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Introduction

▸ Networks are just graphs

▸ Networks can provide a useful representation of
interdependencies in data.

▸ Networks are also used to represent statistical models - so-called
graphical models - but this lecture does not address graphical
models.

▸ Often one would think of a network as a connected graph, but not
always.

▸ In this lecture we shall use network and graph interchangeably.

▸ Here are some of the most well known examples of networks
(graphs).
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Marriage network

Figure: Marriage relations between Florentine families; two different graphical
representations

The Florentine Families marriage data, collected by Padgett and Ansell
(1993), give an undirected network which consists of the marriage ties
among 16 families in 15th century Florence, Italy.
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Zachary’s karate club

7/20/2016 Karate_Cuneyt_Akcora.png (565×485)

https://upload.wikimedia.org/wikipedia/commons/2/2b/Karate_Cuneyt_Akcora.png 1/1

Figure: A friendship network: Zachary’s karate club

Zachary’s Karate club network (Zachary (1977)) is a social network of
friendships between 34 members of a karate club at a US university in the
1970s. The club is known to have split into two different factions as a result of
an internal dispute, and the members of each faction are known.
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Protein interaction networks

Figure: Yeast protein-protein interactions

In a protein-protein interaction network, vertices are proteins, and
edges represent physical interactions. In this network vertices are
coloured by lethality.
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Political Blogs

Figure: Political blog data from Adamic and Glance (2005).

The colours reflect political orientation, red for conservative, and blue
for liberal. Orange links go from liberal to conservative, and purple ones
from conservative to liberal. The size of each blog reflects the number
of other blogs that link to it.
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Social networks

▸ links denote a social interaction
▸ networks of acquaintances
▸ collaboration networks
▸ actor networks
▸ co-authorship networks
▸ director networks
▸ e-mail networks
▸ phone-call networks (time,

duration,location)
▸ IM networks
▸ sexual networks

Source: Frieze, Gionis, Tsourakakis, Algorithmic
Techniques for Modeling and Mining Large

Graphs (KDD 2013)
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Belgium Mobile Phone Network
▸ Migration statistics within and across 3000+ counties in US
▸ Eigenvectors of the associated graph Laplacian (we will study

later) captures interesting patterns

Wi,j =
N2

i,j

Pi ⋅Pj

▸ Ni,j : number of people migrating btw county i and county j
▸ Pi : population of county i

M. Cucuringu, V. Blondel, P. Van Dooren, Extracting spatial information from networks with low-order eigenvectors, Physical
Review E 87, 032803 (2013)
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How to examine a graph
▸ Take some measurements of it (count # of vertices and edges)
▸ If not connected, break it into connected components
▸ Examine the distribution of the degrees of the vertices
▸ Draw the graph and visualize it

Grid Graph
▸ Very easy to visualize
▸ Not the case for most real world graphs!
▸ Impossible to make nice drawings of most graphs
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Analysis of graph data sets in the past

▸ the study of networks has a long tradition in social science, where
it is called Social Network Analysis

▸ the networks under consideration are typically fairly small
▸ visual inspection can reveal a lot of information



12
Analysis of graph data sets now
In contrast, starting at around 1997, statistical physicists have turned
their attention to large-scale properties of networks.
▸ unless the network is very small it appears like a hairball, and is

difficult to analyse by just looking at it
▸ more and larger networks appear (byproducts of technological

advancement)
▸ e.g., internet, web
▸ result of our ability to collect more, better-quality, and more complex

data
▸ networks of thousands, millions, or billions of nodes
▸ need to develop more sophisticated & scalable tools

Figure: The Internet graph.
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Network Science

Emerging area with an exponential growth of its literature over the past
decade.

The world is full with networks - what do we do with them?
▸ understand their topology and measure their properties

▸ study their evolution and dynamics

▸ create realistic models

▸ build efficient algorithms that can leverage the network structure
▸ perform various tasks on the network (e.g., ranking, prediction)

Question: how can we leverage structural findings in a network for
prediction? (Also allows for a fair comparison of different methods.)
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Further research questions

▸ How do these networks work? Where could we best manipulate a
network in order to prevent, say, tumor growth?

▸ How did these networks evolve?

▸ How similar are these networks?

▸ How are these networks interlinked?

▸ What are the building principles of these networks? How is
resilience achieved, and how is flexibility achieved?
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From a statistical viewpoint, questions include
▸ How to best describe networks?

▸ How to infer characteristics of vertices in the network?

▸ How to infer missing links, and how to check whether existing links
are not false positives?

▸ How to compare networks?

▸ How to predict functions from networks?

▸ How to find relevant sub-structures of a network?

• Statistical inference relies on the assumption that there is some
randomness in the data.
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What are networks?
▸ Mathematically, we abbreviate a graph G as G = (V,E), where V is

the set of vertices (nodes) and E is the set of edges (links).
▸ notation ∣S∣ denotes the number of elements in the set S. Then ∣V∣ is

the number of vertices, and ∣E∣ the number of edges in the graph G.
▸ If u and v are two vertices and there is an edge from u to v , then we

write that (u,v) ∈ E , and we say that v is a neighbour of u.
▸ Edges may be directed or undirected. A directed graph (digraph) is

a graph where all edges are directed.

