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Ranking from pairwise information
n players: incomplete inconsistent pairwise comparisons

(ordinal) Playeri � Playerj

(cardinal) Playeri 3 : 1 Playerj

Goal: infer a global or partial ranking π(i) of the n players

Playerπ(1) � Playerπ(2) � . . . � Playerπ(n)

that ”best” agrees with the data (eg., minimize the number of upsets)
I r1, r2, . . . , rn ground truth ranking r1, r2, . . . , rn ∈ {1,2, . . . ,n} (or

real-valued strengths ri ∈ R, i = 1, . . . ,n)
I available pairwise comparisons are a proxy for the rank (or

strength) offset ri − rj

I goal: recover estimates r̂1, r̂2, . . . , r̂n (or at least their relative
ordering)
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Challenges
I in most practical applications, the available information

I is usually incomplete, especially when n is large (meaning that we
only observe a small subset of pairwise measurements)

I is very noisy (meaning that most measurements are inconsistent
with the existence of an underlying total ordering)

I at sports tournaments (G = Kn) the outcomes always contain
cycles: A beats B, B beats C, and C beats A

I aim to recover a total (or partial) ordering that is as consistent as
possible with the data

I minimize the number of upsets: pairs of players for which the
higher ranked player is beaten by the lower ranked one
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Challenges

I the available measurements are not uniformly distributed around
the network, and can significantly affect the ranking procedure

I the noise in the data may not be distributed uniformly throughout
the network, with part of the network containing pairwise
measurements that are a lot less noisy than the rest of the network

I opportunity to recover partial rankings

I rely on recent spectral algorithms for detecting planted cliques or
dense subgraphs in a graph
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Why ranking?
• Ranking is a central part of many information retrieval problems.

The analysis of many modern large-scale data sets implicitly requires
various forms of ranking to allow for
I the identification of the most important entries
I efficient computation of search and sort operations
I extraction of main features

Instances of such problems are abundant in various disciplines,
especially in modern internet-related applications such as
I the famous search engine provided by Google
I eBay’s feedback-based reputation mechanism
I Amazon’s Mechanical Turk (MTurk) crowdsourcing to coordinate

the use of human labor to perform various tasks
I Netflix movie recommendation system
I Cite-Seer network of citations
I ranking of college football/basketball teams
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Exchange economic systems
I A purely exchange economic system may be described by a graph

G = (V ,E) with vertex set V = {1, ...,n} representing the n goods
and edge set E representing feasible pairwise transactions

I If the market is complete (every pair of goods is exchangeable),
then G = Kn

I Exchange rate between the i th and j th goods is

1 unit i = aij , aij > 0

I Exchange rate matrix A = [aij ] is a reciprocal matrix (possibly
incomplete)

I Used for paired preference aggregation, and later on, for currency
exchange analysis

I The problem of pricing is to look for a universal equivalent that
measures the values of goods π : V 7→ R s.t.

aij =
πj

πi
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Exchange economic systems
I The problem of pricing is to look for a universal equivalent that

measures the values of goods π : V 7→ R s.t.

aij =
πj

πi

I In complete markets, there exists a universal equivalent if and only
if the market is triangular arbitrage-free aijajk = aik , for all distinct
i , j , k ∈ V

I Transform into a pairwise ranking problem via the logarithmic map

Xij = log aij

I C3 arbitrage-free equivalent to Xij + Xjk + Xki = 0
I Thus, asking if a universal equivalent exists is equivalent to asking

if a global ranking s : V 7→ R exists so that

Xij = sj − si

with si = log πi
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Very rich literature on ranking

I dates back as early as the 1940s (Kendall and Smith)

I PageRank: used by Google to rank web pages in increasing order
of their relevance (see previous lecture)

I Kleinberg’s HITS algorithm: another website ranking algorithm
based on identifying good authorities and hubs for a given topic
queried by the user

Traditional ranking methods fall short:

I developed with ordinal comparisons in mind (movie X is better
than movie Y )

I much of the current data deals with cardinal/numerical scores for
the pairwise comparisons (e.g., goal difference in sports)



