pσ̂2)

▶ Akaike Information criterion AIC =
1

nσ̂2 (RSS + 2pσ̂2)
Cannot consider all 2p models...
▶ Best Subset Selection: fit a separate least squares regression for

each possible k -combination of the p predictors, and select the
best one

▶ Forward selection: start with the null model and keep adding
predictors one by one

▶ Backward selection: start with all variables in the model, and
remove the variable with the largest p-value



7 Prediction Accuracy
MSE = E[(h(x∗) − h̄(x∗))2] + [f (x∗) − h̄(x∗)]2

+ Var[ε],
x∗: new data point, f : ground truth, h: our estimator

MSE = Var[h(x∗)] + Bias(h(x∗))2
+ Var[ε]

▶ if true relationship is ≈ linear, the OLS will have low bias
▶ if n >> p: OLS also has low variance, and performs well on Xtest

▶ if n ∼ p: OLS has high variability, leads to overfitting/poor
predictions on Xtest

▶ if n < p: OLS estimate is no longer unique!

Today:
▶ by shrinking the estimated coefficients, we can often substantially

reduce the variance at the cost of a negligible increase in bias
▶ can lead to substantial improvements in the accuracy with which

we can predict the response for Xtest



8 Model Interpretability

▶ some or most of the variables used in a multiple linear regression
may not be associated with the response

▶ excluding them from the fit leads to a model that is more easily
interpreted

Shrinkage/Regularization:
▶ by setting the corresponding coefficient estimates to zero — we

can obtain a model that is more easily interpreted

▶ approach for automatically performing feature/variable selection
and thus excluding irrelevant variables from a multiple regression
model



9 Variable selection

▶ Subset Selection: identify a subset of p predictors that best relate
to the response, and perform OLS on them

▶ Shrinkage/Regularization: fit a model involving all p predictors,
but the estimated coefficients are shrunken towards zero, or end
up even equal to zero

▶ Dimensionality Reduction: first project the p predictors into a
d-dimensional subspace, with d < p. The d linear combinations,
or projections are subsequently used as predictors in OLS
(principal component regression PCR)



10 Shrinkage Methods

▶ fit a model containing all p predictors using a technique that
constrains or regularizes the coefficient estimates, or
equivalently, that shrinks the coefficient estimates towards zero

▶ shrinking the coefficient estimates can significantly reduce their
variance

▶ the two best-known techniques for shrinking the regression
coefficients towards zero are
▶ ridge regression
▶ lasso regression

See Section 6.2 in the ISLR textbook.



11Regularization penalty

Idea: impose an `q penalty on the vector of beta coefficients, to
promote shrinking them towards zero

qq q

qq

Credit: Peter Gerstoft



12Ridge Regression
Recall: OLS estimates β0, β1, . . . , βp such that it minimizes

RSS =

n

∑
i=1

⎛
⎜
⎝

yi − β0 −
p

∑
j=1

βjxij
⎞
⎟
⎠

2

Ridge regression shrinks β1, . . . , βp towards zero. Given a response
vector y ∈ Rn and a predictor matrix X ∈ Rn×p

β̂
(ridge)

= arg min
β∈Rp

RSSÌ ÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÐÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒ Î
n

∑
i=1

⎛
⎜
⎝

yi −
p

∑
j=1

βjxij
⎞
⎟
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2

+λ
p

∑
j=1

β
2
j

= arg min
β∈Rp

n

∑
i=1

(yi − xT
i β)

2
+ λ

p

∑
j=1

β
2
j

= arg min
β∈Rp

∣∣y − Xβ∣∣22Í ÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÑÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÏ
Loss

+ λ ∣∣β∣∣22Í ÒÒÒÒÒÒÒÒÒÒÒÑ ÒÒÒÒÒÒÒÒÒÒÒÒÏ
Penalty
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β̂
(ridge)

= arg min
β∈Rp

∣∣y − Xβ∣∣22Í ÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÑÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÏ
Loss