▸ If both endpoints of an edge are the same, the edge is a loop
▸ Simple graphs: without self-loops and multiple edges

(a) Undirected (b) Directed (c) Weighted
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▸ Two vertices are called adjacent if they are joined by an edge. A
graph can be described by its ∣V ∣ × ∣V ∣ adjacency matrix A = (au,v);

au,v = 1 if and only if (u,v) ∈ E .

▸ If there are no self-loops, all elements on the diagonal of the
adjacency matrix are 0. If the edges of the graph are undirected,
then the adjacency matrix will be symmetric.

▸ The adjacency matrix entries tell us for every vertex v which
vertices are within (graph) distance 1 of v . If we take the matrix
product A2 = A ×A, the entry for (u,v) with u ≠ v would be

a(2)(u,v) = ∑
w∈V

au,waw ,v .

▸ If a(2)(u,v) ≠ 0 then u can be reached from v within two steps; u is
within distance 2 of v . Higher powers can be interpreted similarly.
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Example: Adjacency matrix for Florentine marriages

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0
0 0 0 0 0 1 1 0 1 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0 1 0 0 0 1 0
0 0 1 0 0 0 0 0 0 0 1 0 0 0 1 0
0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 1 0 1 0 0 0 1 0 0 0 0 0 0 0 1
0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0
1 1 1 0 0 0 0 0 0 0 0 0 1 1 0 1
0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0
0 0 0 1 1 0 0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 1
0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0
0 0 0 1 1 0 0 0 0 0 1 0 1 0 0 0
0 0 0 0 0 0 1 0 1 0 0 0 1 0 0 0

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
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⎥
⎥
⎥
⎥
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⎥
⎥
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⎥
⎥
⎥
⎦



19• A complete graph is a graph, without self-loops, such that every pair
of vertices is joined by an edge. The adjacency matrix has entry 0 on
the diagonal, and 1 everywhere else.

(a) Complete (b) Bipartite (c) Complete bipartite

• A bipartite graph is a graph where the vertex set V is decomposed
into two disjoint subsets, U andW, say, such that there are no edges
between any two vertices in U , and also there are no edges between
any two vertices inW; all edges have one endpoint in U and the other
endpoint inW.

Adjacency matrix A of the form:

[
0 A1

A2 0 ]
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Graph Theory
▸ graph theory started in the 18th century, with Leonhard Euler
▸ the problem of Königsberg bridges (1736)

Figure: Königsberg bridges (map from Euler’s time)
▸ ”Graph Theory is the new calculus", Daniel A. Spielman (2007)

[2023 Breakthrough Prize in Mathematics for ”contributions to
computer science & mathematics, including spectral graph theory"]

● Algorithmic graph theory
● Structural graph theory
● Algebraic graph theory
▸ spectral graph theory - explores connections connections to

linear algebra (spectrum of adjacency matrix)
▸ using group theory (study symmetric properties of a graph)
▸ studying graph invariants (eg, the chromatic polynomial counting

the number of its proper vertex colorings)
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Network summaries

▸ To analyse and to compare networks, often low-dimensional
summaries are used.

▸ Some summaries concentrate on local features, such as local
clustering, whereas other summaries concentrate on global
features.
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Degrees and the degree distribution

▸ The degree d(v) of a vertex v is the number of edges which
involve v as an endpoint.

▸ (For the case of weighted graphs, the strength of a node is the
sum of the weights of the incident edges)

▸ The degree is easily calculated from the adjacency matrix A;

d(v) = ∑
u

au,v .

▸ The average degree of a graph is the average of its vertex degrees

d =
1
∣V∣
∑
v∈V

d(v).
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Degrees and the degree distribution

▸ The degree sequence of a given network on a vertex set V with n
elements is the unordered n-element set of degrees {d(v),v ∈ V}.

▸ Example: the degree sequence of a triangle on three vertices is
{2,2,2}.

▸ The degree distribution (d0,d1,d2, , . . .) of a graph on n vertices is
the vector of fraction of vertices with given degree;

dk =
1
n
× number of vertices of degree k .

▸ For directed graphs we define the
▸ in-degree as the number of edges directed at the vertex
▸ out-degree as the number of edges that go out from that vertex.
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Example: a scientific collaboration network

▸ Start with a bipartite graph with authors on one side and papers on
the other.

▸ Edges link papers to their authors.

▸ Back out a network on just the authors by connecting each pair of
authors who have co-authored a paper.

▸ This naturally leads to a weighted graph
▸ W(i,j) = the number of papers authors i and j have written together
▸ Consider the dblp co-authorship graph (SNAP library at Stanford)
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Degrees in a scientific collaboration network

Figure: Sorted degree sequence (zoom-ed in version, on the right)

Figure: Histogram of degrees (zoom-ed in version, on the right)
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Milgram’s experiment and the small world effect
In 1967, the American sociologist Milgram reported a series of
experiments of the following type
▸ He chose a random person X in Nebraska
▸ Asked X to deliver a letter to a random person Y (stock broker) in

Massachusetts, Lashawn
▸ Told X the name, address and occupation of Y
▸ Instructed X to only send letter to people he knows on a first-name

basis

Milgram kept track of how many intermediaries were required until the
letters arrived.
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Milgram’s experiment and the small world effect
Milgram reported a median of six. This made him coin the notion of six
degrees of separation, often interpreted as everyone being six
handshakes away from the President. While the experiments were
somewhat flawed (in the first experiment only 3 letters arrived), the
concept of six degrees of separation has stuck.

