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2 Recovering signal from pairwise noisy comparisons
▶ let r = (r1, . . . , rn)T

∈ Rn be an unknown signal (for eg, unknown
latent strength of a player)

▶ G = ([n],E) is an undirected measurement graph
▶ we are given a subset of noisy pairwise measurements

Mij = ri − rj , for each {i , j} ∈ E (1)

(for eg, results of a match outcome reflecting the skill difference)
▶ goal: estimate the original vector r
▶ clearly, only possible only up to a global shift
▶ when measurements are exact without any measurement noise,

one can recover the strength vector r ⟺ graph G is connected
▶ simply consider a spanning tree of G
▶ fix the value of the root node
▶ traverse the tree & propagate information by summing the offsets

▶ for simplicity, we assume the graph is connected, (otherwise it is
not possible to estimate the offset values between nodes
belonging to different connected components of the graph)

▶ how would you solve this problem?



3 Synchronization over the real line R
Instantiations of the above problem are ubiquitous in
▶ engineering
▶ machine learning
▶ computer vision
▶ have received a great deal of attention in the recent literature

Synchronization over the real line R:
▶ Time synchronization of wireless networks. A popular application

arises in engineering, and is known as time synchronization of
distributed networks where clocks measure noisy time offsets
ri − rj , and the goal is to recover r1, . . . , rn ∈ R.

▶ Ranking. A fundamental problem in information retrieval is that of
recovering the ordering induced by the latent strengths or scores
r1, . . . , rn ∈ R of a set of n players, that is best reflected by the
given set of pairwise comparisons ri − rj .

• We can frame this problem as that of recovering elements of a group
G = R ∶ r1, . . . , rn,with ri ∈ R (2)

given a small subset of pairwise differences.
• But what about other groups G?
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Synchronization over Z2
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Figure: Synchronization over Z2 (left: clean, right: noisy)
▶ unknown group elements z1, z2, . . . , zN ∈ Z2 correspond to the

vertices of a measurement graph G
▶ each edge (i , j) in E(G) holds a noisy version of the ratio of the

elements from its endpoints (in Z2, recall that zi = z−1
i )

▶ a potential noise model for the measurement graph is

Zij =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

ziz
−1
j = zizj (i , j) ∈ E and the measurement is correct,

−ziz
−1
j = −zizj (i , j) ∈ E and the measurement is incorrect,

0 (i , j) ∉ E
▶ original solution: z1, . . . , zn ∈ ±1n (Z2 = {−1,+1})
▶ task: estimate approximated solution x1, . . . , xN ∈ ±1N such that

we satisfy as many pairwise group relations in Z2 as possible.



5 Synchronization over Z2

Consider maximizing the following quadratic form (happy edges)

max
x1,...,xN∈ZN

2

N

∑
i,j=1

xiZijxj = max
x1,...,xN∈ZN

2

xT Zx ,

whose maximum is attained when x = z (noise-free data).

NP-hard problem, but relax to

max
∑N

i=1 ∣xi ∣2=N

N

∑
i,j=1

xiZijxj = max
∥x∥2

=N
xT Zx

whose maximum is achieved when x = v1, the normalized top
eigenvector of Z

Zv1 = λ1v1



6 Alternative formulation - Synchronization over Z2
Start by formulating the synchronization problem as a least squares
problem, by minimizing the following quadratic form (unhappy edges)

min
x∈ZN

2

∑
(i,j)∈E

(xi − Zijxj)2
= min

x∈ZN
2

∑
(i,j)∈E

x2
i + Z 2

ij x2
j − 2Zijxixj

= min
x∈ZN

2

∑
(i,j)∈E

x2
i + x2

j − 2Zijxixj

= min
x∈ZN

2

n

∑
i=1

dix
2
i − ∑

(i,j)∈E

2Zijxixj

= min
x∈ZN

2

xT Dx − xT Zx

= min
x∈ZN

2

xT (D − Z)x
• Signed Graph Laplacian

L = D − Z (3)

where Dii = ∑n
j=1 ∣Zij∣. For the rest of the slides, we use D to denote D



7 The Eigenvector Method - noiseless case
Exercise
Claim: One can recover the correct sign (ie, group element in Z2) at
each node from the top eigenvector of Z = D−1Z

▶ Z = D−1Z
▶ Diagonal matrix Υ, Υii = zi (ground truth value)
▶ A = (aij) adjacency matrix of the measurement graph

▶ Write Z = (zij) as Z = ΥAΥ
−1, for noiseless data zij = zizj

▶ Z = Υ(D−1A)Υ
−1
.

