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Recovering signal from pairwise noisy comparisons

>

>
>

A\ A 4

letr=1(r,..., rn)T e R" be an unknown signal (for eg, unknown
latent strength of a player)

G = ([n], E) is an undirected measurement graph

we are given a subset of noisy pairwise measurements

Mj = ri—1;, foreach {i,j} € E ()

(for eg, results of a match outcome reflecting the skill difference)
goal: estimate the original vector r
clearly, only possible only up to a global shift
when measurements are exact without any measurement noise,
one can recover the strength vector r < graph G is connected
» simply consider a spanning tree of G
» fix the value of the root node
» traverse the tree & propagate information by summing the offsets
for simplicity, we assume the graph is connected, (otherwise it is
not possible to estimate the offset values between nodes
belonging to different connected components of the graph)
how would you solve this problem?



® Synchronization over the real line R
Instantiations of the above problem are ubiquitous in

» engineering

» machine learning

» computer vision

P have received a great deal of attention in the recent literature

Synchronization over the real line R:

» Time synchronization of wireless networks. A popular application
arises in engineering, and is known as time synchronization of
distributed networks where clocks measure noisy time offsets
ri — rj, and the goal is to recover ry, ..., r, € R.

» Ranking. A fundamental problem in information retrieval is that of
recovering the ordering induced by the latent strengths or scores
r,...,r € Rof aset of nplayers, that is best reflected by the
given set of pairwise comparisons r; — r;.

» We can frame this problem as that of recovering elements of a group
G=R: r,....Mm,withr,eR (2)

given a small subset of pairwise differences.

 But what about other groups G?
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Synchronization over Z,
+1

6+1
Figure: Synchronization over Z, (left: clean, right: noisy)
» unknown group elements zy, z», ..., zZy € Zy correspond to the
vertices of a measurement graph G
» each edge (i,j) in E(G) holds a noisy version of the ratio of the
elements from its endpoints (in Z, recall that z; = z,-_1)
» a potential noise model for the measurement graph is

z,-zj_1 = zz; (i,j) € E and the measurement is correct,
Zj = -zizj =-zz (i,j)€ E and the measurement is incorrect.
0 (ilj))¢E
» original solution: zq,...,z, € +17  (Zy = {-1,+1})
P task: estimate approximated solution xq,..., Xy € +1" such that
we satisfy as many pairwise group relations in Z, as possible.



5 . .
Synchronization over Z,
Consider maximizing the following quadratic form (happy edges)

N
T
max Z XiZiXj = max X ZX,
X1,...,XN€Z’2V ij=1 X17...,XNEZ£I

whose maximum is attained when x = z (noise-free data).

NP-hard problem, but relax to

N

.
max Z XiZjjXj = max X Zx
Y IalP=N T lIx|2=N

whose maximum is achieved when x = vy, the normalized top
eigenvector of Z
ZV1 = AV
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Alternative formulation - Synchronization over Z,
Start by formulating the synchronization problem as a least squares
problem, by minimizing the following quadratic form (unhappy edges)

min Y (X - Zjx;)°

N
X€Za (jj)eE

¢ Signed Graph Laplacian

. 2 2 2
min Xi + Zi X — 2ZjXiXj

N
X€Zz (ij)eE
) 2 2
min Xi + X; — 2ZiXiX;
i j ijRi %]
xezh .4
2 (i,j)eE
n

: 2
= mlr)v d,’X,' - Z ZZ,'jX,'Xj
X€Zy =4 (ij)eE
= min x' Dx — x' Zx
xezy
=  min XT(B - 2Z)x
xezg
L=D-2Z (3)

where Dj; = Zj’-’:1 | Zj|. For the rest of the slides, we use D to denote D



"The Eigenvector Method - noiseless case
Exercise
Claim: One can recover the correct sign (ie, group element in Z,) at
each node from the top eigenvector of Z = D'z

» z=D"Z

Diagonal matrix T, T = z; (ground truth value)

