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2 Advertising data set

▶ sales of a product in 200 different markets
▶ + budgets for the product in each of those markets for three

different media: TV, radio, and newspaper

▶ goal: predict sales given the three media budgets

▶ input variables (denoted by X1,X2, . . .)
▶ X1 TV budget
▶ X2 radio budget
▶ X3 newspaper budget

▶ inputs known as such as predictors, independent variables,
features, variables, covariates...

▶ the output variable (sales) is the response or dependent variable
(denoted by Y )



3 Advertising data set



4 Linear Regression

▶ Is there a relationship between advertising budget and sales?

▶ How strong is the relationship between advertising budget and
sales?

▶ Which media contribute to sales?

▶ How accurately can we estimate the effect of each medium on
sales?

▶ How accurately can we predict future sales?

▶ Is the relationship linear?

▶ Is there synergy among the advertising media? (50k on TV + 50k
on radio > 100k on either one) (interaction effect)



5 Errors

Model: Y ≈ β0 + β1X

Example: sales ≈ β0 + β1 × radio

Define the residual sum of squares (RSS):

RSS =

n

∑
i=1

ε
2
i (1)

εi = yi − β̂0 − β̂1xi , ∀i = 1, . . . ,n (2)



6 Least squares fit62 3. Linear Regression
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FIGURE 3.1. For the Advertising data, the least squares fit for the regression
of sales onto TV is shown. The fit is found by minimizing the sum of squared
errors. Each grey line segment represents an error, and the fit makes a compro-
mise by averaging their squares. In this case a linear fit captures the essence of
the relationship, although it is somewhat deficient in the left of the plot.

Let ŷi = β̂0 + β̂1xi be the prediction for Y based on the ith value of X .
Then ei = yi− ŷi represents the ith residual—this is the difference between

residual
the ith observed response value and the ith response value that is predicted
by our linear model. We define the residual sum of squares (RSS) as

residual sum
of squares

RSS = e2
1 + e2

2 + · · ·+ e2
n,

or equivalently as

RSS = (y1− β̂0− β̂1x1)
2 +(y2− β̂0− β̂1x2)

2 + . . .+(yn− β̂0− β̂1xn)2. (3.3)

The least squares approach chooses β̂0 and β̂1 to minimize the RSS. Using
some calculus, one can show that the minimizers are

β̂1 =

∑n
i=1(xi − x̄)(yi − ȳ)∑n

i=1(xi − x̄)2
,

β̂0 = ȳ − β̂1x̄,

(3.4)

where ȳ ≡ 1
n

∑n
i=1 yi and x̄ ≡ 1

n

∑n
i=1 xi are the sample means. In other

words, (3.4) defines the least squares coefficient estimates for simple linear
regression.

Figure 3.1 displays the simple linear regression fit to the Advertising

data, where β̂0 = 7.03 and β̂1 = 0.0475. In other words, according to

Figure: The least squares fit for the regression of sales onto TV. The fit is found by
minimizing the sum of squared errors. Each grey line segment represents an error,
and the fit makes a compromise by averaging their squares. In this case, a linear fit
captures the essence of the relationship, although it is somewhat deficient in the left
of the plot.
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FIGURE 3.3. A simulated data set. Left: The red line represents the true rela-
tionship, f(X) = 2 + 3X, which is known as the population regression line. The
blue line is the least squares line; it is the least squares estimate for f(X) based
on the observed data, shown in black. Right: The population regression line is
again shown in red, and the least squares line in dark blue. In light blue, ten least
squares lines are shown, each computed on the basis of a separate random set of
observations. Each least squares line is different, but on average, the least squares
lines are quite close to the population regression line.

two lines in a simple simulated example. We created 100 random Xs, and
generated 100 corresponding Y s from the model

Y = 2 + 3X + ε, (3.6)

where ε was generated from a normal distribution with mean zero. The
red line in the left-hand panel of Figure 3.3 displays the true relationship,
f(X) = 2 + 3X , while the blue line is the least squares estimate based
on the observed data. The true relationship is generally not known for
real data, but the least squares line can always be computed using the
coefficient estimates given in (3.4). In other words, in real applications,
we have access to a set of observations from which we can compute the
least squares line; however, the population regression line is unobserved.
In the right-hand panel of Figure 3.3 we have generated ten different data
sets from the model given by (3.6) and plotted the corresponding ten least
squares lines. Notice that different data sets generated from the same true
model result in slightly different least squares lines, but the unobserved
population regression line does not change.