8
Erdős-Rényi Outliers noise model

r1, . . . , rn denote the ground truth rankings of the n players

ERO(n,p, η): the available measurements are given by

Cij =





ri − rj correct edge w.p. (1− η)p
∼ Unif[−(n − 1),n − 1] incorrect edge w.p. ηp

0 missing edge, w.p. 1− p
(1)
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Multiplicative Uniform Noise model

MUN(n,p, η): noise is multiplicative and uniform
I for cardinal measurements, instead of the true rank-offset

measurement ri − rj , we measure

Cij = (ri − rj)(1 + ε), where ε ∼ [−η, η]. (2)

I cap the erroneous measurements at n − 1 in magnitude
I for ordinal measurements, Cij = sign

(
(ri − rj)(1 + ε)

)

E.g., η = 50%, and ri − rj = 10, then Cij ∼ [5,15].
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Serial-Rank (NIPS 2014; JMLR 2016)

Cij =





1 if i is ranked higher than j
0 if i and j are tied, or comparison is not available
−1 if j is ranked higher than i

(3)

I the pairwise similarity matrix is given by

Smatch
ij =

n∑

k=1

(
1 + CikCjk

2

)
(4)

I CikCjk = 1 whenever i and j have the same signs, and CikCjk = −1
whenever they have opposite signs

I Smatch
ij counts the number of matching comparisons between i and

j with a third reference item k
I intuition: players that beat the same players and are beaten by the

same players should have a similar ranking in the final solution

Smatch =
1
2

(
n11T + CCT

)
(5)



11

Algorithm 1 Serial-Rank: an algorithm for spectral ranking using seri-
ation, proposed by Fogel, d’Aspremont and Vojnovic
Require: A set of pairwise comparisons Cij ∈ {−1,0,1} or [-1,1]

1: Compute a similarity matrix as shown in (4)
2: Compute the associated graph Laplacian matrix

LS = D − S (6)

for diagonal matrix D = diag (S1); Dii =
∑n

j=1 Si,j is the deg(i)
3: Compute the Fiedler vector of S (eigenvector corresponding to the

smallest nonzero eigenvalue of LS).
4: Output the ranking induced by sorting the Fiedler vector of S, with the

global ordering (increasing or decreasing order) chosen such that the
number of upsets is minimized.
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Serial-Rank: Robustness to corrupted entries

Theorem (Fogel et al., 2014)
Given a comparison matrix for n items with m corrupted comparisons
selected uniformly at random from the set of all possible item pairs. The
prob. of exact recovery p(n,m) using seriation on Smatch satisfies
p(n,m) ≥ 1− δ, if m = O(

√
δn).



12
Rank Centrality (NIPS 2012)

I Negahban, Oh, Shah, ”Rank Centrality: Ranking from Pair-wise
Comparisons”, NIPS 2012

I algorithm for rank aggregation by estimating scores for the items
from the stationary distribution of a certain random walk on the
graph of items

I edges encode the outcome of pairwise comparisons

I proposed for the rank aggregation problem: a collection of sets of
pairwise comparisons over n players, given by k different ranking
systems
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Rank Centrality

I the probability of transitioning from vertex i to vertex j is directly
proportional to how often player j beat player i across all the
matches played

I the random walk has a higher chance of transitioning to a more
skillful neighbors

I the frequency of visiting a particular node, which reflects the rank
or the skill level of the corresponding players, is encoded in the
stationary distribution of the associated Markov Chain

I Y (l)
ij = 1 if player j beats player i , and 0 otherwise, during the l th

match, l = 1, . . . , k
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Rank Centrality; k > 1 rating systems
I the famous BTL (Bradley-Terry-Luce) model assumes that

P(Y (l)
ij = 1) =

wj

wi + wj
(7)

I w is the vector of positive weights associated to the players
I RC first estimates the fraction of times j defeated i (in k matches)

aij =
1
k

k∑

l=1

Y (l)
ij

I consider the symmetric matrix

Aij =
aij

aij + aji
(8)

Pij =

{
1

dmax
Aij if i 6= j

1− 1
dmax

∑
k 6=i Aik if i = j ,

(9)

where dmax denotes the maximum out-degree of a node.
I recover the scores of the players/items items from the stationary

distribution of P (an eigenvector calculation)
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Singular Value Decomposition (SVD) ranking
I for cardinal measurements Cij = ri − rj , the noiseless matrix of rank

offsets C = (Cij)1≤i,j≤n is a skew-symmetric of even rank 2

C = reT − erT (10)
where e denotes the all-ones column vector (check this!)

