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Ranking from pairwise information
n players: incomplete inconsistent pairwise comparisons

(ordinal) Player; - Player;
(cardinal) Player; 3 : 1 Player;

Goal: infer a global or partial ranking = (i) of the n players
Player. 1y = Player ) > ... - Player ,

that "best” agrees with the data (eg., minimize the number of upsets)
» ry,r,...,mground truth ranking ry, ra, ..., rp € {1,2,...,n} (or
real-valued strengths , e R,i=1,...,n)
> available pairwise comparisons are a proxy for the rank (or
strength) offset r; — r;
» goal: recover estimates 7y, 7, ..., I, (or at least their relative
ordering)



2Challenges

» in most practical applications, the available information

> is usually incomplete, especially when nis large (meaning that we
only observe a small subset of pairwise measurements)

> is very noisy (meaning that most measurements are inconsistent
with the existence of an underlying total ordering)

» at sports tournaments (G = K,) the outcomes always contain
cycles: A beats B, B beats C, and C beats A

A

B C

> aim to recover a total (or partial) ordering that is as consistent as
possible with the data

» minimize the number of upsets: pairs of players for which the
higher ranked player is beaten by the lower ranked one



3Challenges

» the available measurements are not uniformly distributed around
the network, and can significantly affect the ranking procedure

> the noise in the data may not be distributed uniformly throughout
the network, with part of the network containing pairwise
measurements that are a lot less noisy than the rest of the network

> opportunity to recover partial rankings

> rely on recent spectral algorithms for detecting planted cliques or
dense subgraphs in a graph



4Why ranking?

e Ranking is a central part of many information retrieval problems.

The analysis of many modern large-scale data sets implicitly requires
various forms of ranking to allow for

> the identification of the most important entries
» efficient computation of search and sort operations
» extraction of main features

Instances of such problems are abundant in various disciplines,
especially in modern internet-related applications such as

» the famous search engine provided by Google
> eBay’s feedback-based reputation mechanism

» Amazon’s Mechanical Turk (MTurk) crowdsourcing to coordinate
the use of human labor to perform various tasks

> Netflix movie recommendation system
Cite-Seer network of citations
» ranking of college football/basketball teams

v
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Exchange economic systems

> A purely exchange economic system may be described by a graph
G = (V, E) with vertex set V = {1, ..., n} representing the n goods
and edge set E representing feasible pairwise transactions

> If the market is complete (every pair of goods is exchangeable),
then G = K,

» Exchange rate between the i and j goods is

1unit/i=ay a; >0

» Exchange rate matrix A = [a;] is a reciprocal matrix (possibly
incomplete)

> Used for paired preference aggregation, and later on, for currency
exchange analysis

» The problem of pricing is to look for a universal equivalent that
measures the values of goods 7 : V — R s.t.



6 .
Exchange economic systems

» The problem of pricing is to look for a universal equivalent that
measures the values of goods 7 : V — R s.t.
-
_7
» In complete markets, there exists a universal equivalent if and only
if the market is triangular arbitrage-free a;ay = aj, for all distinct
i,j,keV
» Transform into a pairwise ranking problem via the logarithmic map

X,'j = |Og a,-j

> Cj arbitrage-free equivalent to Xj + Xj + Xj; =0
» Thus, asking if a universal equivalent exists is equivalent to asking
if a global ranking s : V — R exists so that

Xij=8j— S

with 5; = log 7;
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Very rich literature on ranking

> dates back as early as the 1940s (Kendall and Smith)

» PageRank: used by Google to rank web pages in increasing order
of their relevance (see previous lecture)

» Kleinberg’'s HITS algorithm: another website ranking algorithm
based on identifying good authorities and hubs for a given topic
queried by the user

Traditional ranking methods fall short:

» developed with ordinal comparisons in mind (movie X is better
than movie Y)

» much of the current data deals with cardinal/numerical scores for
the pairwise comparisons (e.g., goal difference in sports)



Erdos-Rényi Outliers noise model

r,...,rn denote the ground truth rankings of the n players

ERO(n, p,n): the available measurements are given by

Cj= 1 ~Unif[-(n—1),n—1] incorrect edge w.p. np (1)

ri—r correctedge  w.p. (1—n)p
0 missingedge, w.p.1-—p



i Multiplicative Uniform Noise model

MUN(n, p, n): noise is multiplicative and uniform

» for cardinal measurements, instead of the true rank-offset
measurement r; — r;, we measure

Cj=(ri—n)(1+e€), where e~ [-n,n]. (2)

» cap the erroneous measurements at n — 1 in magnitude
» for ordinal measurements, C; = sign ((r; — r;)(1 +¢))

E.g.,n =50%, and r; — r; = 10, then C;; ~ [5,15].
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Serial-Rank (NIPS 2014; JMLR 2016)