A = (aj) adjacency matrix of the measurement graph
Write Z = (zj) as Z = TAT_1, for noiseless data z; = z;z
z=T(D AT

Z and D' A all have the same eigenvalues (similar matrices)
Normalized discrete graph Laplacian £ = / - DA

I — Z and £ have the same eigenvalues
1—/\,Z=/\f20,andv,Z:Tv,-L

G connected = )\f = 0 is simple, vf =1= (1,1,...,1)T
vi =71 andthus v¥ (i) = z;

vVvVvvvVvVvVvVVYVYY
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Synchronization over SO(2)
Estimate n unknown angles (group elements in SO(2))

01,...,0,€[0,27),
given m noisy measurements §ij of their pairwise offsets

0j=0;—06; mod 2. (4)
Challenges:
» amount of noise in the measurements, ie, in reality we measure
dj = (0; — 0; + Noise) mod 27. (5)
» only a very small subset of all possible pairwise offsets are
measured (m << (7))
Questions
» In the noiseless setting, how can we get a solution?
» In general, is the solution unique?

 Chapter 10, "Synchronization Problems and Alignment’, in Ten Lectures and
Forty-Two Open Problems in the Mathematics of Data Science, by Afonso -Bandeira



° Angular embedding

» A. Singer (2011), spectral and SDP relaxation for the angular
synchronization problem

» S. Yu (2012), spectral relaxation; robust to noise when applied to
an image reconstruction problem

» embedding in the angular space is significantly more robust to
outliers compared to embedding in the usual linear space



1 .
Noise models

>
>
>

v

vvywvyy

many possible models for the measurement errors
including ones that allow for many outliers

an outlier is an offset measurement that has a uniform distribution
on [0, 27), regardless of the true value for the offset

there also exist (of course) good measurements whose errors are
relatively small (or even zero error; assume this for simplicity)

the user has no a-priori knowledge on which measurements are
good and which are bad (outliers)

the edge set E can be split into

a set of good edges Egpoq Of Size Myooq

a set of bad edges Ey .y 0f size Mpay

with m = |E| = Mgpoq + Mpag, ..

5= 60; -0 for {/,/} € Egood (6)
65 ~ Uniform ([0,27)) for {i,j} € Epag



"Least-squares approach for SO(2)

>

v

over-determined system of linear equations (modulo 27)
9,'—9j=(5,'j mod 27, for {I,j} eE (7)

can solve via the method of least-squares
introduce the complex-valued variables z; = e
the system (7) is equivalent to

zi— €%z =0, for{ij}eE, (8)

overdetermined system of homogeneous linear equations over C
set z; = 1 (ie. 64 = 0) to prevent the solution from collapsing to
the trivial solutionzy =z =...=2,=0

find solution z, .. ., z, of (8) with minimal /o-norm residual

least-squares method will be affected by the outliers (as outlier
equations will dominate the sum of squares)

will compare to the least-squares baseline in the simulations
seek for an alternative solution, more robust to outliers



1 .
“Towards a spectral relaxation for SO(2)
» build the n x n sparse Hermitian matrix H

by e’ if(i,j) e E
Y lo  if(i,j) ¢ E.

» consider the following maximization problem

n
maximize P H,-je‘ef (10)
‘91,“.,9”6[0,27{') i,j=1
P gets incremented by +1 whenever an assignment of angles 6,
and ¢; perfectly satisfies the given edge constraint §;; = 0; — 6;
mod 27 (i.e., for a good edge), since

—10; L(S[jelﬂj - e—Lei el(ei_ej)ebaj

e e :e0:+1

» the contribution of an incorrect assignment (i.e., of a bad edge)
will be uniformly distributed on the unit circle



13 .
Spectral relaxation
Spectral relaxation given by

n
maximize Z ZiHjz; (11)

21,.,20€C; YLy |Zi2=n i=1

» where we replaced the individual constraints z; = el having unit
magnitude by the much weaker single constraint