I under the ERO noise model (also check)

ECij = (ri − rj)(1− η)p, (11)
I in matrix form: EC is a rank-2 skew-symmetric matrix

EC = (1− η)p(reT − erT ) (12)
I can decompose the given data matrix C as

C = EC + R (13)
I where R is a random noise matrix
I can recover the ordering from top 2 singular vectors of C:
{v1, v2,−v1,−v2}; order their entries, infer rankings, and choose
whichever minimizes the number of upsets

I amenable to a theoretical analysis using tools from random matrix
theory on rank-2 deformations of random matrices.
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Ranking via Least-Squares
I m = |E(G)|
I recall that instead of clean measurements

Tij = ri − rj (14)
we observe noisy measurements

Tij + noise︸ ︷︷ ︸
Cij

= ri − rj (15)

thus we can set up a linear system of equations
ri − rj ≈ Cij (16)

and solve this in the least squares sense.
I denote by B the edge-vertex incidence matrix of size m × n

Bij =





1 if (i , j) ∈ E(G), and i > j
−1 if (i , j) ∈ E(G), and i < j

0 if (i , j) /∈ E(G)
(17)

I w the vector of size m × 1 containing all pairwise comparisons
w(e) = Cij , for all edges e = (i , j) ∈ E(G)

I least-squares solution to the ranking problem
minimize

x∈Rn
||Bx − w ||22. (18)
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From synchronization to ranking

Estimate n unknown angles θ1, . . . , θn ∈ [0,2π), given m noisy
measurements Θij of their pairwise offsets

Θij = θi − θj mod 2π, (ij) ∈ E(G) (19)

Estimate n unknown strength/ranks r1, . . . , r2 ∈ [0,M], given m noisy
measurements Cij of their pairwise offsets

Cij = ri − rj , (ij) ∈ E(G) (20)
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Synchronization Ranking (Sync-Rank)

Map all rank offsets Cij to an angle Θij ∈ [0,2πδ)

Cij 7→ Θij := 2πδ
Cij

n − 1
(21)

Hij =

{
eıΘij if (i , j) ∈ E
0 if (i , j) /∈ E .

(22)

maximize
θ1,...,θn∈[0,2π)

n∑

i,j=1

e−ιθi Hijeιθj + relax (spectral or SDP) (23)

M. Cucuringu, Sync-Rank: Robust Ranking, Constrained Ranking and Rank Aggregation via Eigenvector and SDP
Synchronization, IEEE Transactions on Network Science and Engineering (2016)
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Setup and motivation

Serial-Rank

Rank Centrality

SVD-Ranking

Ranking via Least-Squares

Synchronization-Ranking (Sync-Rank)

Numerical experiments

Lead-lag detection in time series
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Comparison of several algorithms

Acronym Name
SVD SVD Ranking
LS Least Squares Ranking

SER Serial-Ranking (NIPS 2014)
SER-GLM Serial-Ranking in the GLM model (NIPS 2014)

RC Rank-Centrality (NIPS 2012)
SYNC Sync-Rank via the spectral relaxation

SYNC-SDP Sync-Rank via SDP relaxation

Table: Names of the algorithms we compare, and their acronyms.