For more details see for example the report by Judith Kleinfeld at
http://www.columbia.edu/itc/sociology/watts/w3233/ &
client_edit/big_world.html.

http://www.columbia.edu/itc/sociology/watts/w3233/
client_edit/big_world.html
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The local clustering coefficient

▸ The local clustering coefficient of a vertex v is, intuitively, the
proportion of its "friends" who are friends themselves.

▸ Mathematically, it is the proportion of neighbours of v which are
neighbours themselves. In adjacency matrix notation,

C(v) =
∑u,w∈V au,v aw ,v au,w

∑u,w∈V;u≠w au,v aw ,v
.

▸ Here 0/0 ∶= 0.

▸ The average clustering coefficient is defined as

C =
1
∣V∣
∑
v∈V

C(v).

The local clustering coefficient describes how "locally dense" a graph is.
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The global clustering coefficient

▸ The global clustering coefficient or transitivity is defined as

C =
3 × number of triangles

number of connected triples
.

▸ By a connected triple we mean three vertices a,b,c with edges
(a,b) and (b,c) present, while the edge (a,c) may or may not be
present.
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The expected clustering coefficient

▸ For models of random networks often we consider the expected
clustering coefficient

E(C) =
3 ×E(number of triangles)

E(number of connected triples)
.

▸ Unfortunately all of the average clustering coefficient, the global
clustering coefficient, and the expected clustering coefficient are
often just called the clustering coefficient in the literature.

▸ Typically, by clustering coefficient we mean the global clustering
coefficient
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The average shortest path

▸ In a graph a path from vertex v0 to vertex vn is an alternating
sequence of vertices and edges, (v0,e1,v1,e2, . . . ,vn−1,en,vn)

such that the endpoints of ei are vi−1 and vi , for i = 1, . . . ,n.

▸ The distance `(u,v) between two vertices u and v is the length of
the shortest path joining them. This path does not have to be
unique

▸ We can calculate the distance `(u,v) from the adjacency matrix A
as the smallest power p of A such that the (u,v)-element of Ap is
not zero.
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Connectivity
▸ A graph is called connected if there is a walk between any pair of

vertices in the graph, otherwise it is called disconnected.
▸ The number of connected components is the size of the smallest

partition of the nodes into connected subgraphs.
▸ A graph G is said to be k -connected (or k -vertex connected) if

there does not exist a set of k − 1 vertices whose removal
disconnects the graph.

▸ (Notion extends to directed graphs (strong/weak connectivity).
Also, analogous statement can be made for k -edge connectivity.)

▸ In a connected graph, the average shortest path length is given by

` =
1

∣V∣(∣V∣ − 1)
∑

u≠v∈V
`(u,v).

▸ The average shortest path length describes how "globally
connected" a graph is.
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Cliques, independent sets, colorings
▸ A clique in a graph G is a subset S of its nodes such that the

subgraph corresponding to it is complete.
▸ Equivalently, if S is a clique if all pairs of vertices in S share an

edge.
▸ The clique number w(G) is the size of the largest clique of G.
▸ An independence set I of a graph G is a subset S of its nodes

such that no two nodes in S share an edge
▸ Equivalently, I is a clique in the complement graph Gc ∶= (V ,Ec).
▸ The independence number of G is the clique number of Gc .
▸ A vertex coloring of G is a labeling of the graph’s vertices with

colors such that no two vertices sharing the same edge have the
same color.

▸ The smallest number of colors needed to color a graph G is called
its chromatic number, often denoted χ(G).

▸ What is the relationship between w(G) and χ(G)?
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The Petersen Graph
Often used as an example or counter-example in graph theory.

The Petersen graph has
▸ a clique number of 2
▸ an independence number of 4
▸ chromatic number 3.
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Small graphs and motifs
▸ In addition to considering general summary statistics, it has proven

fruitful to summarise networks in terms of the small graphs which
are contained in the network.

▸ Such small subgraphs can be viewed as building-block patterns of
networks. By small we mean graphs on a small number of
vertices, such as 3 - 5 vertices.

▸ Often a small graph is called a motif when it is over-represented in
the network. Over-representation is judged using a probabilistic
model for the network.

▸ Here we think of a motif as a small graph with a fixed number of
vertices and with a given topology, and we use the term
interchangeably with small graph

▸ In biological networks, it turns out that motifs seem to be
conserved across species. They seem to reflect functional units
which combine to regulate the cellular behaviour as a whole.
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Figure: Some small graphs (motifs)
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Directed Motifs

Figure: All directed motifs on at most three vertices.

Benson, A. R., Gleich, D. F., & Leskovec, J. (2016). Higher-order organization
of complex networks. Science, 353(6295), 163-166.
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Models for Networks
▸ Below is an example from scientific collaboration networks (N.

Boccara, Modeling Complex Systems, Springer 2004, p.283).

Network n ave degree C
Los Alamos 52,909 9.7 0.43
MEDLINE 1,520,251 18.1 0.066
NCSTRL 11,994 3.59 0.496

▸ What do we learn from these summaries?
▸ In order to judge whether a network summary is "unusual" or

whether a motif is "frequent", there is an underlying assumption of
randomness in the network.