▶ Z and D−1A all have the same eigenvalues (similar matrices)

▶ Normalized discrete graph Laplacian L = I − D−1A
▶ I − Z and L have the same eigenvalues
▶ 1 − λZi = λ

L
i ≥ 0, and vZ

i = ΥvL
i

▶ G connected⇒ λ
L
1 = 0 is simple, vL

1 = 1 = (1,1, . . . ,1)T

▶ vZ
1 = Υ1 and thus vZ

1 (i) = zi



8 Synchronization over SO(2)
Estimate n unknown angles (group elements in SO(2))

θ1, . . . , θn ∈ [0,2π),

given m noisy measurements δij of their pairwise offsets

δij = θi − θj mod 2π. (4)

Challenges:
▶ amount of noise in the measurements, ie, in reality we measure

δij = (θi − θj + Noise) mod 2π. (5)

▶ only a very small subset of all possible pairwise offsets are
measured (m << (n

2))
Questions
▶ In the noiseless setting, how can we get a solution?
▶ In general, is the solution unique?

• Chapter 10, ”Synchronization Problems and Alignment”, in Ten Lectures and
Forty-Two Open Problems in the Mathematics of Data Science, by Afonso Bandeira



9 Angular embedding

▶ A. Singer (2011), spectral and SDP relaxation for the angular
synchronization problem

▶ S. Yu (2012), spectral relaxation; robust to noise when applied to
an image reconstruction problem

▶ embedding in the angular space is significantly more robust to
outliers compared to embedding in the usual linear space



10Noise models
▶ many possible models for the measurement errors
▶ including ones that allow for many outliers
▶ an outlier is an offset measurement that has a uniform distribution

on [0,2π), regardless of the true value for the offset
▶ there also exist (of course) good measurements whose errors are

relatively small (or even zero error; assume this for simplicity)
▶ the user has no a-priori knowledge on which measurements are

good and which are bad (outliers)

▶ the edge set E can be split into
▶ a set of good edges Egood of size mgood

▶ a set of bad edges Ebad of size mbad

▶ with m = ∣E∣ = mgood +mbad , s.t.

δij = θi − θj for {i , j} ∈ Egood
δij ∼ Uniform ([0,2π)) for {i , j} ∈ Ebad

. (6)



11Least-squares approach for SO(2)
▶ over-determined system of linear equations (modulo 2π)

θi − θj = δij mod 2π, for {i , j} ∈ E (7)

▶ can solve via the method of least-squares
▶ introduce the complex-valued variables zi = eıθi

▶ the system (7) is equivalent to

zi − eıδij zj = 0, for {i , j} ∈ E , (8)

overdetermined system of homogeneous linear equations over C
▶ set z1 = 1 (ie. θ1 = 0) to prevent the solution from collapsing to

the trivial solution z1 = z2 = . . . = zn = 0
▶ find solution z2, . . . , zn of (8) with minimal `2-norm residual
▶ least-squares method will be affected by the outliers (as outlier

equations will dominate the sum of squares)
▶ will compare to the least-squares baseline in the simulations
▶ seek for an alternative solution, more robust to outliers



12Towards a spectral relaxation for SO(2)
▶ build the n × n sparse Hermitian matrix H

Hij = {eıδij if (i , j) ∈ E
0 if (i , j) ∉ E .

(9)

▶ consider the following maximization problem

maximize
θ1,...,θn∈[0,2π)

n

∑
i,j=1

e−ιθi Hije
ιθj (10)

▶ gets incremented by +1 whenever an assignment of angles θi
and θj perfectly satisfies the given edge constraint δij = θi − θj
mod 2π (i.e., for a good edge), since

e−ιθi eιδij eιθj
= e−ιθi eι(θi−θj)eιθj

= e0
= +1

▶ the contribution of an incorrect assignment (i.e., of a bad edge)
will be uniformly distributed on the unit circle



13Spectral relaxation
Spectral relaxation given by

maximize
z1,...,zn∈C; ∑n

i=1 ∣zi ∣2=n

n

∑
i,j=1

ziHijzj (11)

