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Stochastic Block Model

I consider a random graph model which induces a clustering
structure on the generated graph instance

I fix n ∈ N+, and consider two sets C1 and C2, each of size m = n
2

|C1| = |C2| = m
I for each pair of nodes (i , j)

I (i , j) ∈ E(G) with prob p, if i and j are in the same cluster
I (i , j) /∈ E(G) with prob q, if i and j are in different clusters

Aij =

{
1 if i and j are in the same cluster
0 if i and j are in different clusters

(1)

I each edge is drawn independently
I typically, it is the case that p > q. Note the special cases

I p = 1 and q = 0 renders the problem trivial
I p = q = 1

2 make it impossible to recover the two clusters
I the case p < q can be treated symmetrically (one can also

consider the complement graph)
I research question: for which values of p and q is it possible to

recover the underlying partition? (i.e, the two clusters C1 and C2) -
or at least do so with high probability.
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Stochastic Block Model
The case of k = 2 equally-sized communities(

p q
q p

)

(a) Scrambled graph (b) Clustered graph and color-coded

Figure: A graph instance generated form the SBM with n = 600 nodes and
k = 2 communities, with within-cluster probability p = 6/600 and
across-cluster probability q = 0.1/600 (Image source: Emmanuel Abbe).
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Spiked Wigner Model

I we observe
Y = λxxT +

1√
n

W (2)

I where W is a n × n random symmetric matrix with entries drawn
i.i.d. (up to symmetry) from a fixed distribution of mean 0 and
variance 1

I rank-1 perturbation of a Wigner matrix
I the top eigenvalue of Y separates from the semicircular bulk

when λ > 1 (Péché, 2006; Féral and Péché 2007)
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Spiked (Gaussian) Wishart Model

I we observe the sample covariance (across T observations)

Y =
1
T

XX> (3)

I with X an n × T matrix with columns drawn iid from
N (0, In + βxx>) in the high-dim. setting where the sample count
T and dimension n scale proportionally as n

T → γ, & β ∈ [−1,∞]
I Baik, Ben Arous and Péché (2005) showed that, when

β >
√
γ,

an isolated eigenvalue emerges (“pops out”) from the bulk of the
Marchenko-Pastur distribution.
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Intuition from the spike models

I work towards a spectral relaxation for the clustering task
I consider the adjacency matrix of the graph G

Aij =

{
1 if(i , j) ∈ E(G)
0 otherwise

(4)

I note that A is a random matrix
I keeping the clustering task in mind, a natural objective to

consider is the quadratic form

max
x ∈ Rn

∑
i,j

Aijxixj

s.t. xi = ±1, ∀i = 1, . . . ,n,∑
j

xj = 0

I ideally, the target solution is such that x takes value +1 in one
cluster, and −1 in the other clusters (eg., xi = +1 if i ∈ C1, and
xi = −1 if i ∈ C2).
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Intuition from the spike model analysis (cont)

I relaxing the condition

xi = ±1,∀i = 1, . . . ,n

to
||x ||22 = n

leads to the spectral relaxation method

max
x ∈ Rn

∑
i,j

Aijxixj

s.t. ||x ||2 =
√

n,

1T x = 0

I the solution that maximizes the quadratic form xT Ax is given by
the top eigenvector of the projection of A onto the orthogonal of
the all-ones vector 1
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Expected adjacency matrix

I the adjacency matrix A is a random matrix with expectation

E[A] =

{
p if(i , j) ∈ E(G)
q otherwise

(5)
I let w denote the vector taking values

I +1 on nodes in cluster C1,
I −1 on nodes in cluster C2.

WLOG we can assume that
w = (1, . . . ,1︸ ︷︷ ︸

n/2

, −1, . . . ,−1︸ ︷︷ ︸
n/2

)T ∈ Rn (6)

corresponding to the “ground truth” or the ”planted clusters” we
seek to recover

I via simple algebraic manipulations we can write

E[A] =
p + q

2
11T +

p − q
2

wwT (7)
I which can be further written as

A = (A− E[A]) + E[A]

A = (A− E[A]) +
p + q

2
11T +

p − q
2

wwT (8)
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Rank-1 perturbation

I to remove the term p+q
2 11T , we consider the following rank-1

update to A, and define the random matrix A given by

A = A− p + q
2

11T (9)