▸ The randomness can be intrinsic to the network, and/or may stem
from errors in the data.

▸ To understand the randomness, we rely on mathematical models
▸ Models also allow us to give mathematical/statistical guarantees

on the performance of algorithms for certain tasks (eg. clustering).
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Bernoulli (Erdös-Renyi) random graphs

▸ The most standard random graph model is the one proposed by
Erdös and Renyi (1959)
▸ the vertex set V of finite size n is given
▸ an edge between two vertices is present with probability p,

independently of all other edges

▸ The expected number of edges is

(
n
2
)p

▸ Degree distribution
▸ each vertex has n − 1 potential neighbours,
▸ each of these n − 1 edges is present with probability p
▸ ⇒ the degree of a randomly chosen vertex is

Bin(n − 1,p)-distributed
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Bernoulli (Erdös-Renyi) random graphs

▸ The expected number of triangles in the graph is

(
n
3
)p3

=
n(n − 1)(n − 2)

6
p3

▸ Exercise: The expected clustering coefficient is p

▸ In an Erdös-Renyi random graph, your friends are no more likely to
be friends themselves than would be a two complete strangers [not
realistic].
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The Small World phenomenon

▸ Also in real-world graphs often the shortest path length is much
shorter than expected from a Bernoulli random graph with the
same average vertex degree.

▸ The phenomenon of short paths, often coupled with high clustering
coefficient, is called the small world phenomenon. Remember the
Milgram experiments!
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The Watts-Strogatz small world model
▸ Arrange n vertices on a ring
▸ Hard-wire each vertex to its k nearest neighbours on each side on

the ring

●

●
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●
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▸ Choose a vertex and the edge that connects this vertex to its
clockwise nearest neighbour.

▸ With probability p this edge is reconnected to a vertex chosen
uniformly at random over the ring, with duplicate edges excludes;
otherwise the edge is left in place.

▸ Repeat “rewiring” by moving clockwise around the ring.
▸ Next, consider edges that connect vertices to their 2nd -nearest

neighbours, again clockwise, and repeat the rewiring process.
▸ With nk edges in the network the process stops after k laps.
▸ The number of edges remains nk .
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Small world model

Figure: (a) A one-dimensional lattice with each node connected to its c
nearest neighbors, where in this case c = 6. (b) The same lattice with periodic
boundary conditions, so that the system becomes a ring. (c) The
Watts-Strogatz model is created by rewiring a small fraction of the links (in this
case five of them) to new sites chosen at random. Models of the Small World,
A Review, M. E. J. Newman, (2000)

Watts & Strogatz, Collective dynamics of “small-world" networks, Nature 393,
440-442 (1998). Gogole Scholar: 25,307 citations (2015); 38,335 (2019);
43,530 (2020); 47,100 (2021); 49,950 (2022); 52130 (2023)
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The Newman-Moore-Watts model
• Most used version of the Watts-Strogatz model is the
Newman-Moore-Watts model, also known as the great circle model,
Ball, Mollison and Scalia-Tomba 1997
▸ arrange the n vertices of V on a lattice and hard-wire each vertex

to its k nearest neighbours on each side on the lattice, where k is
small.

▸ now, do not rewire edges but instead introduce random shortcuts
between vertices which are not hard-wired

▸ the shortcuts are chosen independently, all with the same
probability p.

▸ thus the number of edges is no longer constant.

The degree of a randomly chosen vertex has distribution
2k +Bin(n − 2k − 1,p).
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Figure: Original small-world model proposed by Watts & Strogatz, Collective
dynamics of ’small-world’ networks, Nature 393, 440-442 (1998)
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The Newman-Moore-Watts model
• If there are no shortcuts, then the average distance between two
randomly chosen vertices is of the order n, the number of vertices.

• But, as soon as there are just a few shortcuts, then the average
geodesic distance between two randomly chosen vertices has an
expectation of order log n. (if c = 2k , and ncp >> 1, then the average
geodesic distance is of the order log(ncp)

c2p )

• Thinking of an epidemic on a graph - just a few shortcuts dramatically
increase the speed at which the disease is spread.

• While the Watts-Strogatz model is able to replicate a wide range of
clustering coefficient and shortest path length simultaneously, it falls
short of producing the observed types of vertex degree
distributions.

• It is often observed that vertices tend to attach to “popular" vertices;
popularity is attractive.



47
Power Law and the Barabasi-Albert model
▸ Barabasi and Albert (1999) noticed that the actor collaboration

graph and the World Wide Web had degree distributions

dk ∼ Ck−γ , for k →∞ (1)
▸ power-law behaviour; constant γ is called the power-law exponent
▸ subsequently a number of networks have been identified which

show this type of behaviour (also called scale-free random graphs).

Figure: High skew (asymmetry) in the linear scale. Straight line on a log-log plot.

-Clauset et al. Power-law distributions in empirical data. SIAM review
51.4 (2009): 661-703. (Google Scholar citations: 9312 (2021))
▸ disputed the ubiquity of power-law degree distributions
▸ presented a statistically principled set of techniques that allow for

the validation and quantification of power laws.
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Preferential attachment (the short story)
To explain this behaviour, Barabasi and Albert introduced the
preferential attachment model for network growth:
▸ First considered by Price in 1976 as a model for citation networks

(who adapted the work of Herbert Simon, 1978 Nobel Prize in
Economics and Turing Award in 1975)

▸ Suppose that the process starts at time 1 with two vertices linked
by m (parallel) edges.