Let us look at recovery error, as we vary
I the noise level η = {0,0.35,0.75} in the measurements
I at a fixed sparsity p = 0.5 of the measurement graph.
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ERO, η = 0, p = 0.5
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(d) SER-GLM
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• For ease of visualization, the n = 100 player strengths/ranks are such
that ri = i , i = 1,2, . . . ,n.
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ERO, η = 0.35, p = 0.5
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ERO, η = 0.75, p = 0.5
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Kendall distance
I measure accuracy using the popular Kendall distance (Lecture 3)
I counts the number of pairs of candidates that are ranked in

different order (flips), in the two permutations (the original one and
the recovered one)

κ(π1, π2) =
|{(i , j) : i < j , [π1(i) < π1(j) ∧ π2(i) > π2(j)] }(n

2

)

∨ [π1(i) > π1(j) ∧ π2(i) < π2(j)]}|
=

nr .flips(n
2

) (24)

I we compute the Kendall distance on a logarithmic scale

Let us look at recovery error, as we vary
I the noise level η ∈ [0,1) in the measurements
I the sparsity p = {1,0.2,0.05} of the measurement graph.
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Erdős-Rényi Outliers ERO(n = 200,p = 1, η)
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Erdős-Rényi Outliers ERO(n = 200,p = 0.2, η)
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Erdős-Rényi Outliers ERO(n = 1000,p = 0.05, η)
I Sparse measurement graph
I Gamma-distributed players strengths/skills
I Comparison against additional state-of-the-art methods
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FX matrix
Clean FX matrix:

• Synchronize a perturbed FX matrix?
• Synchronize a perturbed beta matrix? Can synchronization be used
to denoise an n × n matrix of pairwise betas? Can we better estimate
the beta to the market?
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A physical model for efficient ranking in networks

Caterina De Bacco,1, 2, ∗ Daniel B. Larremore,3, 4, 2, † and Cristopher Moore2, ‡

1Data Science Institute, Columbia University, New York, NY 10027, USA
2Santa Fe Institute, Santa Fe, NM 87501, USA

3Department of Computer Science, University of Colorado, Boulder, CO 80309, USA
4BioFrontiers Institute, University of Colorado, Boulder, CO 80303, USA

We present a physically-inspired model and an efficient algorithm to infer hierarchical rankings of
nodes in directed networks. It assigns real-valued ranks to nodes rather than simply ordinal ranks,
and it formalizes the assumption that interactions are more likely to occur between individuals with
similar ranks. It provides a natural statistical significance test for the inferred hierarchy, and it
can be used to perform inference tasks such as predicting the existence or direction of edges. The
ranking is obtained by solving a linear system of equations, which is sparse if the network is; thus the
resulting algorithm is extremely efficient and scalable. We illustrate these findings by analyzing real
and synthetic data, including datasets from animal behavior, faculty hiring, social support networks,
and sports tournaments. We show that our method often outperforms a variety of others, in both
speed and accuracy, in recovering the underlying ranks and predicting edge directions.

Introduction

In systems of many individual entities, interactions and
their outcomes are often correlated with these entities’
ranks or positions in a hierarchy. While in most cases
these rankings are hidden from us, their presence is nev-
ertheless revealed in the asymmetric patterns of interac-
tions that we observe. For example, some social groups
of birds, primates, and elephants are organized accord-
ing to dominance hierarchies, reflected in patterns of re-
peated interactions in which dominant animals tend to
assert themselves over less powerful subordinates [1]. So-
cial positions are not directly visible to researchers, but
we can infer each animal’s position in the hierarchy by
observing the network of pairwise interactions. Similar
latent hierarchies have been hypothesized in systems of
endorsement in which status is due to prestige, reputa-
tion, or social position [2, 3]. For example, in academia,
universities may be more likely to hire faculty candidates
from equally or more prestigious universities [3].

In all these cases, the direction of the interactions is af-
fected by the status, prestige, or social position of the en-
tities involved. But it is often the case that even the exis-
tence of an interaction, rather than its direction, contains
some information about those entities’ relative prestige.
For example, in some species, animals are more likely to
interact with others who are close in dominance rank [4–
8]; human beings tend to claim friendships with others
of similar or slightly higher status [9]; and sports tourna-
ments and league structures are often designed to match
players or teams based on similar skill levels [10, 11]. This
suggests that we can infer the ranks of individuals in a so-
cial hierarchy using both the existence and the direction
of their pairwise interactions. It also suggests assigning

∗ cdebacco@santafe.edu; Contributed equally.
† daniel.larremore@colorado.edu; Contributed equally.
‡ moore@santafe.edu

real-valued ranks to entities rather than simply ordinal
rankings, for instance in order to infer clusters of entities
with roughly equal status with gaps between them.