At first glance, the difference between the population regression line and
the least squares line may seem subtle and confusing. We only have one
data set, and so what does it mean that two different lines describe the
relationship between the predictor and the response? Fundamentally, the

Figure: A simulated data set. Left: The red line represents the true relationship,
f (X) = 2 + 3X , which is known as the population regression line. The blue line is the
least squares line: it is the least squares estimate for f (X) based on the observed
data, shown in black. Right: The population regression line is again shown in red,
and the least squares line in dark blue. In light blue, ten least squares lines are
shown, each computed on the basis of a separate random set of observations. Each
least squares line is different, but on average, the least squares lines are quite close
to the population regression line.



8 Recall the OLS estimators
The least squares coefficient estimates for simple linear regression

β̂1 =
∑n

i=1(xi − x̄)(yi − ȳ)
∑n

i=1(xi − x̄)2
(3)

β̂0 = ȳ − β̂1x̄ (4)
where ȳ = 1

n
∑n

i yi and x̄ = 1
n
∑n

i xi denote the sample means.
The corresponding standard errors are given by

SE(β̂0)2
= σ

2 [1
n +

x̄2

∑n
i=1(xi − x̄)2

] (5)

SE(β̂1)2
=

σ
2

∑n
i=1(xi − x̄)2

(6)

with σ
2
= Var(ε)



9 Confidence intervals

▶ 95 % confidence interval for β1

β̂1 ± 2 ⋅ SE(β̂1)

▶ i.e., 95 % prob. the β1 lies in

[β̂1 − 2 ⋅ SE(β̂1), β̂1 + 2 ⋅ SE(β̂1)

▶ similarly for β0

Advertising data, the 95% confidence interval
▶ β0 ∈ [6.130,7.935]: without any advertising ⇒ sales will situate

around 6,130 and 7,940 units.

▶ β1 ∈ [0.042,0.053]: each $1,000 increase in TV advertising ⇒

average increase in sales by between 42 and 53 units.



10 Hypothesis testing: the null hypothesis

H0 ∶ There is no relationship between X and Y

β1 = 0

H1 ∶ There is some relationship between X and Y

β1 ≠ 0

Y = β0 + β1X + ε

▶ compute the t-statistic given by

t =
β̂1 − 0

SE(β̂1)

i.e., the number of standard deviations β̂1 is away from 0
▶ if no relationship between X and Y, t ∼ t-distribution with n-2

degrees of freedom
▶ for n > 30, t-distribution is similar to the Gaussian



11 Hypothesis testing: the null hypothesis

▶ p-value: probability of observing any value equal to ∣t∣ or larger,
assuming β1 = 0

▶ Small p-value: unlikely to observe such a substantial association
between X and Y due to chance, (if X and Y were truly unrelated)

▶ Typical p-values for rejecting the null hypothesis: 5% or 1%



12 Quality metrics
Recall:
▶ TSS= ∑(yi − ȳ)2, the total variance in the response Y
▶ RSS= ∑(yi − ŷi)2, the amount of variability that is left

unexplained after the regression

Quality metrics
▶ RSE: measures lack of fit of the model to the data

RSE =

√
1

n − 2
RSS =

√
√√√√√⎷

1
n − 2

n

∑
i=1

(yi − ŷi)2 (7)

▶ R2: measures the proportion of variance explained

R2
=

TSS − RSS
TSS

= 1 −
RSS
TSS

▶ for simple linear regression: R2
= ρ

2, where ρ is the usual
Pearson correlation



13 From Simple to Multiple Linear Regression

Figure: A $1,000 increase in radio spending ⇒ an average increase in sales
by 203 units. A $1,000 increase in newspaper spending ⇒ an average
increase in sales by around 55 units.



14 Multiple Linear Regression

Y = β0 + β1X1 + β2X2 +⋯+ βpXp + ε

ŷ = β̂0 + β̂1x1 + β̂2x2 +⋯+ β̂pxp

ŷi = β̂0 + β̂1xi,1 + β̂2xi,2 +⋯+ β̂pxi,p ∀i = 1, . . . ,n

sales = β0 + β1TV + β2radio + β3newspaper + ε



15 Errors being minimized 3.2 Multiple Linear Regression 73
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FIGURE 3.4. In a three-dimensional setting, with two predictors and one re-
sponse, the least squares regression line becomes a plane. The plane is chosen
to minimize the sum of the squared vertical distances between each observation
(shown in red) and the plane.

