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Overview

Ridge regression

LASSO



°The Trade-Off Between Prediction Accuracy and
Model Interpretability
» linear regression: fairly inflexible

» splines: considerably more flexible (can fit a much wider range of
possible shapes to estimate f)

Inference:
» linear model: easy to understand the relationship between Y and
X1, Xo,...,Xp

Very flexible approaches (splines, SVM, etc)
P can lead to such complicated estimates of f

» hard to understand how any individual predictor is associated
with the response (less interpretable)

Example: LASSO
» less flexible

» linear model + sparsity of [ 3o, 81, .., 5p]
» more interpretable; only a small subset of predictors matter



* Flexibility vs. Interpretability
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Figure: A representation of the trade-off between flexibility and
interpretability, using different statistical learning methods. In general, as the
flexibility of a method increases, its interpretability decreases.



R2

» also called the coefficient of determination
» pronounced "R squared”,

» gives the proportion of the variance in the dependent variable
that is predictable from the independent variable/s

» TSS-RSS
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6 . :
Variable selection
Which predictors are associated with the response? (in order to fit a
single model involving only those d predictors)
» Note: R always increase as you add more variables to the model

. 2., RSS/(n-p-1) _ 4y /4 _ p2y_n-1
» adjusted R”: 1 TSS/ (1) =1-(1 ,‘?)—n_p_1

> Mallow's: C, = 1(RSS + 2p5°)
> Akaike Information criterion AIC = —(RSS + 2p5°)
Cannot consider all 2° models...

P Best Subset Selection: fit a separate least squares regression for
each possible k-combination of the p predictors, and select the
best one

» Forward selection: start with the null model and keep adding
predictors one by one

» Backward selection: start with all variables in the model, and
remove the variable with the largest p-value



" Prediction Accuracy
MSE = E[(h(x*) = h(x*))?] + [f(x*) = A(x*)T* + Var[e],

x*: new data point, f: ground truth, h: our estimator

MSE = Var[h(x*)] + Bias(h(x*))? + Var[e]

» if true relationship is = linear, the OLS will have low bias
» if n>> p: OLS also has low variance, and performs well on Xjeg;

» if n ~ p: OLS has high variability, leads to overfitting/poor
predictions on Xjegt

» if n < p: OLS estimate is no longer unique!
Today:

» by shrinking the estimated coefficients, we can often substantially
reduce the variance at the cost of a negligible increase in bias

P can lead to substantial improvements in the accuracy with which
we can predict the response for Xiest



®Model Interpretability

» some or most of the variables used in a multiple linear regression
may not be associated with the response

» excluding them from the fit leads to a model that is more easily
interpreted

Shrinkage/Regularization:

» by setting the corresponding coefficient estimates to zero — we
can obtain a model that is more easily interpreted

» approach for automatically performing feature/variable selection
and thus excluding irrelevant variables from a multiple regression
model



9 . .
Variable selection

P> Subset Selection: identify a subset of p predictors that best relate
to the response, and perform OLS on them

» Shrinkage/Regularization: fit a model involving all p predictors,
but the estimated coefficients are shrunken towards zero, or end
up even equal to zero

» Dimensionality Reduction: first project the p predictors into a
d-dimensional subspace, with d < p. The d linear combinations,
or projections are subsequently used as predictors in OLS
(principal component regression PCR)



" Shrinkage Methods

» fit a model containing all p predictors using a technique that
constrains or regularizes the coefficient estimates, or
equivalently, that shrinks the coefficient estimates towards zero

» shrinking the coefficient estimates can significantly reduce their
variance

» the two best-known techniques for shrinking the regression
coefficients towards zero are

» ridge regression
» lasso regression

See Section 6.2 in the ISLR textbook.



"Regularization penalty

Idea: impose an /4 penalty on the vector of beta coefficients, to
promote shrinking them towards zero

q=1 0<q<1

X2

y=Ax

1xllg,0<a<1

Credit: Peter Gerstoft



"“Ridge Regression

Recall: OLS estimates 3y, 31, .. ., Bp such that it minimizes
n p e
RSS=) |yi—Bo— Y B
i=1 j=1
Ridge regression shrinks 34, ..., 3, towards zero. Given a response
vector y € R" and a predictor matrix X € R"™P
RSS
(ridge) - < S L 2
»(ridge .
B = argmin ) \yi=) B | +A) B
i=1 J=1 Jj=1
L T \2 P 2
= argmin Z(}/i — X ﬁ) + AZﬁj

]
argmin ||y =XBll2 + A

BERP —_— —
Penalty



. 2 2
=argmin |y = Xpllz + A|I5ll2
| — —

»(ridge)
6 BERP

Loss Penalty

B(ridge) _ (XTX + /\I)_1XTy
Here A = 0 is a tuning parameter
P controls the strength of the penalty term
» )\ = 0 recovers the linear regression estimate
_ A(ridge) _
» \=ooleadsto =0

> )\ e (0, 00) trades-off two ideas: fitting a linear model of y on X
versus shrinking the coefficients



“Experimental setup

Given fixed covariates x; e R°,i=1,...,n
We observe:

> yi=1f(x;)+e,i=1,...,n,

» for a linear model f(x;) = x,-Tﬁ
» ¢, eR

» Ele]=0

» Var[e] = o?