I by considering the expectation of A, from (8), one arrives at

A = (A− EA)− p − q
2

wwT (10)

I the decomposition renders A as a superposition of a random
matrix whose expected value is 0, and a rank-1 matrix

A = W − p − q
2

wwT (11)

I i.e, A is a rank-1 perturbation of a random matrix

A = W + λvvT (12)

where
I W = (A− EA)

I λvvT = p−q
2 n

(
w√

n

)(
w√

n

)T
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Rank-1 perturbation (cont)

I random matrix theory tells us that for large enough λ
I the top eigenvalue associated to λ will ”pop” outside the

distribution of the eigenvalues of W
I its corresponding eigenvector will have a non-trivial correlation with

the true signal w
I one can further rewrite the previous optimization as

max
x ∈ Rn

∑
i,j

Aijxixj

s.t. ||x ||2 =
√

n,

1T x = 0

I since we have subtracted from A a scalar multiple of 11T , this
allows for dropping the constraint 1T x = 0, leading to

max
x ∈ Rn

∑
i,j

Aijxixj

s.t. ||x ||2 =
√

n

whose solution is simply given by the top eigenvector of A.
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Informal argument from RMTX

I if W def
= (A− EA) was a Wigner matrix with i.i.d entries, zero

mean and variance σ2, then
I its empirical spectral density would follow the semicircle law
I the bulk of the distribution supported in [−2σ

√
n,2σ

√
n]

I RMTX tells us that we would expect the top eigenvector of A to
correlate with the ground truth w as soon as

p − q
2

n >
2σ
√

n
2

(13)
I however, W is not a Wigner matrix in general; half of its entries

have variance p(1− p), and half have q(1− q)

I so if we were to plugin σ2 = p(1−p)+q(1−q)
2 in (13), it would hint

that the top eigenvector of A correlates with w as soon as
p − q

2
>

1√
n

√
p(1− p) + q(1− q)

2
(14)

I for the special case q = 1− p (thus p = 1− q)
I the entries of W have the same variance
I would still imply the non-trivial result that p − q only needs to be

around 1√
n in order for the top eigenvector to correlate with the

ground truth w (impressive in itself!)
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The case of sparse graphs

I in many real-world applications, such as social networks, the
average degree of each node is constant

I consider for example the case when p = a
n and q = b

n , for some
fixed constants a and b

I following the previous (non-rigorous) line of thought, the following
was proposed as a conjecture by Decelle et al. (2011);
partial/weak recovery is feasible w.p. 1− o(1) whenever

(a− b)2 > 2(a + b) (15)

I it attracted a lot of attention, and was ultimately proved in a series
of works by Mossel et al. (2014) and independently by Massoulie
(2014), by studying variants of belief propagation using
techniques from statistical physics

I below the connectivity threshold (a− b)2 < 2(a + b), any
estimator fails with probability 1− o(1)

I comprehensive survey
I Emmanuel Abbe, Community detection and stochastic block

models. Foundations and Trends in Communications and
Information Theory, 14(1-2):1– 162, 2018
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Dense versus sparse graphs

I given graph G concentrates about its expectation if A is close to
its expectation E[A] in some natural matrix norm

I interpret the expectation of G as the weighted graph with
adjacency matrix E[A]

I various matrix norms could be of interest; in previous slides we
have looked at the spectral norm max |λi |

I often, the question of interest is estimating some features of the
probability matrix Πij from random graphs drawn from G(n,Πij)

I concentration of the adjacency and Laplacian matrix around their
expectations, when it holds, guarantees recovery of such features

I denote the expected degree by d = pn
I dense graphs: with high probability

||A− E[A]|| = 2
√

d(1 + o(1)) if d � log4n (16)

I as ||E[A]|| = d the typical deviation behaves like the square root
of the magnitude of expectation (like in other classical results of
probability theory)⇒ dense random graphs concentrate well

I lower bound can be relaxed all the way down to d = Ω(log n)
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We prove that, for all values of the edge probability p(n), the largest eigenvalue of the

random graph G(n, p) satisfies almost surely λ1(G) = (1 + o(1)) max{√∆, np}, where ∆ is the

maximum degree of G, and the o(1) term tends to zero as max{√∆, np} tends to infinity.