The values β̂0, β̂1, . . . , β̂p that minimize (3.22) are the multiple least squares
regression coefficient estimates. Unlike the simple linear regression
estimates given in (3.4), the multiple regression coefficient estimates have
somewhat complicated forms that are most easily represented using ma-
trix algebra. For this reason, we do not provide them here. Any statistical
software package can be used to compute these coefficient estimates, and
later in this chapter we will show how this can be done in R. Figure 3.4
illustrates an example of the least squares fit to a toy data set with p = 2
predictors.

Table 3.4 displays the multiple regression coefficient estimates when TV,
radio, and newspaper advertising budgets are used to predict product sales
using the Advertising data. We interpret these results as follows: for a given
amount of TV and newspaper advertising, spending an additional $1,000
on radio advertising leads to an increase in sales by approximately 189
units. Comparing these coefficient estimates to those displayed in Tables 3.1
and 3.3, we notice that the multiple regression coefficient estimates for
TV and radio are pretty similar to the simple linear regression coefficient
estimates. However, while the newspaper regression coefficient estimate in
Table 3.3 was significantly non-zero, the coefficient estimate for newspaper

in the multiple regression model is close to zero, and the corresponding
p-value is no longer significant, with a value around 0.86. This illustrates

Figure: In a three-dimensional setting, with two predictors and one response,
the least squares regression line becomes a plane. The plane is chosen to
minimize the sum of the squared vertical distances between each
observation (shown in red) and the plane.



16 Multiple Linear Regression

Fixing TV and newspaper advertising, spending an additional $1,000
on radio ⇒ sales increase 189 units

Note βnewspaper is now very close to zero, with a small t-statistic and
p-value.
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▶ corr(radio,newspaper) = 0.35

▶ newspaper gets ”credit” for the effect of radio on sales

▶ shark attacks vs ice cream sales at a given beach shows a
positive relationship

▶ higher temperatures ⇒ more people visit the beach ⇒ more ice
cream sales and more shark attacks

▶ ice cream no longer significant after adjusting for temperature



18 Variable selection
Which predictors are associated with the response? (in order to fit a
single model involving only those d predictors)

▶ Note: R2 always increase as you add more variables to the model

▶ adjusted R2: 1 − RSS/(n−p−1)
TSS/(n−1) = 1 − (1 − R2) n−1

n−p−1

▶ Mallow’s: Cp =
1
n(RSS + 2pσ̂2)

▶ Akaike Information criterion AIC =
1

nσ̂2 (RSS + 2pσ̂2)
Cannot consider all 2p models...
▶ Best Subset Selection: fit a separate least squares regression for

each possible k -combination of the p predictors, and select the
best one

▶ Forward selection: start with the null model and keep adding
predictors one by one

▶ Backward selection: start with all variables in the model, and
remove the variable with the largest p-value



19 Other considerations (see the textbook)
▶ prediction intervals
▶ extensions of the linear model

Y = β0 + β1X1 + β2X2 + β3X1X2 + ε

sales = β0 + β1 TV + β2 radio + β3( radio × TV ) + ε
= β0 + (β1 + β3 radio ) × TV + β2 radio + ε

• R2 for this model 96.8% vs 89.7% for the model that uses TV
and radio without an interaction term.
• The hierarchical principle: if we include X × Y , you should also
include the main effects X and Y (even if their p-values are not
significant)

▶ Non-linear Relationships

Y = β0 + β1X + β2X 2
+ ε



20 Potential Problems with Linear Regression

▶ Non-linearity of the response-predictor relationships

▶ Correlation of error terms

▶ Non-constant variance of error terms

▶ Outliers

▶ High-leverage points

▶ Collinearity



21 (1) Non-linearity of the Data

Figure: Residuals vs. predicted (or fitted) values for the Auto data set. In
each plot, the red line is a smooth fit to the residuals. Left: Y ∼ X , Right:
Y ∼ X 2.



22
(2) Time series of residuals - (Correlation of error terms)

Figure: Plots of residuals from simulated time series data sets generated
with differing levels of correlation ρ = {0 (top),0.5 (middle),0.9 (bottom)
between error terms for adjacent time points.
• See the Newey–West estimator, for handling autocorrelation (serial correlation), and
heteroskedasticity in the error terms.



23
(3) Residual plots - (Non-constant variance of error terms)

Figure: Red line: smooth fit to the residuals. Blue lines: track the outer
quantiles of the residuals. Left: The funnel shape indicates
heteroscedasticity (variance of the errors is not constant). Right: The
predictor has been log-transformed ⇒ no evidence of heteroscedasticity.

Read the entire Chapter 3 in ISLR.