+ λ ∣∣β∣∣22Í ÒÒÒÒÒÒÒÒÒÒÒÑ ÒÒÒÒÒÒÒÒÒÒÒÒÏ
Penalty

β̂
(ridge)

= (X TX + λI)−1X T y

Here λ ≥ 0 is a tuning parameter
▶ controls the strength of the penalty term

▶ λ = 0 recovers the linear regression estimate

▶ λ =∞ leads to β̂(ridge)
= 0

▶ λ ∈ (0,∞) trades-off two ideas: fitting a linear model of y on X
versus shrinking the coefficients



14Experimental setup

Given fixed covariates xi ∈ Rp
, i = 1, . . . ,n

We observe:
▶ yi = f (xi) + εi , i = 1, . . . ,n,

▶ for a linear model f (xi) = xT
i β

▶ εi ∈ R

▶ E[εi] = 0

▶ Var[εi] = σ2

▶ Cov(εi , εj) = 0



15Experimental setup
▶ n = 50, p = 30, and σ2

= 1
▶ The true model is linear with

▶ 10 large coefficients (between 0.5 and 1) and
▶ 20 small ones (between 0 and 0.3)

▶ Histogram of true coefficients

Source: R. Tibshirani



16 Experimental setup
▶ n = 50, p = 30, and σ2

= 1
▶ The true model is linear with

▶ 10 large coefficients (between 0.5 and 1) and
▶ 20 small ones (between 0 and 0.3)

▶ Histogram of true coefficients

▶ the linear regression fit yields:
▶ Squared bias ≈ 0.006
▶ Variance ≈ 0.627
▶ Pred. error ≈ 1 + 0.006 + 0.627 ≈ 1.633



17 Improved prediction via shrinking

Linear Regression Ridge Reg. (at its best)
Squared bias ≈ 0.006 ≈ 0.077
Variance ≈ 0.627 ≈ 0.403
Pred. error ≈ 1 + 0.006 + 0.627 ≈ 1 + 0.077 + 0.403

≈ 1.633 ≈ 1.48



18 Ridge regression in R

The function lm.ridge in the package MASS:

▶ lambdas = seq(0,25,length = 100)

▶ aa = lm.ridge(y ∼ x + 0, lambda = lambdas)

▶ b.ridge = coef(aa)

▶ fit.ridge = b.ridge % * % t(x)

The glmnet function/package is also available in R.



19Bias and variance of ridge regression

β̂
(ridge)

= arg min
β∈Rp

∣∣y − Xβ∣∣22Í ÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÑÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÏ
Loss

+ λ ∣∣β∣∣22Í ÒÒÒÒÒÒÒÒÒÒÒÑ ÒÒÒÒÒÒÒÒÒÒÒÒÏ
Penalty

Bias and variance:
▶ not as simple to derive for ridge regression as they are for linear

regression
▶ but closed-form expressions are still possible

The general trend is:
▶ The bias increases as λ increases
▶ The variance decreases as λ increases



20 Bias and variance of ridge regression



21 Mean squared error (MSE), bias and variance



22 Recap: ridge regression
▶ minimizes the usual regression criterion plus a penalty term on

the squared l2 norm of the coefficient vector

▶ shrinks the coefficients towards zero

▶ introduces some bias

▶ but can greatly reduce the variance

▶ overall, it results in a better mean-squared error

▶ the amount of shrinkage is controlled by λ

▶ performs particularly well when there is a subset of true
coefficients that are small or even zero

▶ not as great when all of the true coefficients are moderately large
(can still outperform OLS over a pretty narrow range of (small) λ
values)

▶ does NOT set coefficients to zero exactly, and therefore cannot
perform variable selection in the linear model



23LASSO
Recall OLS estimates β0, β1, . . . , βp such that it minimizes

RSS =

n

∑
i=1
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p

∑
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⎞
⎟
⎠
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LASSO sets some of the coefficients β1, . . . , βp to zero. Given a
response vector y ∈ Rn and a predictor matrix X ∈ Rn×p

β̂
(lasso)