1. Introduction

Let G = (V , E) be a graph with vertex set V (G) = {1, . . . , n}. The adjacency matrix of

G, denoted by A = A(G), is the n-by-n 0, 1-matrix whose entry Aij is one if (i, j) ∈ E(G),

and is zero otherwise. It is immediate that A(G) is a real symmetric matrix. We thus

let λ1 > λ2 > · · · > λn denote the eigenvalues of A, which are usually also called the

eigenvalues of the graph G itself. The family {λ1, . . . , λn} is called the spectrum of G.

Spectral techniques play an increasingly important role in modern graph theory. A

serious effort has been invested in establishing connections between a graph’s spectral

characteristics and its other parameters. The interested reader may consult the monographs

[6] and [5] for a detailed account of known results. The ability to compute graph

eigenvalues efficiently (both from theoretical and practical points of view), combined with

results from spectral graph theory, has provided a basis for quite a few graph algorithms.

A survey of applications of spectral techniques in algorithmic graph theory by Alon can

be found in [1].

† Supported by a USA–Israeli BSF grant and by a Bergmann Memorial Award.
‡ Supported in part by NSF grants DMS-0106589, CCR-9987845 and by the State of New Jersey.
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Dense versus sparse graphs

I problem: sparse graphs do not concentrate; in the sparse regime,
for bounded expected degree d , concentration breaks down

I one can show that a random graph from G(n,p) satisfies w.h.p

||A|| = (1 + o(1))
√

d(A) = (1 + o(1))

√
log n

log log n
, if d = O(1)

(17)
I d(A) := maximal degree of the graph (a random quantity)
I ||A|| � ||E[A]|| = d ⇒ sparse random graphs do not concentrate
I what exactly makes ||A|| abnormally large in the sparse regime?
I vertices with too high degrees!

I in the dense case d � log n, all vertices typically have
approximately the same degrees (1 + o(1))d

I no longer the case in the sparser regime d � log n; the degrees do
not cluster tightly about the same value anymore.

I there are vertices with too high degrees; even a single high-degree
vertex can blow up the norm of the adjacency matrix

I since the norm of A is bounded below by the Euclidean norm of
each of its rows, we have ||A|| ≥

√
d(A)

I calls for regularization techniques; for eg, A := A + τ11T , τ ∈ R
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The case of k ≥ 3 communities

I balanced symmetric stochastic block model: k communities of
equal size

I in the sparse regime of
I within-cluster probability p = a

n
I across-cluster probability q = b

np q q
q p q
q q p


I conjectured to have a statistical-to-computational gap, meaning:

I there is a range of parameters a and b such that the problem of
partial recovery is statistically or information-theoretically possible

I but there does not exist a polynomial-time algorithm for this

I insights driven by tools from the statistical physics literature.
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Stochastic block modeling (k = 3) - simulation 0.8 0.05 0.05

0.05 0.8 0.05
0.05 0.05 0.8



Lee, C., Wilkinson, D.J. A review of stochastic block models and extensions for graph clustering. Appl Netw Sci 4, 122 (2019).
https://doi.org/10.1007/s41109-019-0232-2

https://doi.org/10.1007/s41109-019-0232-2
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Stochastic block modeling in real data (k = 3)

Larremore, Daniel B., Aaron Clauset, and Caroline O. Buckee. ”A network approach to analyzing highly recombinant malaria
parasite genes.” PLoS Comput Biol 9.10 (2013): e1003268.
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What about exact recovery? (k = 2)

I moving beyond partial/weak recovery (of simply having an
estimate that correlates with the true labels)

I exact recovery entails recovery of cluster membership of each
and every single node correctly

I if the inner cluster probability is of order p = a
n , then

I the graph would have isolated nodes (of degree 0)
I impossible to recover the cluster membership of each node
I same holds true for p << 2 log n

n
I focus on following regime (for some constants , β > 0)

p =
α log(n)

n
and q =

β log(n)

n
(18)

I recall the minimum bisection objective

max
x ∈ Rn

∑
i,j

Aijxixj

s.t. xi = ±1,∀i and xT 1 = 0

I if
√
α−
√
β >
√

2, then the above recovers the true partition w.h.p
(information-theoretic impossible w.h.p if

√
α−
√
β <
√

2).
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Semidefinite programming (SDP)

I SDP is a branch of convex programming, where the optimization
(of a linear objective function) takes place over the cone of
positive semidefinite matrices