▶ where we replaced the individual constraints zi = eιθi having unit
magnitude by the much weaker single constraint

n

∑
i=1

∣zi∣2 = n

▶ maximization of a quadratic form

maximize
∣∣z∣∣2=n

z∗Hz (12)

solved for z = v1, the top eigenvector of H
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Angular Synchronization

Figure: Rank-1 matrix in the angular domain
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The eigenvector magic
▶ cycles in the graph of good edges Egood lead to consistency

relations between the offset measurements
▶ for eg., in a triangle of good edges {i , j}, {j , k}, {k , i} ∈ Egood

▶ the corresponding offset angles δij , δjk and δki must satisfy
δij + δjk + δki = 0 mod 2π, since (13)

δij + δjk + δki = θi − θj + θj − θk + θk − θi = 0 mod 2π (14)
▶ recall the power iteration method

▶ multiplying the matrix H by itself integrates the information in the
consistency relation of triplets

▶ higher order iterations exploit consistency relations of longer cycles

H2
ij =

n

∑
k=1

HikHkj = ∑
k ∶{i,k},{j,k}∈E

eıδik eıδkj
= ∑

k ∶{i,k},{j,k}∈E

e−ı(δjk+δki)(15)

= # {k ∶ {i , k} and {j , k} ∈ Egood}eı(θi−θj) (16)

+ ∑
k ∶{i,k} or {j,k}∈Ebad

e−ı(δjk+δki),

▶ using δji = −δij in (15), and (13) in (16).
▶⇒ the top eigenvector integrates consistency relations of all cycles



16Noise model SO(2) (Singer 2011)
▶ measurement graph G is Erdős-Rényi G(n, α)
▶ each available measurement is either correct with probably p or a

random measurement with probability 1 − p

Θij =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

θi − θj for a correct edge w.p. pα
∼ Uniform(S1) for an incorrect edge w.p. (1 − p)α

0 for a missing edge, w.p. 1 − α.
(17)

▶ for G = Kn (thus α = 1), the spectral relaxation for the angular
synchronization problem
▶ undergoes a phase transition phenomenon
▶ top eigenvector of H exhibits above random correlations with the

ground truth solution as soon as

p >
1√
n

(18)

▶ can be extended to the general Erdős-Rényi case
Amit Singer, Angular synchronization by eigenvectors and semidefinite programming, Applied and computational harmonic
analysis (2011)



17Spectral relaxation
▶ normalize H by the diagonal matrix D with Dii = ∑n

j=1 ∣Hij∣

H = D−1H, (19)

▶ similar to the Hermitian matrix D−1/2HD−1/2 from

H = D−1/2(D−1/2HD−1/2)D1/2

▶ H has n real eigenvalues λH1 > λ
H
2 ≥⋯ ≥ λ

H
n and n orthogonal

(complex valued) eigenvectors vH
1 , . . . , v

H
n

▶ estimated rotation angles θ̂1, ..., θ̂n using the top eigenvector vH
1

via

eιθ̂i
=

vH
1 (i)

∣vH
1 (i)∣

, i = 1,2, . . . ,n. (20)

▶ up to an additive phase, since eiαvH
1 is also an eigenvector of H

for any α ∈ R
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Spectrum of H
Consider the n × n sparse Hermitian matrix H

Hij = {eıδij if (i , j) ∈ E
0 if (i , j) ∉ E .

(21)26 A. Singer / Appl. Comput. Harmon. Anal. 30 (2011) 20–36

Fig. 1. Histograms of the eigenvalues of the matrix H in the complete graph model for n = 400 and different values of p.

because ∥Rz − (z∗Rz)z∥2 = ∥Rz∥2 − (z∗Rz)2. The expected values of the numerator terms in (40) are given by

E∥Rz∥2 = E
n∑

i=1

∣∣∣∣∣

n∑

j=1

Rij z j

∣∣∣∣∣

2

=
n∑

i, j=1

Var(Rij z j) =
n∑

i=1

∑

j≠i

|z j|2
(
1 − p2) = (n − 1)

(
1 − p2), (41)

and

E
(
z∗Rz

)2 = E

[
n∑

i, j=1

Rij z̄i z j

]2

=
n∑

i, j=1

Var(Rij z̄i z j) =
(
1 − p2)∑

i≠ j

|zi |2|z j|2

=
(
1 − p2)

[(
n∑

i=1

|zi|2
)2

−
n∑

i=1

|zi|4
]