0 ifiandjare tied, or comparison is not available  (3)
—1 if j is ranked higher than i
> the pairwise similarity matrix is given by

n 1 ey
Slgjnatch — Z < + glk Cjk> (4)

k=1

1 if i is ranked higher than |
Cj=

» CiCik = 1 whenever i and j have the same signs, and Cy Cjx = —1
whenever they have opposite signs

> S,f-"am” counts the number of matching comparisons between i and
Jj with a third reference item k

> intuition: players that beat the same players and are beaten by the
same players should have a similar ranking in the final solution

gmateh — % (m17+ccT) (5)



Algorithm 1 Serial-Rank: an algorithm for spectral ranking using seri-
ation, proposed by Fogel, d’Aspremont and Vojnovic
Require: A set of pairwise comparisons C; € {—1,0,1} or [-1,1]

1: Compute a similarity matrix as shown in (4)

2: Compute the associated graph Laplacian matrix

Ls=D-S (6)

for diagonal matrix D = diag (S1); D; = >/ Sj; is the deg(i)

3: Compute the Fiedler vector of S (eigenvector corresponding to the
smallest nonzero eigenvalue of Lg).

4: Output the ranking induced by sorting the Fiedler vector of S, with the
global ordering (increasing or decreasing order) chosen such that the
number of upsets is minimized.
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Serial-Rank: Robustness to corrupted entries

Theorem (Fogel et al., 2014)

Given a comparison matrix for n items with m corrupted comparisons
selected uniformly at random from the set of all possible item pairs. The
prob. of exact recovery p(n, m) using seriation on S™°" satisfies
p(n,m) >1—6, ifm= O(/én).



"Rank Centrality (NIPS 2012)

» Negahban, Oh, Shah, "Rank Centrality: Ranking from Pair-wise
Comparisons”, NIPS 2012

» algorithm for rank aggregation by estimating scores for the items
from the stationary distribution of a certain random walk on the
graph of items

> edges encode the outcome of pairwise comparisons

> proposed for the rank aggregation problem: a collection of sets of
pairwise comparisons over n players, given by k different ranking
systems



13F{ank Centrality

» the probability of transitioning from vertex i to vertex j is directly
proportional to how often player j beat player i across all the
matches played

» the random walk has a higher chance of transitioning to a more
skillful neighbors

> the frequency of visiting a particular node, which reflects the rank
or the skill level of the corresponding players, is encoded in the
stationary distribution of the associated Markov Chain

> Y,.j(.’) = 1 if player j beats player i, and 0 otherwise, during the /™"
match, I =1,...,k
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Rank Centrality; k > 1 rating systems
» the famous BTL (Bradley-Terry-Luce) model assumes that
Wi
w; + Wi

PV =1) = (7)

» w is the vector of positive weights associated to the players
» RC first estimates the fraction of times j defeated i (in k matches)

k
1 (1)
aj =7 Z Y
1=1

» consider the symmetric matrix

ajj
— 8
Y ajj + ajj ®
A ifi#]
P; = Omax” W T 9
! { 1*%2;(7&,'/4#( ifti=J, ®)

where dnax denotes the maximum out-degree of a node.
» recover the scores of the players/items items from the stationary
distribution of P (an eigenvector calculation)
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Singular Value Decomposition (SVD) ranking

» for cardinal measurements C; = r; — r;, the noiseless matrix of rank

offsets C = (Cj)1<ij<n is a skew-symmetric of even rank 2
C=re’ —er’

where e denotes the all-ones column vector (check this!)
» under the ERO noise model (also check)

ECj = (ri—r)(1 —n)p,
» in matrix form: EC is a rank-2 skew-symmetric matrix
EC=(1—-n)p(re” —er")
» can decompose the given data matrix C as
C=EC+R

» where R is a random noise matrix
» can recover the ordering from top 2 singular vectors of C:

(10)

(11)

(12)

(13)

{v1, va, —v1, —Vn}; order their entries, infer rankings, and choose

whichever minimizes the number of upsets

> amenable to a theoretical analysis using tools from random matrix

theory on rank-2 deformations of random matrices.
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Ranking via Least-Squares

> m=|E(G)|
» recall that instead of clean measurements
Tj=ri—1 (14)
we observe noisy measurements
Tj+noise =r; —r; (15)
N —

Cj
thus we can set up a linear syjstem of equations
ri—1; = Cj (16)
and solve this in the least squares sense.
» denote by B the edge-vertex incidence matrix of size m x n
1 if(i,j) e E(G), andi>j
Bj = { -1 if(i,j) e E(G), andi<j (17)
0 if(i,)) ¢ E(G)
» w the vector of size m x 1 containing all pairwise comparisons
w(e) = Cj, for all edges e = (i,) € E(G)
> |east-squares solution to the ranking problem
minimize ||Bx — w/|[3. (18)
XeRN
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From synchronization to ranking