▸ At every time t ≥ 2 we add a new vertex with m edges that link the
new vertex to vertices already present in the network.

▸ We assume that the probability πi that the new vertex will be
connected to a vertex i depends on the degree d(i) of i so that

πi =
d(i)
∑j d(j)

.

▸ To be precise, when we add a new vertex we will add edges one at
a time, with the second and subsequent edges doing preferential
attachment using the updated degrees.
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Preferential attachment
• For m = 1
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Preferential Attachment (the long stroy)

▸ economist Herbert Simon (way ahead of his time in the study of
”complex systems")

▸ noted the occurrence of power laws in economic data (distribution
of people’s personal wealth)

▸ proposed that people acquire money at a rate that is linearly
proportional to their current income

▸ Simon proved that the ”rich-get-richer" (Yule process) leads to a
power-law distribution

▸ Price adapted Simon’s methods to the network context, and called
it cumulative advantage
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Preferential Attachment in networks

First considered by Price in the 1970s as a model for citation networks

▸ each new paper is generated with c citations (mean)

▸ new papers cite previous papers with probability proportional to
their in-degree (citations)

▸ for papers without any citations:

▸ each paper is considered to have a number of default citations = a

▸ probability of citing a paper with degree k , proportional to k

▸ leads to a power law with exponent

α = 2 +
a
c

we are about to prove.
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The attachment kernel
▸ most important modeling choice in constructing an attachment

mechanism of network formation
▸ gives a rule for how new objects in the network connect to existing

objects
▸ e.g., if nodes are added one at a time to a network and that each

new node forms an edge with a single existing node i with prob.

qi =
ai

∑i ai
(2)

▸ ai is called the attachment kernel, usually depends only structural
properties of node i (degree, local clustering coefficient, etc.)

▸ one can consider attachment mechanisms in which
▸ new nodes form edges to more than one existing node at a time
▸ rewiring between existing nodes occurs
▸ edges or nodes are removed
▸ network structures other than single nodes are added in each time

step
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Unweighted, undirected network

▸ the usual preferential attachment mechanism is called linear
preferential attachment

▸ has an attachment kernel that is a linear function of degree

ai = ki

where ki is the degree of node i

▸ probability that a new edge attaches to node i is given by

qi =
ki

∑i ki
=

ki

kn
(3)

▸ k = ∑i ki/n is the mean degree of the network on n nodes.
▸ can consider separately in-degre and out-degree
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The Price model (1976)
▸ Price considered citation networks (directed networks)
▸ track in-degrees and out-degrees separately
▸ new papers cite papers that already exist

▸ each node represents a paper
▸ each directed edge represents a citation

▸ nodes can never be removed
▸ denote by c the mean number of papers cited by a new paper
▸ the mean out-degree of the network is thus c

▸ a new paper cites an existing paper i with probability

qi =
a + ki

∑i(a + ki)
(4)

▸ a > 0 is a ”bonus" applied to each paper
▸ attachment kernel a + ki
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Estimating pk

Denote by

▸ ki
def
= the in-degree of each node (number of citations)

▸ probability that a new edge attaches to node i is given by

qi =
a + ki

∑i(a + ki)
=

a + ki

na + nk
=

a + ki

n(a + c)
(5)

where k = 1
n ∑i ki

▸ and keeping in mind that the sum of all in-degrees equals to the
sum of all out-degrees

▸ each new paper cites c papers on average

▸ expected number of new citations to node i , when a new node
comes in, is given by

c
a + ki

n(a + c)
(6)
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Estimating pk
▸ pk(n)

def
= fraction of nodes with in-degree k for a network of size n

▸ there are npk(n) nodes with in-degree k
▸ expected number of new citations to all nodes with in-degree k is

given by (using (6))

npk(n) c
a + k

n(a + c)
=

c(a + k)
a + c

pk(n) (7)

▸ to study the dynamics of the equation, one approach is to write a
master equation1 for the evolution of the in-degree

▸ add a single node to a network with n nodes:
▸ number of nodes with in-degree k increases by 1 for every node

with previous degree k − 1 that receives a new citation
▸ expected number of such new nodes of in-degree k is

c(a + k − 1)
a + c

pk−1(n)

1Master equations are equations of motion/differential equations used to describe
the evolution of probabilities
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Adding a node...
Adding a single node to a network with n nodes also implies:
▸ one node of in-degree k is lost every time that such a node

receives a new citation
▸ we have already computed the expected number of such nodes

receiving citations in (7):

c(a + k)
a + c

pk(n)

Altogether, the expected number of nodes with in-degree k after
one new node is added is

(n + 1)pk(n + 1) = npk(n)
´¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¶

# previous nodes of in-degree k

+
c(a + k − 1)

a + c
pk−1(n)

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
number of new nodes of in-degree k

−
c(a + k)

a + c
pk(n)

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
number of nodes of in-degree k that are lost

, k ≥ 1 (8)