=
(
1 − p2)

(
1 − 1

n

)
, (42)

where we used that Rij are i.i.d. zero mean random variables with variance given by (27) and that |zi |2 = 1
n . Substituting

(41)–(42) into (40) results in

E tan2 α ∼ (n − 1)2(1 − p2)

n3 p2 + · · · , (43)

which for p ≪ 1 and n ≫ 1 reads

E tan2 α ∼ 1
np2 + · · · . (44)

This expression shows that as np2 goes to infinity, the angle between v1 and z goes to zero and the correlation between
them goes to 1. For np2 ≫ 1, the leading order term in the expected squared correlation E cos2 α is given by

E cos2 α = E
1

1 + tan2 α
∼ 1

1 + 1
np2

+ · · · . (45)

We conclude that even for very small p values, the eigenvector method successfully recovers the angles if there are enough
equations, that is, if np2 is large enough.

Fig. 1 shows the distribution of the eigenvalues of the matrix H for n = 400 and different values of p. The spectral gap
decreases as p is getting smaller. From (29) we expect a spectral gap for p ! pc where the critical value is pc = 1√

400
= 0.05.

The experimental values of λ1(H) also agree with (30). For example, for n = 400 and p = 0.15, the expected value of the
largest eigenvalue is µ = 67.28 and its standard deviation is σ = 0.93, while for p = 0.1 we get µ = 50.15 and σ = 0.86;
these values are in full agreement with the location of the largest eigenvalues in Figs. 1(a) and 1(b). Note that the right
edge of the semi-circle is smaller than 2

√
n = 40, so the spectral gap is significant even when p = 0.1.

The skeptical reader may wonder whether the existence of a visible spectral gap necessarily implies that the normalized
top eigenvector v1 correctly recovers the original set of angles θ1, . . . , θn (up to a constant phase). To that end, we compute
the following two measures of correlation ρ1 and ρ2 for the correlation between the vector of true angles z and the
computed normalized top eigenvector v1:

ρ1 =
∣∣∣∣∣

1
n

n∑

i=1

e−iθi
v1(i)

|v1(i)|

∣∣∣∣∣, ρ2 =
∣∣∣∣∣

1√
n

n∑

i=1

e−iθi v1(i)

∣∣∣∣∣ =
∣∣⟨z, v1⟩

∣∣. (46)

The correlation ρ1 takes into account the rounding procedure (16), while ρ2 is simply the dot product between v1 and z
without applying any rounding. Clearly, ρ1,ρ2 " 1 (Cauchy–Schwartz), and ρ1 = 1 iff the two sets of angles are the same
up to a rotation. Note that it is possible to have ρ1 = 1 with ρ2 < 1. This happens when the angles implied by v1(i) are

26 A. Singer / Appl. Comput. Harmon. Anal. 30 (2011) 20–36

Fig. 1. Histograms of the eigenvalues of the matrix H in the complete graph model for n = 400 and different values of p.
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Figure: Histograms of the eigenvalues of the matrix H in the complete graph
model for n = 400 and different values of the noise level p.
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Analysis of the complete graph angular synchronization (i)
▶ Hij ’s are random variables given by the following mixture model

▶ w. prob. p the edge {i , j} is good and Hij = eı(θi−θj )

▶ w. prob. 1 − p the edge is bad and Hij ∼ Uniform (S1)
▶ for convenience, define the diagonal elements as Hii = p
▶ H is Hermitian and the expected value of its elements is

EHij = p eı(θi−θj). (22)

▶ ie., the expected value of H is the rank-one matrix

EH = npzz∗, (23)

▶ where z is the normalized vector (∥z∥ = 1) given by

zi =
1√
n

eıθi , i = 1, . . . ,n. (24)
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Analysis of the complete graph angular synchronization (ii)
▶ matrix H can be decomposed as

H = npzz∗ + R, (25)

▶ where the random matrix

R = H − EH (26)

has elements with zero mean, with Rii = 0, and for i ≠ j

Rij = { (1 − p)eı(θi−θj) with prob. p
eıϕ − peı(θi−θj) w.p. 1 − p and ϕ ∼ Uniform([0,2π))

.