Sy
> 1zil*=n
i

» maximization of a quadratic form

maximize z* Hz (12)
|12|[2=n

solved for z = vy, the top eigenvector of H



14Angular Synchronization
4 A
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Figure: Rank-1 matrix in the angular domain

xx



15'I'he eigenvector magic
» cycles in the graph of good edges Egooq lead to consistency
relations between the offset measurements
» for eg., in a triangle of good edges {/,j},{/, k},{k, i} € Egooa
> the corresponding offset angles dj, dj and & must satisfy
djj + 0 + 6, =0 mod 27, since (13)
6ij+5jk+5ki:Oi_{}j+9j_'9k+ek_9i:0 mod 27 (14)
» recall the power iteration method
» multiplying the matrix H by itself integrates the information in the
consistency relation of triplets
> hi%her order iterations exploit consistency relations of longer cycles

H = Y HyHg= Y &%=y ek 15)
k=1 k:{i,k},{j,k}eE k:{i,k},{j,k}€E
= #{k:{i,k} and {j, K} € Egooq} €™ (16)

" e—l(5jk+5ki)

k:{i,k} OF {j,k}€Epag
» using d;; = —¢; in (15), and (13) in (16).
» = the top eigenvector integrates consistency relations of all cycles

)



"Noise model SO(2) (Singer 2011)

» measurement graph G is Erddés-Rényi G(n, «)
P each available measurement is either correct with probably p or a
random measurement with probability 1 — p

i —0;  fora correct edge W.p. pa
Qj=14 ~ Uniform(S1) for an incorrect edge w.p. (1 — p)a
0 foramissing edge, w.p.1-a.

(17)
» for G = K, (thus a = 1), the spectral relaxation for the angular
synchronization problem
» undergoes a phase transition phenomenon
> top eigenvector of H exhibits above random correlations with the
ground truth solution as soon as

p> % (18)

P can be extended to the general Erdds-Rényi case

Amit Singer, Angular synchronization by eigenvectors and semidefinite programming, Applied and computational harmonic
analysis (2011)
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Spectral relaxation
» normalize H by the diagonal matrix D with D; = Y, | Hj|

H =D 'H, (19)
» similar to the Hermitian matrix p~'2Hp=1/2 from

9 = D—1/2(D—1/2HD—1/2)D1/2

» 7 has nreal eigenvalues )\z{ > Az e 2 )\ff and n orthogonal
7

(complex valued) eigenvectors vy, ..., v,;"
» estimated rotation angles 01,....0, using the top eigenvector vf{
via
H, .
bV .
gl i) iy (20)

RGN

» up to an additive phase, since e v1H is also an eigenvector of H
forany o € R



18
Spectrum of H
onsider the n x n sparse Hermitian matrix H
it (i) € E 1)

e
Hy = {0 if (i,/) ¢ E.
15

20 40

-40 -20 0 A
(c) p=10.05
Figure: Histograms of the eigenvalues of the matrix H in the complete graph

model for n = 400 and different values of the noise level p.
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Analysis of the complete graph angular synchronization (i)
» Hj’s are random variables given by the following mixture model

> w. prob. p the edge {i. } is good and Hj = e""~"
» w. prob. 1 — p the edge is bad and H;; ~ Uniform(81)

» for convenience, define the diagonal elements as Hj; = p
» His Hermitian and the expected value of its elements is

EH; = pe'®™%. (22)
P ie., the expected value of H is the rank-one matrix

EH = npzz", (23)

» where z is the normalized vector (||z|| = 1) given by



20 . . .
Analysis of the complete graph angular synchronization (ii)
» matrix H can be decomposed as

H = npzz" + R, (25)
» where the random matrix
R=H-EH (26)
has elements with zero mean, with R; = 0, and for j # j

R - (1- p)ez(e’ o) with prob. p
g e — pe'®% wp. 1-pand ¢ ~ Uniform([0,2r))
(27)
» the variance of Rj is

E|R°=(1-p)°p+(1+p°)1-p)=1-p° (28

for i # j, and 0O for the diagonal elements.
» for p = 1: the variance is zero as all edges are good



21Analysis of the complete graph angular synchronization (iii)

» distribution of the eigenvalues of the random matrix R follows
Wigner’s semi-circle law

> has support [-2y/n(1 - p?),2y/n(1 - p?)]