58
Estimating pk
E[number of nodes with in-degree k after one new node is added] =

(n + 1)pk(n + 1) = npk(n) +
c(a + k − 1)

a + c
pk−1(n) −

c(a + k)
a + c

pk(n),k ≥ 1

▸ note that a separate equation is needed for k = 0 (omitted)
▸ taking n →∞, and letting pk denote pk(n →∞)

pk =
c

a + c
[(a + k − 1)pk−1 − (a + k)pk ] , k ≥ 1

p0 = 1 −
ac

a + c
p0, k = 0

▸ With additional work, in the limit n →∞, arrive at

pk ∼ k−β, for k >> a

where the exponent is
β = 2 +

a
c
> 2

Note that β = 3 when a = c.
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Barabási-Albert Model (extension of Price)
▸ undirected networks (as opposed to Price’s directed network)
▸ the number of new connections for each new node is exactly c

(thus now an integer), as opposed to Price where the number of
connections was required only to take an average value of c (but
might vary from step to step)

▸ the probability can be shown to become

pk =
2c(c + 1)

k(k + 1)(k + 2)
, for k ≥ c (9)

which, in the limit k →∞, recovers the power-law tail

pk ∼ k−3 (10)

▸ Barabási, Albert-László and Albert, Réka. Emergence of scaling in
random networks, Science 286.5439 (1999)

• Note 1: Not a whole lot of extra work for: 22,048 citations (2015); (36,484)
(2020); (40,180) (2021); (42,393) (2022); (44,600) (2023)
• Note 2: ”A general theory of bibliometric and other cumulative advantage
processes", Price, Journal of the American Society for Information, 1976
(1,083 citations) (2015); (1,721) (2022); (2,530) (2023);
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The Stochastic Block Model (SBM)
▸ also Erdös-Renyi mixture model, latent block models (Holland,

Laskey and Leinhardt (1983), Nowicky and Snijders (2001))
▸ assumes that vertices are of different types, say, there are L

different types (also L clusters)
▸ edges are constructed independently, such that the probability for

an edge varies only depending on the type of the vertices at the
endpoints of the edge

pi,j = P((u,v) ∈ E∣u is of type i ,v is of type j) (11)

▸ If α1, . . . , αL denote the proportion of the vertices of different types,
∑` α` = 1, then for a vertex v picked uniformly at random from V

E(d(v)) = ∑
`

α`
⎛

⎝
(∣V∣α` − 1)p`,` + ∑

k≠`
∣V∣αkpk ,`

⎞

⎠
(12)

▸ ∣V∣ ⋅ α` is the expected size of cluster `
▸ Often the type allocation itself is not known.



61
The Stochastic Block Model (SBM)

Weighted Stochastic Block Models of the Human Connectome across the Life Span,
Joshua Faskowitz, Xiaoran Yan, Xi-Nian Zuo, Olaf Sporns, Scientific Reports, Volume
8, Article number: 12997 (2018)
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Network Centrality Measures

▸ Mostly tools from Social Network Analysis

▸ Attempt to quantify the importance of nodes, edges, or other
network structures in various ways

▸ The choice depends on the problem and data under study, as what
it means to be ”most central" (and most important) is obviously
context-dependent

▸ Various notions/concepts of centrality (vary by context and
purpose)

▸ Simplest measure: Degree Centrality. Limitations?

▸ Centralities are often not robust to small perturbations either of
their definition or of network structure

▸ Be cautious about interpreting the results of centrality calculations
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Network Centrality Measures

▸ Probably hundreds of different types of centralities, though many of
them are very similar to each other

▸ We will only discuss a few well-known examples
▸ Degree Centrality (simplest type of centrality)

▸ Closeness Centrality

▸ Betweenness Centrality

▸ Eigenvector Centrality

▸ Katz Centrality

▸ Page Rank algorithm

▸ Bonachich Power Centrality
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Simplest centrality: Degree Centrality

▸ Social network: individuals who have connections to many others
might have more influence, more prestige than those who have
fewer connections.

▸ Citation network: the number of citations a paper receives from
other papers, which is simply its in-degree in the citation network,
is a measure of whether the paper has been influential or not.



65
Closeness Centrality
▸ Consider an undirected network
▸ Measures the mean distance from a vertex to other vertices

(several definitions of it exist in the literature)

▸ A version of closeness centrality, which one might call an
exponentially weighted closeness centrality (appropriate for both
connected and disconnected networks) is

Cc(i) = ∑
j∈Gi

2−Lij (13)

▸ Lij is the geodesic distance (i.e., the length of the shortest path)
between vertices i and j

▸ Gi is the connected network component reachable from vertex i
(but excluding vertex i itself)

▸ Path lengths in a weighted network need to be computed with a
distance matrix rather than an adjacency matrix
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Betweenness Centrality
▸ The betweenness centrality of an object in a network measures the

extent to which it lies on short paths
▸ A higher betweenness indicates that it lies on more short paths

and hence should somehow be important for traversing between
different parts of a network

▸ How many pairs of individuals would have to go through you in
order to reach one another in the minimum number of hops? Who
has higher betweenness, X or Y?
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Betweenness Centrality of a Vertex

▸ The geodesic betweenness Bn(i) of a vertex in a weighted,
undirected network is