In this work we introduce a physically-inspired model
that addresses the problems of hierarchy inference, edge
prediction, and significance testing. The model, which
we call SpringRank, maps each directed edge to a di-
rected spring between the nodes that it connects, and
finds real-valued positions of the nodes that minimizes
the total energy of these springs. Because this optimiza-
tion problem requires only linear algebra, it can be solved
for networks of millions of nodes and edges in seconds.

We also introduce a generative model for hierarchical
networks in which the existence and direction of edges de-
pend on the relative ranks of the nodes. This model for-
malizes the assumption that individuals tend to interact
with others of similar rank, and it can be used to create
synthetic benchmark networks with tunable levels of hi-
erarchy and noise. It can also predict unobserved edges,
allowing us to use cross-validation as a test of accuracy
and statistical significance. Moreover, the maximum like-
lihood estimates of the ranks coincides with SpringRank
asymptotically.

We test SpringRank and its generative model version
on both synthetic and real datasets, including data from
animal behavior, faculty hiring, social support networks,
and sports tournaments. We find that it infers accurate
rankings, provides a simple significance test for hierarchi-
cal structure, and can predict the existence and direction
of as-yet unobserved edges. In particular, we find that
SpringRank often predicts the direction of unobserved
edges more accurately than a variety of existing methods,
including popular spectral techniques, Minimum Viola-
tion Ranking, and the Bradley-Terry-Luce method.

Related work

Ranking entities in a system from pairwise compar-
isons or interactions is a fundamental problem in many
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σa =
∑

i,j

AijPij and σL =
∑

i,j

Aij logPij . (10)

In the multigraph case, we ask how well Pij approximates
the fraction of interactions between i and j that point
from i to j [see Eqs. (12) and (13)]. For a discussion of
other performance measures, see Supplemental Text S9.

We perform our probabilistic prediction experiments
as follows. Given the training data, we infer the ranks
using Eq. (5). We then choose the temperature parame-
ter β by maximizing either σa or σL on the training data
while holding the ranks fixed. The resulting values of β,

which we denote β̂a and β̂L respectively, are generally
distinct (Supplemental Table S2 and Text S7). This is
intuitive, since a single severe mistake where Aij = 1 but
Pij ≈ 0 reduces the likelihood by a large amount, while
only reducing the accuracy by one edge. As a result,

predictions using β̂a produce fewer incorrectly oriented
edges, achieving a higher σa on the test set, while predic-

tions using β̂L will produce fewer dramatically incorrect
predictions where Pij is very low, and thus achieve higher
σL on the test set.

Statistical significance using the ground state energy

We can measure statistical significance using any test
statistic, by asking whether its value on a given dataset
would be highly improbable in a null model. One such
statistic is the accuracy of edge prediction using a method
such as the one described above. However, this may
become computationally expensive for cross-validation
studies with many replicates, since each fold of each

replicate requires inference of the parameter β̂a. Here
we propose a test statistic which is very easy to com-
pute, inspired by the physical model behind SpringRank:
namely, the ground state energy. For the unregularized
version Eq. (2), the energy per edge is (see SI Text S3)

H(s∗)
M

=
1

2M

∑

i

(dini − douti ) s∗i +
1

2
. (11)

Since the ground state energy depends on many aspects
of the network structure, and since hierarchical structure
is statistically significant if it helps us predict edge direc-
tions, like [37] we focus on the following null model: we
randomize the direction of each edge while preserving the
total number Āij = Aij +Aji of edges between each pair
of vertices. If the real network has a ground state energy
which is much lower than typical networks drawn from
this null model, we can conclude that the hierarchical
structure is statistically significant.