(27)
▶ the variance of Rij is

E∣Rij∣2 = (1 − p)2p + (1 + p2)(1 − p) = 1 − p2 (28)

for i ≠ j , and 0 for the diagonal elements.
▶ for p = 1: the variance is zero as all edges are good



21
Analysis of the complete graph angular synchronization (iii)

▶ distribution of the eigenvalues of the random matrix R follows
Wigner’s semi-circle law

▶ has support [−2
√

n(1 − p2),2
√

n(1 − p2)]

▶ largest eigenvalue λ1(R):
▶ is concentrated near the right edge of the support

▶ the universality of the edge of the spectrum implies that it follows
the Tracy-Widom distribution even when the entries of R are
non-Gaussian

▶ leads to the approximation

λ1(R) ≈ 2
√

n(1 − p2) (29)
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Analysis of the complete graph angular synchronization (iv)
▶ matrix H = npzz∗ + R can be construed as a rank-one

perturbation to a random matrix
▶ the distribution of its largest eigenvalue studied in the literature;

Feral & Peche (2007) showed that if

np >
√

n(1 − p2) (30)

▶ then the largest eigenvalue λ1(H) will jump outside the support of
the semi-circle law, and

▶ λ1(H) is normally distributed with mean µ and variance σ2

λ1(H) ∼ N (µ, σ2), (31)

µ =
np√

1 − p2
+

√
1 − p2

p , σ
2
=

(n + 1)p2 − 1
np2 (1 − p2) (32)
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Analysis of the complete graph angular synchronization (v)
▶ with some extra work: can lower bound the correlation between

the normalized top eigenvector v1 of H and the ground truth
signal vector z

∣⟨z, v1⟩∣2 ≥
λ1(H) − λ1(R)

np , (33)

▶ since the variance of the correlation of two random unit vectors in
Rn is 1/n, we obtain above random correlation values with
ground truth whenever

λ1(H) − λ1(R)
np >

1
n (34)

▶ which translates to
p >

1√
n

(35)

▶ as soon as p > 1√
n , we should obtain above random correlations

between the vector of angles z and the top eigenvector v1 of H!
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Semidefinite Programming relaxation
• Recall from the spectral relaxation derivation:

maximize
∣∣z∣∣2=n

z∗Hz (36)

and note: z∗Hz = Tr(z∗Hz) = Tr(H zz∗) = Tr(HΥ)
n

∑
i,j=1

e−ιθi Hije
ιθj
= Tr(HΥ), (37)

▶ Υ is the (unknown) n × n Hermitian matrix of rank-1

Υij = eι(θi−θj) (38)

with ones in the diagonal Υii ,∀i = 1,2, . . . ,n.

• Dropping the rank-1 constraint on Υ

maximize
Υ∈Cn×n

Tr(HΥ)

subject to Υii = 1 i = 1, . . . ,n
Υ ⪰ 0,

(39)

▶ the recovered solution is not necessarily of rank-1
▶ estimator obtained from the best rank-1 approximation



25The Group Synchronization Problem over SO(d)

▶ finding group elements from noisy measurements of their ratios

▶ synchronization over SO(d) consists of estimating a set of n
unknown d × d matrices R1, . . . ,Rn ∈ SO(d) from a noisy
measurements of a small subset of the pairwise ratios
Qij = RiR

−1
j ∈ SO(d), (ij) ∈ G

minimize
R1,...,Rn∈SO(d)

∑
(i,j)∈E

wij∥R−1
i Rj −Qij∥2

F (40)

▶ wij are non-negative weights representing the confidence in the
available noisy pairwise measurements Qij

▶ the graph of available measurements if denoted as the
measurement graph G
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The Graph Realization Problem
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Figure: Original US map with n = 1090 and the measurement graph with
sensing radius ρ = 0.032.
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Figure: BRIDGE-DONUT data set of n = 500 points in R3 and the
measurement graph of radius ρ = 0.92.



27The Graph Realization Problem in Rd

▶ Graph G = (V ,E), ∣V ∣ = n nodes
▶ Set of distances lij = lji ∈ R for every pair (i , j) ∈ E

▶ Goal: find a d-dimensional embedding p1, . . .pn ∈ Rd s.t.