I eg, consider a linear function of X

C · X :=
n∑

i=1

n∑
j=1

CijXij (19)

Recall Tr(CX ) =
∑n

i,j=1 CijXji = Tr(XC)

I in an SDP, the variable is the matrix X , but it might be helpful to
think of X as an array of n2 numbers

min C · X

s.t. Ai · X = bi ,∀i = 1, . . . ,n,
X � 0

(20)
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Relaxation via semidefinite programming (SDP)

max
x ∈ Rn

∑
i,j

Aijxixj

s.t. xi = ±1,∀i and xT 1 = 0

I if we remove the constraint xT 1 = 0, then the optimal solution
becomes x = 1

I define B = 2A− (11T − I), leading to

Bij =


0 if i = j
1 if (i , j) ∈ E(G)
−1 otherwise

(21)

I one could verify that the following problem has the same solution
as the optimization problem at the top

max
x ∈ Rn

∑
i,j

Bijxixj

s.t. xi = ±1,∀i and xT 1 = 0
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Relaxation via semidefinite programming (SDP)

I if we remove the constraint xT 1 = 0, then x = 1 is no longer the
optimal solution

I intuitively, the penalization created by subtracting a multiple of
11T is enough to discourage unbalanced partitions

I next, we aim to solve efficiently

max
x ∈ Rn

∑
i,j

Bijxixj

s.t. xi = ±1,∀i
I which is in general computational-hard to solve (NP-hard;

reduction from Max-Cut)
I relax to an easier problem by similar techniques used to

approximate the Max-Cut problem (matrix lifting)
I by writing X = xxT , the above objective becomes∑

i,j

Bijxixj = xT Bx = Tr(xT Bx) = Tr(BxxT ) = Tr(BX ) (22)

I note that the condition xi = ±1 implies Xii = x2
i = 1
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Relaxation via semidefinite programming (SDP)

I we can now re-write the previous optimization problem as

max
X

Tr(BX )

s.t. Xii = 1,∀i ,
X = xxT , for some x ∈ Rn

I the latter constraint X = xxT , for some x ∈ Rn is equivalent to
rank(X ) = 1 and X � 0, leading to the optimization

max
X

Tr(BX )

s.t. Xii = 1, ∀i ,
rank(X ) = 1,
X � 0

I since rank constraints are NP-hard, we relax the problem by
removing the non-convex rank constraint
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Relaxation via semidefinite programming (SDP)

I we arrive at the following SDP which can be solved (up to
arbitrary precision) in polynomial time

max
X

Tr(BX )

s.t. Xii = 1,∀i ,
X � 0

I since we had removed the rank-1 constraint, the solution to the
above is no longer guaranteed to be rank-1

I recall
p =

α log(n)

n
and q =

β log(n)

n
(23)

I one can show that, for some values of α and β, with high prob.
I the solution to the SDP satisfies the rank-1 constraint
I and also coincides with X = wwT , where w corresponds to the

true partition.

I after X is computed, w is obtained as its top eigenvector.
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Recent survey on SBM (2018)
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Community Detection and Stochastic Block Models:
Recent Developments

Emmanuel Abbe eabbe@princeton.edu

Program in Applied and Computational Mathematics

and Department of Electrical Engineering

Princeton University

Princeton, NJ 08544, USA

Editor: Edoardo M. Airoldi

Abstract

The stochastic block model (SBM) is a random graph model with planted clusters. It is
widely employed as a canonical model to study clustering and community detection, and
provides generally a fertile ground to study the statistical and computational tradeoffs that
arise in network and data sciences.

This note surveys the recent developments that establish the fundamental limits for
community detection in the SBM, both with respect to information-theoretic and compu-
tational thresholds, and for various recovery requirements such as exact, partial and weak
recovery (a.k.a., detection). The main results discussed are the phase transitions for ex-
act recovery at the Chernoff-Hellinger threshold, the phase transition for weak recovery at
the Kesten-Stigum threshold, the optimal distortion-SNR tradeoff for partial recovery, the
learning of the SBM parameters and the gap between information-theoretic and computa-
tional thresholds.

The note also covers some of the algorithms developed in the quest of achieving the
limits, in particular two-round algorithms via graph-splitting, semi-definite programming,
linearized belief propagation, classical and nonbacktracking spectral methods. A few open
problems are also discussed.
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