Estimate n unknown angles 04,...,60, € [0,27), given m noisy
measurements ©; of their pairwise offsets

©j=0;—0; mod2r, ()< E(G) (19)

Estimate n unknown strength/ranks ry, ..., r» € [0, M], given m noisy
measurements C; of their pairwise offsets

Cj=r—r, (i)eE(G) (20)
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Synchronization Ranking (Sync-Rank)

Stoke
Soystal paiace 2 5ster ity
wal st Ham United

fest Bromwich

West Ham United West Bromwich
Leicester City ‘Bournemouth

Swansga Gity tanchester United Sunderland

Arsgnal

Liverpool

Liverpool

Manchester City
0; Manchester City
Miadi Tottepham  ©* Tottenham
o helsea
Sunderland < -

Chelsea

Map all rank offsets Cj; to an angle ©;; € [0, 270)
C:
C,'j — @ij = 27T5n_’j
e®i if(i,j)e E
0 if (i,)) ¢ E.
n
maximize e “"H e¥ 4+ relax (spectral or SDP) (23)
1. 0n€(0.27) £

M. Cucuringu, Sync-Rank: Robust Ranking, Constrained Ranking and Rank Aggregation via Eigenvector and SDP
Synchronization, IEEE Transactions on Network Science and Engineering (2016)

Hj =



Numerical experiments
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Comparison of several algorithms

Acronym | Name

SVD SVD Ranking
LS Least Squares Ranking
SER Serial-Ranking (NIPS 2014)
SER-GLM | Serial-Ranking in the GLM model (NIPS 2014)
RC Rank-Centrality (NIPS 2012)
SYNC Sync-Rank via the spectral relaxation
SYNC-SDP | Sync-Rank via SDP relaxation

Table: Names of the algorithms we compare, and their acronyms.

Let us look at recovery error, as we vary
» the noise level n = {0,0.35,0.75} in the measurements
> at a fixed sparsity p = 0.5 of the measurement graph.



"ERO, =0, p=05

LS:t=0, x=1 SVD: t=0.036, k=0.929 SER: t1=0.028 , k=0.944
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Recovered rank
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Ground truth rank
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(@) LS (b) SVD (c) SER

SER-GLM: 1=0.034, x=0.933 RC: 1=0.001, x=0.998 SYNC-EIG:t=0, x=1

Recovered rank
Recovered rank
Recovered rank

20 80 20

80 20

40 60 40 60
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40 60
Ground truth rank

(d) SER-GLM (e) RC (f) SYNC-EIG

e For ease of visualization, the n = 100 player strengths/ranks are such
thatrr=4i,i=1,2, ...,n



"ERO, = 0.35, p— 0.5

LS: 1=0.088, x=0.825

SVD: t=0.099, x=0.802 SER: 1=0.114, x=0.772

Recovered rank
Recovered rank
Recovered rank

20

20

40 60 20
Ground truth rank

40 60 40 60
Ground truth rank Ground truth rank

(9) LS (h) SVD (i) SER

SER-GLM: 1=0.152, x=0.697 RC: 1=0.088, x=0.823 SYNC-EIG :1=0.027, x=0.945

Recovered rank
Recovered rank
Recovered rank

20 20
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40 60
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(i) SER-GLM (k) RC (I) SYNC-EIG



“ERO, = 0.75, p= 0.5

LS: 1=0.195, k=0.61

SVD: 1=0.308, k=0.383 SER: t1=0.444, x=0.112

Recovered rank
Recovered rank
Recovered rank

40 60 40 60
Ground truth rank Ground truth rank

40 60
Ground truth rank

(m) LS (n) SVD (0) SER

SER-GLM: 1=0.394, x=0.212 RC: t=0.195, x=0.61 SYNC-EIG :1=0.152, x = 0.696

Recovered rank
@
3

Recovered rank
IS
S

Recovered rank

N
S

20

20

40 60
Ground truth rank

20

40 60 40 60
Ground truth rank Ground truth rank

(p) SER-GLM (9) RC (r) SYNC-EIG
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Kendall distance

> measure accuracy using the popular Kendall distance (Lecture 3)

» counts the number of pairs of candidates that are ranked in
different order (flips), in the two permutations (the original one and
the recovered one)

{G7) 1 < [m(7) <mi() A ma2(i) > ma(f)] }
(2)

V [y (1) > () A ma(i) < ma()}| _ nr.flips

(2)

» we compute the Kendall distance on a logarithmic scale

k(my,m2) =

(24)

Let us look at recovery error, as we vary
» the noise level n € [0, 1) in the measurements
» the sparsity p = {1,0.2,0.05} of the measurement graph.