» largest eigenvalue \{(R):
» is concentrated near the right edge of the support

> the universality of the edge of the spectrum implies that it follows
the Tracy-Widom distribution even when the entries of R are
non-Gaussian

» leads to the approximation

M(R) = 2yn(1 - p?) (29)



22Analysis of the complete graph angular synchronization (iv)

>

>

matrix H = npzz* + R can be construed as a rank-one
perturbation to a random matrix

the distribution of its largest eigenvalue studied in the literature;
Feral & Peche (2007) showed that if

np >+/n(1 - p?) (30)

then the largest eigenvalue \¢(H) will jump outside the support of
the semi-circle law, and

A1 (H) is normally distributed with mean p and variance o?

M(H) ~ N (p, 0°), (31)

2_ (n+1)p° -1
o = ——7F—

——(1-p") (32
np



23Analysis of the complete graph angular synchronization (v)

» with some extra work: can lower bound the correlation between
the normalized top eigenvector v; of H and the ground truth
signal vector z

2 _ M(H) =X (R)
(2, )| 2 SO
» since the variance of the correlation of two random unit vectors in

R" is 1/n, we obtain above random correlation values with
ground truth whenever

(33)

M(H) =X (R) _ 1
—np > ﬁ (34)
» which translates to ]
> — 35
p 7 (39)

» assoonasp > % we should obtain above random correlations

between the vector of angles z and the top eigenvector v4 of H!
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Semidefinite Programming relaxation
* Recall from the spectral relaxation derivation:

. . *
maximize z° Hz
l1z|[2=n

and note: z"Hz = Tr(z"Hz) = Tr(H zz") = Tr(HT)
n
> e " Hye = Tr(HT),
ij=1
» T is the (unknown) n x n Hermitian matrix of rank-1
TU _ eL(@,-—@,-)
with ones in the diagonal T, Vi=1,2,...,n.
* Dropping the rank-1 constraint on T
maximize Tr(HTY)
Te(cnxn
subjectto T;=1 i=1,...,n

T =0,
» the recovered solution is not necessarily of rank-1

» estimator obtained from the best rank-1 approximation



*The Group Synchronization Problem over SO(d)

» finding group elements from noisy measurements of their ratios

» synchronization over SO(d) consists of estimating a set of n
unknown d x d matrices Ry, ..., R, € SO(d) from a noisy
measurements of a small subset of the pairwise ratios
Q= RR ' € SO(d), (i) e G

o » ,
minimize Wi R R _ Q 40
RhA..,Rnesow)(,.;E illRi " Ry — QyllF (40)

» w; are non-negative weights representing the confidence in the
available noisy pairwise measurements Q;

» the graph of available measurements if denoted as the
measurement graph G



26'I'he Graph Realization Problem

od

Figure: Original US map with n = 1090 and the measurement graph with
sensing radius p = 0.032.

Figure: BRIDGE-DONUT data set of n = 500 point
measurement graph of radius p = 0.92.

o v

sinR® énd the

3



“The Graph Realization Problem in R®

» Graph G=(V,E), |V| = nnodes
> Set of distances /; = I; € R for every pair (i,j) € E

» Goal: find a d-dimensional embedding py,...p, € RY sit.