Bn(i) = ∑
s,t∈G

Ψs,t(i)
Ψs,t

where vertices s, t , i are all different from each other
▸ Ψs,t denotes the number of shortest paths (geodesics) between

vertices s and t
▸ Ψs,t(i) denotes the number of shortest paths (geodesics) between

vertices s and t that pass through vertex i .
▸ The geodesic betweenness Bn of a network is the mean of Bn(i)

over all vertices i
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Different centralities

Figure: In each of the following networks, X has higher centrality than Y
according to a particular measure
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Eigenvector Centrality

▸ Eigenvector centrality posits that a vertex is important because it is
connected to other vertices that are important

▸ This notion is inherently recursive and leads naturally to an
eigenvalue problem

▸ Closely related to an old notion of centrality due to Katz and
PageRank centrality

▸ PageRank: famous because of its role in the Google search engine

Recall the Perron-Frobenius theorem
▸ a real square matrix with positive entries has a unique eigenvalue

of largest magnitude and that eigenvalue is real (λ1 > λ2), with
corresponding eigenvector with strictly positive components

▸ similar claim holds true for nonnegative matrices, under certain
assumptions (irreducible/strongly connected).
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Eigenvector Centrality
▸ The eigenvector centrality Ce(i) of vertex i in an undirected,

connected network is proportional to the sum of the eigenvector
centralities of the neighboring vertices

Ce(i) =
1
λ
∑

j∈N(i)
Ce(j)

where λ is the largest eigenvalue of A

Ce(i) =
1
λ
∑

j
AijCe(j)

in both weighted and unweighted networks
▸ Ce(i) is the i-th component of the leading eigenvector of A

ACe = λCe

▸ Perron-Frobenius: each entry of this eigenvector is positive
▸ If G is not connected, the A becomes block diagonal (one for each

component), and one computes eigenvector centralities separately
for each component.
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Issues with Eigenvector Centrality

Ce(i) =
1
λ
∑

j∈N(i)
Ce(j)

▸ Say u is connected to the rest of the network, but only outgoing
edges and no incoming ones (directed graph setting)

▸ Then u has centrality zero because there are no terms in the sum;
which is acceptable, however...

▸ Assume v has only one incoming edge (u → v ), then v also ends
up with centrality zero

▸ It holds true that only vertices that are in a strongly connected
component of two or more vertices, or the out-component of such
a component, can have non-zero eigenvector centrality

▸ Issue: acyclic networks (citation networks) have no strongly
connected components of more than one vertex, thus all vertices
will have centrality zero
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Katz centrality (1953)
▸ A variant of eigenvector centrality which allows each vertex a small

amount of centrality for free regardless of its position in the
network or the centrality of its neighbors

xi = α
n
∑
j=1

Aijxj + β (14)

▸ α,β > 0

▸ x = αAx + β1

▸ (with β = 1) the Katz centrality Ck(i) of vertex i , is given by the i-th
component of the eigenvector

Ck = (I − αA)
−11

▸ I is the identity matrix, 1 denotes the all-ones vector

▸ α ∈ (0, λ) is a free parameter governing the balance between the
eigenvector term and the constant term in (14)
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Page-Rank
▸ Issue with Katz centrality: if a vertex with high Katz centrality

points to many others then those others also get high centrality
▸ A high-centrality vertex (like Yahoo) pointing to one million others

gives all one million of them high centrality!
▸ Fix: share Yahoo’s contribution to the centrality of those one million

pages to which it is pointing
▸ Centrality of vertex u is obtained from that of its neighbors

proportional to their centrality divided by their out-degree

xi = α
n
∑
j=1

Aij
xj

kout
j

+ β (15)

where Aij = 1 if webpage j links to webpage i (j ↦ i) and Aij = 0
otherwise.

▸ Note: vertices with no out-going edges (kout
j = 0) should contribute

zero to the centrality of others, so set kout
j = 1

▸ D diagonal matrix with Dii = max{kout
i ,1}

x = αAD−1x + β1 (16)
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Page-Rank
▸ x = αAD−1x + β1
▸ D diagonal matrix with Dii = max{kout

i ,1}

x = β(I − αAD−1
)
−11 = βD(D − αA)

−11

▸ Set β = 1, just a re-scaling and arrive at the Page-Rank centrality

CPR = D(D − αA)
−11

▸ α governs the balance between the eigenvector term and the
constant term

▸ In practice, Google uses α = 0.85, no rigorous theory behind this
choice

▸ Can customize the additive constant for each vertex

xi = α
n
∑
j=1

Aij
xj

kout
j

+ βi (17)

CPR = D(D − αA)
−1β
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Almost-Page-Rank

▸ Without any additive constant

xi = α
n
∑
j=1

Aij
xj

kout
j

(18)

▸ If A is undirected, note that xi = ki does the job (recovers degree
centrality)

▸ For the undirected case, it yields a new network centrality though
not very popular in practice.
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Almost-Page-Rank
Wishful thinking: would like the following influece-based weight system
▸ (a) webpages that link to i, and have high PageRank scores

themselves, should be given more weight

▸ (b) webpages that link to i, but link to a lot of other webpages in
general, should be given less weight

xi = ∑
j↦i

xj

kout
j

=
n
∑
j=1

Aij
xj

kout
j

(19)

▸ where Aij = 1 if webpage j links to webpage i (j ↦ i) and Aij = 0
otherwise.