“Erdés-Rényi Outliers ERO(n = 200, p = 1, 7)
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“Erdés-Rényi Outliers ERO(n = 200, p — 0.2, 1)
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Erd6s-Rényi Outliers ERO(n = 1000, p = 0.05, )
> Sparse measurement graph
» Gamma-distributed players strengths/skills
» Comparison against additional state-of-the-art methods

©
&)
c
S
D
(@]
<
° +SVD +=SPR
N ©-SVD-N —BTL
0.2 RSUM +PGR
LS <+SYNC
+SER
0.1« ‘ ‘
0.2 0.4 0.6 0.8
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FX matrix

Clean FX matrix:

uSsD
0.84922| 120.621| 1.08374  1.48042  1.08900

1.17755 142.036 1.27613 1.74322 1.28233

0.008290 0.007040 0.008985 0.012273| 0.009028

0.92273 0.78362 111.300 1.36601 1.00485

0.67548  0.57365 81.478  0.73206 0.73560

0.91827 0.77983 110.763 0.99518 1.35944

e Synchronize a perturbed FX matrix?

e Synchronize a perturbed beta matrix? Can synchronization be used
to denoise an n x n matrix of pairwise betas? Can we better estimate
the beta to the market?



A physical model for efficient ranking in networks

Caterina De Bacco,?'* Daniel B. Larremore,>* 2 T and Cristopher Moore?:

! Data Science Institute, Columbia University, New York, NY 10027, USA
2Santa Fe Institute, Santa Fe, NM 87501, USA
3 Department of Computer Science, University of Colorado, Boulder, CO 80309, USA
4 BioFrontiers Institute, University of Colorado, Boulder, CO 80303, USA

‘We present a physically-inspired model and an efficient algorithm to infer hierarchical rankings of
nodes in directed networks. It assigns real-valued ranks to nodes rather than simply ordinal ranks,
and it formalizes the assumption that interactions are more likely to occur between individuals with
similar ranks. It provides a natural statistical significance test for the inferred hierarchy, and it
can be used to perform inference tasks such as predicting the existence or direction of edges. The
ranking is obtained by solving a linear system of equations, which is sparse if the network is; thus the
resulting algorithm is extremely efficient and scalable. We illustrate these findings by analyzing real
and synthetic data, including datasets from animal behavior, faculty hiring, social support networks,
and sports tournaments. We show that our method often outperforms a variety of others, in both
speed and accuracy, in recovering the underlying ranks and predicting edge directions.
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- SerialRank

1 01 —e— SpringRank
P —— SyncRank
0
i 0 1 2 3 4 5
3=0.3 | i=21 | inverse temperature, /3

e C. De Bacco, D. B. Larremore and C. Moore, A physical model for efficient ranking in
networks, Science Advances (2018). + Implementations in Python, Matlab, R.



Lead-lag detection in time series
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Leaders and laggers in multivariate time series

» lead-lag networks from multivariate time series

> lagged relationships encountered in natural physical systems
(correlation between two time series shifted in time relative to one
another)

> one time series has a delayed response

> to the other series,
» to a common factor/stimulus that affects both series

» ranking/denoising arises from lagged relationships

» the return of instrument i on day t may influence the behavior of
instrument j on day t + 3 (/ leads j by 3 units of time)

» such pairwise comparisons are very noisy and inconsistent

> capture lead-lag relationships, compute rankings, predict the
laggers catching up
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Cross-correlations and the lead-laa matrix
1 . . ‘ ‘ ‘

0.5

Correlation Value
o

60 40 20 0 20 40 60
Lag Wu et al, 2010
Options for building the pairwise comparison matrix:

1. Cj: lag that maximizes the cross-correlation
2. Cj: =max{avg. corr. of +ve lags,avg. corr. of -ve lags}
3. Cj: second order signatures of the two time series

Ayt — m, 1) / dXi(u) dX(v) — dXi(u) dXi(v)

t—m<u<v<t



33Global ranking of the time series
» find a global ranking of the time series,
> construct a leading and a lagging cluster,
» build a forecast for the lagging cluster catching up to the leading
cluster

Highest rank
“most leading”
1

2
Leaders D

Laggers Gg -

n

Lowest rank
“most lagging”

time




34Data set: S&P 500 constituents (470)

> 2003-2014, 3000+ trading days
» daily log returns
> on any given day, use the past m = 60 days of historical data
» forecast the future 1-day return
> universe given by S&P 500 constituents (and 10 sector ETFs)
> 1-to-1 hedge with {SPY, the basket of leaders}
Note: simple momentum-based approach (D = G = [n]) yields
» Sharpe = 0.5
> P&L = 1 bpts/day
Keep 5 = 1 — « fixed (could replace by a "Cheeger sweep”)



35Profit & Loss across time (2003-2014)

O Lead —>Llag
n © Lead -> Lag-Lead
o | © Lead —> Lag__2bptsCost
Lead —> Lag-Lead__2bptsCost
o |
o
v _
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=
o
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0 _
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