[lpi = pjl| = Iy, forall (i,j) € E
» If the solution is unique (up to a rigid motion), then graph is
globally rigid (uniquely realizable)
» Noise dj = [;(1 + ¢;) where ¢; ~ Uniform([-n,1])
» Disc graph model with sensing radius p, dj < piff (i,j) € E
Practical applications:

» Input: sparse noise subset of pairwise distances between
sensors/atoms

» Output: d-dimensional coordinates of sensors/atoms



*Local and Global Rigidity

Flexible
(not locally rigid)

Locally rigid
(not globally rigid)

$ Globally rigid



*Divide and conquer: a useful paradigm

1. Break the original measurement graph into many overlapping
subgraphs ("patches”)

2. Embed all patches using one of the existing methods
3. Integrate all local embeddings in a global solution

Motivation:
» solvers are too slow for large graphs and not very accurate

» locally, the small subgraphs are dense, and can be embedded
more robustly (and faster)



*Breaking up the large graph into patches

» Find maximal globally rigid components in the 1-hop
neighborhood graph (look for 3-connected components)

A> <o§v

Figure: The neighborhood graph of center node 1 is split into four maximally
3-connected-components (patches):
{1,2,3,4},{1,4,5},{1,5,6},{1,6,7,8}.



“Pairwise alignment of patches

Figure: Optimal alignment of two patches that overlap in four nodes
(provides a measurement for the ratio of the two group elements in Euc(2)).
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Local frames and synchronization in R

2 SO(2 7 "
R ‘% 2 Paf:c -
“'Step3 Step2 step1 Localization

.
“. iTranslation Rotation Reflection

Step 1b Step 1a
Rotation Reflection
SO(3) 4

Patch

Localization
& Denoising

Translation Reflection

& Rotation

The rightmost subgraph is the embedding of the patch in its own local
frame (stress minimization or SDP).



Figure: To each piece P; of the puzzle, we need to associate a certain
translation t; and rotation O; (ok, here there are no reflections, or they are
easy to handle), such that when we apply this set of transformations to each

individual piece, everything “clicks/synchronizes” together.

Source: https://www.vox.com/2020/4/8/21204424/jigsaw-puzzles-self-care-popularity



https://www.vox.com/2020/4/8/21204424/jigsaw-puzzles-self-care-popularity

34 L .
Measurement graph of pairwise ratios of group elements

R, R, Ry R, Rs R¢ Ry
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35Synchronization over O(d) with noise

Ho - R;  (i,j) € E (available group ratio measurement)
Y71 Osxz (i) ¢ E (no measurement available)

(@) n = 0%, 7 = 0%, and (b) n = 20%, T = 0%, and (c) n = 40%, 7 = 4%, and
MSE =6e -4 MSE = 0.05 MSE = 0.36

Figure: Bar-plot of the top 9 eigenvalues of H = D' H for the UNITCUBE

and various noise levels 7. Note that we plot 1 — AL



*The Group Synchronization Problem

» finding group elements from noisy measurements of their ratios

» synchronization over SO(d) consists of estimating a set of n
unknown d x d matrices Ry, ..., R, € SO(d) from a noisy
measurements of a small subset of the pairwise ratios
Q= RR ' € SO(d), (i) e G

N 1 »
Rhu-,RneSO(d)(i’;E illRi Ry — QyllF (41)

» w; are non-negative weights representing the confidence in the
available noisy pairwise measurements Q;

» the graph of available measurements if denoted as the
measurement graph G



*” & SDP and Spectral Relaxations

P Least squares solution to synchronization over
Ry,..., R, € SO(d) that minimizes

—_ » ,
minimize )" w||R; 'R - Ry
i peSO(d) (4 il R Ry = Ryl

Rewrite objective as tr(G C)
e with G; = R/ R; , and
G=RR
e where Ryxng = [Ri1Rz ... Ry]
e G is unknown

T T
Cyj = wyRj (w; = wy, Ry = Rj)

e Cis known



**# SDP and Spectral Relaxations SO(d)
» SDP Relaxation (Singer, 2011)

maxiGmize tr(GC)

subject to G=0
Gji = lg,fori=1,...n
[rank(G) = d]
[det(Gj) =1,fori,j=1,...n] (44)

» Spectral Relaxation: via the graph Connection Laplacian L
Let C € R™*™ with blocks C; = w;R;
Let D € R"™*" diagonal with D; = d;ly where dj = v
L=D-C, with LR =0
e recover the rotations from the bottom d eigenvectors of L
o followed by SVD for rounding in the noisy case.
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