∣∣pi − pj∣∣ = lij , for all (i , j) ∈ E

▶ If the solution is unique (up to a rigid motion), then graph is
globally rigid (uniquely realizable)

▶ Noise dij = lij(1 + εij) where εij ∼ Uniform([−η, η])
▶ Disc graph model with sensing radius ρ, dij ≤ ρ iff (i , j) ∈ E

Practical applications:
▶ Input: sparse noise subset of pairwise distances between

sensors/atoms
▶ Output: d-dimensional coordinates of sensors/atoms



28Local and Global Rigidity



29Divide and conquer: a useful paradigm

1. Break the original measurement graph into many overlapping
subgraphs (”patches”)

2. Embed all patches using one of the existing methods

3. Integrate all local embeddings in a global solution

Motivation:
▶ solvers are too slow for large graphs and not very accurate

▶ locally, the small subgraphs are dense, and can be embedded
more robustly (and faster)



30Breaking up the large graph into patches

▶ Find maximal globally rigid components in the 1-hop
neighborhood graph (look for 3-connected components)

Figure: The neighborhood graph of center node 1 is split into four maximally
3-connected-components (patches):
{1,2,3,4}, {1,4,5}, {1,5,6}, {1,6,7,8}.



31Pairwise alignment of patches

Figure: Optimal alignment of two patches that overlap in four nodes
(provides a measurement for the ratio of the two group elements in Euc(2)).



32Local frames and synchronization in Rd

The rightmost subgraph is the embedding of the patch in its own local
frame (stress minimization or SDP).



33Synchronization - solving a big puzzle

Figure: To each piece Pi of the puzzle, we need to associate a certain
translation ti and rotation Oi (ok, here there are no reflections, or they are
easy to handle), such that when we apply this set of transformations to each
individual piece, everything ”clicks/synchronizes” together.

Source: https://www.vox.com/2020/4/8/21204424/jigsaw-puzzles-self-care-popularity

https://www.vox.com/2020/4/8/21204424/jigsaw-puzzles-self-care-popularity
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Measurement graph of pairwise ratios of group elements
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35Synchronization over O(d) with noise

Hij = { Rij (i , j) ∈ E (available group ratio measurement)
O3×3 (i , j) ∉ E (no measurement available)
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(a) η = 0%, τ = 0%, and
MSE = 6e − 4
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(b) η = 20%, τ = 0%, and
MSE = 0.05
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(c) η = 40%, τ = 4%, and
MSE = 0.36

Figure: Bar-plot of the top 9 eigenvalues of H = D−1H for the UNITCUBE
and various noise levels η. Note that we plot 1 − λH.



36 The Group Synchronization Problem

▶ finding group elements from noisy measurements of their ratios

▶ synchronization over SO(d) consists of estimating a set of n
unknown d × d matrices R1, . . . ,Rn ∈ SO(d) from a noisy
measurements of a small subset of the pairwise ratios
Qij = RiR

−1
j ∈ SO(d), (ij) ∈ G

minimize
R1,...,Rn∈SO(d)

∑
(i,j)∈E

wij∥R−1
i Rj −Qij∥2

F (41)

▶ wij are non-negative weights representing the confidence in the
available noisy pairwise measurements Qij

▶ the graph of available measurements if denoted as the
measurement graph G
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♦ SDP and Spectral Relaxations
▶ Least squares solution to synchronization over

R1, . . . ,Rn ∈ SO(d) that minimizes

minimize
R1,...,Rn∈SO(d)

∑
(i,j)∈E

wij∥R−1
i Rj − Rij∥2

F (42)

maximize
R1,...,Rn∈SO(d)

∑
(i,j)∈E

wij tr(R−1
i RjR

T
ij ) (43)

Rewrite objective as tr(G C)
• with Gij = RT

i Rj , and

G = R
T

R

• where Rd×nd = [R1R2 . . .Rn]
• G is unknown

C ij = wijR
T
ij (wji = wij ,Rji = RT

ij )
• C is known
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♦ SDP and Spectral Relaxations SO(d)

▶ SDP Relaxation (Singer, 2011)

maximize
G

tr(GC)

subject to G ⪰ 0
Gii = Id , for i = 1, . . .n
[rank(G) = d]
[det(Gij) = 1, for i , j = 1, . . .n] (44)

▶ Spectral Relaxation: via the graph Connection Laplacian L

Let C ∈ Rnd×nd with blocks Cij = wijRij

Let D ∈ Rnd×nd diagonal with Dii = di Id where di = ∑j wij

L = D − C, with LR
T
= 0

• recover the rotations from the bottom d eigenvectors of L
• followed by SVD for rounding in the noisy case.
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