This test correctly concludes that directed Erdős-Rényi
graphs have no significant structure. It also finds no sig-
nificant structure for networks created using the genera-
tive model Eq. (7) with β = 0.1, i.e., when the tempera-
ture or noise level 1/β is sufficiently large the ranks are no

longer relevant to edge existence or direction (Fig. S2).
However, we see in the next section that it shows sta-
tistically significant hierarchy for a variety of real-world
datasets, showing that H(s∗) is both useful and compu-
tationally efficient as a test statistic.

FIG. 1. Performance on synthetic data. (A) A synthetic
network of N = 100 nodes, with ranks drawn from a standard
Gaussian and edges drawn via the generative model Eq. (7)
for two different values of β and average degree 5. Blue edges
point down the hierarchy and red edges point up, indicated
by arrows. (B) The accuracy of the inferred ordering defined
as the Spearman correlation averaged over 100 indendepently
generated networks; error bars indicate one standard devia-
tion. (C, D) Identical to A and B but with ranks drawn from
a mixture of three Gaussians so that the nodes cluster into
three tiers (Materials and Methods). See Fig. S1 for perfor-
mance curves for Pearson correlation r.

Results on real and synthetic data

Having introduced SpringRank, an efficient procedure
for inferring real-valued ranks, a corresponding gener-
ative model, a method for edge prediction, and a test
for the statistical significance of hierarchical structure,
we now demonstrate it by applying it to both real and
synthetic data. For synthetic datasets where the ground-
truth ranks are known, our goal is to see to what extent
SpringRank and other algorithms can recover the actual
ranks. For real-world datasets, in most cases we have
no ground-truth ranking, so we apply the statistical sig-
nificance test defined above, and compare the ability of
SpringRank and other algorithms to predict edge direc-

• C. De Bacco, D. B. Larremore and C. Moore, A physical model for efficient ranking in
networks, Science Advances (2018). + Implementations in Python, Matlab, R.
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Setup and motivation

Serial-Rank

Rank Centrality

SVD-Ranking

Ranking via Least-Squares

Synchronization-Ranking (Sync-Rank)

Numerical experiments

Lead-lag detection in time series
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Leaders and laggers in multivariate time series

I lead-lag networks from multivariate time series
I lagged relationships encountered in natural physical systems

(correlation between two time series shifted in time relative to one
another)

I one time series has a delayed response
I to the other series,
I to a common factor/stimulus that affects both series

I ranking/denoising arises from lagged relationships

I the return of instrument i on day t may influence the behavior of
instrument j on day t + 3 (i leads j by 3 units of time)

I such pairwise comparisons are very noisy and inconsistent

I capture lead-lag relationships, compute rankings, predict the
laggers catching up
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Cross-correlations and the lead-lag matrix

Wu et al, 2010
Options for building the pairwise comparison matrix:

1. Cij : lag that maximizes the cross-correlation
2. Cij : ±max{avg. corr. of +ve lags,avg. corr. of -ve lags}
3. Cij : second order signatures of the two time series

Aij(t −m, t) =

∫∫

t−m<u<v<t

dXi(u) dXj(v)− dXj(u) dXi(v)
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Global ranking of the time series
I find a global ranking of the time series,
I construct a leading and a lagging cluster,
I build a forecast for the lagging cluster catching up to the leading

cluster

t	 t+1	

			Highest	rank	
	“most	leading”	

			Lowest	rank	
	“most	lagging”	

Leaders	Dα	

Laggers	Gβ	

1	
2	
.	
.	
.	
	
	
	
.	
.	
.	
n	

=me	
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Data set: S&P 500 constituents (470)

I 2003-2014, 3000+ trading days
I daily log returns
I on any given day, use the past m = 60 days of historical data
I forecast the future 1-day return
I universe given by S&P 500 constituents (and 10 sector ETFs)
I 1-to-1 hedge with {SPY, the basket of leaders}

Note: simple momentum-based approach (D = G = [n]) yields
I Sharpe = 0.5
I P&L = 1 bpts/day

Keep β = 1− α fixed (could replace by a ”Cheeger sweep”)
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Profit & Loss across time (2003-2014)
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