4 COV(e,',ej) =0



1 .
“Experimental setup
» n=50,p=30,and o° = 1
» The true model is linear with
» 10 large coefficients (between 0.5 and 1) and
» 20 small ones (between 0 and 0.3)

» Histogram of true coefficients
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Source: R. Tibshirani



16 .
Experimental setup
» n=50,p=230,and o° = 1
» The true model is linear with
» 10 large coefficients (between 0.5 and 1) and
» 20 small ones (between 0 and 0.3)

» Histogram of true coefficients
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» the linear regression fit yields:
» Squared bias ~ 0.006
» Variance ~ 0.627
» Pred. error ~ 1 + 0.006 + 0.627 ~ 1.633



v Improved prediction via shrinking

--- Linear regression

Low High
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Amount of shrinkage

| Linear Regression | Ridge Reg. (at its best)

Squared bias | ~ 0.006 ~ 0.077

Variance ~ 0.627 ~ 0.4083

Pred. error ~1+0.006 + 0.627 | ~ 1+ 0.077 + 0.403
~ 1.633 ~ 1.48



18 . .
Ridge regression in R
The function Im.ridge in the package MASS:

» lambdas = seq(0,25,length = 100)
» aa=Im.ridge(y ~ x + 0, lambda = lambdas)
» b.ridge = coef(aa)

P fit.ridge = b.ridge % * % t(x)

The glmnet function/package is also available in R.



1 . . . .
Bias and variance of ridge regression

. 2 2
=argmin ||y - XB|l2 + AllBll
BERP R e —— (]

Loss Penalty

B(ridge)

Bias and variance:

» not as simple to derive for ridge regression as they are for linear
regression

» but closed-form expressions are still possible

The general trend is:
» The bias increases as )\ increases
» The variance decreases as )\ increases



20 . . . .
Bias and variance of ridge regression
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' Mean squared error (MSE), bias and variance
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22 . .
Recap: ridge regression

» minimizes the usual regression criterion plus a penalty term on
the squared kL norm of the coefficient vector

shrinks the coefficients towards zero

introduces some bias

but can greatly reduce the variance

overall, it results in a better mean-squared error

the amount of shrinkage is controlled by A

vVvVvyVvyyvVyy

performs particularly well when there is a subset of true
coefficients that are small or even zero

v

not as great when all of the true coefficients are moderately large
(can still outperform OLS over a pretty narrow range of (small) A
values)

» does NOT set coefficients to zero exactly, and therefore cannot
perform variable selection in the linear model



L ASSO

Recall OLS estimates f, f1, . . ., Bp such that it minimizes
n p 2
RSS=Y |yi-fo—) BiX
i=1 j=1
LASSO sets some of the coefficients 34, ..., 3, to zero. Given a
response vector y € R" and a predictor matrix X € R™"
, RSS . Penahy
(lasso) . 2 i
Allasso
= +A
15} argﬁr‘gﬁg’ ; ; Xij Z |5/
n T 2
= argmin ;(yl—xl 5) +)\jzz1|ﬁj|

2
arg min -X + Al||S
gmin  [ly= X8Il + AlI5l;
Loss Penalty



argmin, |1y = Xglla + Al5lly
Loss Penalty
* The tuning parameter A controls the strength of the penalty, and (like
ridge regression), we get
» 3135  the usual OLS estimator, whenever A = 0
» 31359 — o whenever \ = oo
For X € (0, c0), we are balancing the trade-offs:
P fitting a linear model of y on X
» shrinking the coefficients; but the nature of the /; penalty causes
some coefficients to be shrunken to zero exactly
LASSO (vs. Ridge):
» LASSO performs variable selection in the linear model
» has no closed-form solution (various optimization techniques are
employed)
P as )\ increases, more coefficients are set to zero (less variables
are selected), and among the nonzero coefficients, more
shrinkage is employed



*Ridge: coefficient paths

8 RN —— Income
@ S - - - Limit
-— (=] .
S 87 ot Rating
‘G : . Student
£ 38 b
o W ’
o N
© g N
g s
5 o — ’,"“"--'--q.__A
@
S g |
v 1
o
7]

o

(=]

!? | T T

1e-02 1e+00 1e+02 1e+04

A



* LASSO: coefficient paths
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“Fitting LASSO models in R with the glmnet package

>
>

>

Lasso and Elastic-Net Regularized Generalized Linear Models

fits a wide variety of models (linear models, generalized linear
models, multinomial models) with LASSO penalties

the syntax is fairly straightforward, though it differs from /m in that
it requires you to form your own design matrix:

fit = gimnet(X, y)

the package also allows you to conveniently carry out
cross-validation:

cvfit = cv.gimnet(X, y); plot(cvfit);

prediction with cross validation. Example:

X = matrix(rnorm(100*20), 100, 20)
y =rnorm(100)

cv.fit = cv.gimnet(X, y)
yhat = predict(cv.fit, newx=X[1:5,])

coef(cv.fit)

coef(cv.fit, s = "lambda.min”)



28 .
Elastic net - the best of both worlds
Elastic Net combines the penalties of Ridge and LASSO.

s(elastic net . 2 p
plerstere) = argmin  |ly = X8Il + M |18l + A2]IBll
ﬁERp —_— — [—
Loss Penalty Penalty

Addresses several shortcomings of LASSO:

» for n < p (more covariates/features than samples) LASSO can
select only n covariates (even if more are truly associated with
the response)

» it tends to select only one covariate from any set of highly
correlated covariates

» for n > p, if the covariates are strongly correlated, Ridge tends to
perform better

Elastic Net:

» highly correlated covariates will tend to have similar regression
coefficients (desirable grouping effect)



29 . ,
Simpson’s paradox - beware!

Phenomenon in statistics when certain trends that appear when a
dataset is separated into groups are reversed when the data are
aggregated.

Korrelation: -0.74 Korrelation: 0.74, 0.82, 0.75, 0.72, 0.69

» can be resolved when confounding variables and causal relations
are appropriately addressed in the statistical modeling

» misleading results that the misuse of statistics can generate

Source: Wiki
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