= arg min
β∈Rp

RSSÌ ÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÐÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒ Î
n

∑
i=1

⎛
⎜
⎝

yi −
p

∑
j=1

βjxij
⎞
⎟
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2

+λ

PenaltyÌ ÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÐÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÎ
p

∑
j=1

∣βj∣

= arg min
β∈Rp

n

∑
i=1

(yi − xT
i β)

2
+ λ

p

∑
j=1

∣βj∣

= arg min
β∈Rp

∣∣y − Xβ∣∣22Í ÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÑÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÏ
Loss

+ λ ∣∣β∣∣1Í ÒÒÒÒÒÒÒÒÒÒÒÑ ÒÒÒÒÒÒÒÒÒÒÒÒÏ
Penalty
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arg min

β∈Rp
∣∣y − Xβ∣∣22Í ÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÑÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÏ

Loss

+ λ ∣∣β∣∣1Í ÒÒÒÒÒÒÒÒÒÒÒÑ ÒÒÒÒÒÒÒÒÒÒÒÒÏ
Penalty

• The tuning parameter λ controls the strength of the penalty, and (like
ridge regression), we get
▶ β̂

(lasso)
= the usual OLS estimator, whenever λ = 0

▶ β̂
(lasso)

= 0, whenever λ =∞
For λ ∈ (0,∞), we are balancing the trade-offs:
▶ fitting a linear model of y on X
▶ shrinking the coefficients; but the nature of the l1 penalty causes

some coefficients to be shrunken to zero exactly
LASSO (vs. Ridge):
▶ LASSO performs variable selection in the linear model
▶ has no closed-form solution (various optimization techniques are

employed)
▶ as λ increases, more coefficients are set to zero (less variables

are selected), and among the nonzero coefficients, more
shrinkage is employed



25 Ridge: coefficient paths



26 LASSO: coefficient paths



27Fitting LASSO models in R with the glmnet package
▶ Lasso and Elastic-Net Regularized Generalized Linear Models
▶ fits a wide variety of models (linear models, generalized linear

models, multinomial models) with LASSO penalties
▶ the syntax is fairly straightforward, though it differs from lm in that

it requires you to form your own design matrix:
fit = glmnet(X, y)

▶ the package also allows you to conveniently carry out
cross-validation:
cvfit = cv.glmnet(X, y); plot(cvfit);

▶ prediction with cross validation. Example:
X = matrix(rnorm(100*20), 100, 20)

y = rnorm(100)
cv.fit = cv.glmnet(X, y)
yhat = predict(cv.fit, newx=X[1:5,])
coef(cv.fit)
coef(cv.fit, s = ”lambda.min”)



28 Elastic net - the best of both worlds
Elastic Net combines the penalties of Ridge and LASSO.

β̂
(elastic net)

= arg min
β∈Rp

∣∣y − Xβ∣∣22Í ÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÑÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÏ
Loss

+ λ1 ∣∣β∣∣1Í ÒÒÒÒÒÒÒÒÒÒÒÑ ÒÒÒÒÒÒÒÒÒÒÒÒÏ
Penalty

+ λ2 ∣∣β∣∣2Í ÒÒÒÒÒÒÒÒÒÒÒÑ ÒÒÒÒÒÒÒÒÒÒÒÒÏ
Penalty

Addresses several shortcomings of LASSO:
▶ for n < p (more covariates/features than samples) LASSO can

select only n covariates (even if more are truly associated with
the response)

▶ it tends to select only one covariate from any set of highly
correlated covariates

▶ for n > p, if the covariates are strongly correlated, Ridge tends to
perform better

Elastic Net:
▶ highly correlated covariates will tend to have similar regression

coefficients (desirable grouping effect)
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Simpson’s paradox - beware!

Phenomenon in statistics when certain trends that appear when a
dataset is separated into groups are reversed when the data are
aggregated.

▶ can be resolved when confounding variables and causal relations
are appropriately addressed in the statistical modeling

▶ misleading results that the misuse of statistics can generate
Source: Wiki
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