▸ kout
j number of webpages j links to

Indeed, for j ↦ i , this is in line with our wishful thinking above, as the
weight contribution xj

kout
j

▸ increases with xj as in (a)
▸ decreases with kout

j as in (b)
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Almost-Page-Rank written in matrix notation

x =

⎛
⎜
⎜
⎜
⎝

x1
x2

xn

⎞
⎟
⎟
⎟
⎠

; A =

⎛
⎜
⎜
⎜
⎝

A11 A13 A1n
A21 A23 A2n

An1 An3 Ann

⎞
⎟
⎟
⎟
⎠

; M =

⎛
⎜
⎜
⎜
⎝

kout
1 0 0
0 kout

2 0

0 0 kout
n

⎞
⎟
⎟
⎟
⎠

(20)

• The previous system of linear equations can be simply written as
x = AM−1x (21)

• Letting W = AM−1, this amounts to x = Wx , meaning that x is an
eigenvector of the matrix W with eigenvalue 1.
• Good problem to consider - we know very well how to compute
eigenvalues and eigenvectors of W , and there are very fast methods
even for the case when W is very large and sparse.

Questions to consider:
▸ how do we even know that W has an eigenvalue of 1, so that such

a vector x even exists?
▸ even if it exists, is it unique? Is the problem well-defined?
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-Almost-Page-Rank

http://pi.math.cornell.edu/~mec/Winter2009/RalucaRemus/Lecture3/lecture3.html

Need to solve x = Wx where

W =

⎛
⎜
⎜
⎜
⎜
⎝

0 0 1 1
2

1
3 0 0 0
1
3

1
2 0 1

2
1
3

1
2 0 0

⎞
⎟
⎟
⎟
⎟
⎠

(22)

Matrix W is an example of a column-stochastic matrix:
▸ square matrix with all entries non-negative
▸ entries in each column sum to 1.

Stochastic matrices arise in the study of Markov chains (suitable for
modelling problems in economics and operations research).

http://pi.math.cornell.edu/~mec/Winter2009/RalucaRemus/Lecture3/lecture3.html
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Markov Chains
▸ random process on graph with states 1,2, . . . ,n, where a surfer

moves between states (each move is a step of the process)
▸ x(0) is the n-dim vector with the starting probabilities; after one

step x(1) = W T x(0) has the probabilities of being in each state
▸ the Almost-PageRank problem is that of Markov Chain, where the

states are the webpages, and the transition probability matrix is
given by W T . Recall that W T

ij = Wji =
Aji

kout
i

▸ the Markov Chain can be described as

Prob(move i ↦ j) =
⎧⎪⎪
⎨
⎪⎪⎩

1
kout

i
if i ↦ j

0 otherwise
(23)

▸ random surfer on the web by clicking links uniformly at random
▸ a stationary distribution (left-eig) of a Markov chain is a probability

vector x (i.e., its entries are ≥ 0 and sum to 1) with x = Wx .
▸ if MC is strongly connected (any state can be reached from any

other state), the stationary distribution x exists and is unique
▸ stationary dist. construed as the proportion of visits the MC pays to

each state after a very long time (Ergodic Theorem).
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Spectra of a column-stochastic matrix
Theorem
A column-stochastic matrix W has an eigenvalue λ = 1, which is also its
largest eigenvalue.

Proof.
(a) Let W be an n × n column-stochastic matrix.
▸ first note that W and W T have the same eigenvalues (their

eigenvector will usually be different)
▸ denote 1 = [1,1, . . .1]T to be the all-ones vector of length n
▸ since W is column-stochastic, W T 1 = 1 (since all columns of W

sum up to 1)
▸ hence 1 is an eigenvector of W T (but not of W ) with corresponding

eigenvalue λ = 1
▸ therefore λ = 1 is also an eigenvalue of W .

To prove the second part, we need to make a detour first.
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Gershgorin circle theorem
• Let A ∈ Cn×n. For i = 1, . . . ,n, let

ri = ∑
j≠i

∣Aij ∣ (24)

be the sum of the absolute values of the non-diagonal entries in row i
• Let Di denote the closed disk in the complex place centered at Aii with
radius ri

Di ∶= D(Aii , r = ri) = {z ∈ C ∶ ∣z −Aii ∣ ≤ ri} (25)

• Such a disk is referred to as a Gershgorin disc.

Theorem
Every eigenvalue of A lies within at least one of the Gershgorin discs
Di , i = 1, . . . ,n.

Theorem (Stronger version)
All the eigenvalues of A lie in the union of the disks Di for i = 1, . . . ,n. If
some set of k overlapping disks is disjoint from all the other disks, then
exactly k eigenvalues lie in the union of these k disks.
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Spectra of a column-stochastic matrix (cont)
Proof.
(b) Let us now prove that λ = 1 is also the largest eigenvalue of W
▸ application of the Gershgorin circle theorem to W T

▸ consider the k th row of W T

▸ denote the diagonal elements as wk ,k , with the radius given by

ri = ∑
i≠k

∣wk ,i ∣ = ∑
i≠k

wk ,i (26)

since wk ,i ≥ 0,∀k , i (W has all entries non-negative).
▸ this is a circle centered at wk ,k ∈ [0,1], with radius

ri = ∑
i≠k

wk ,i = 1 −wk ,k ≤ 1 (27)

▸ this circle has 1 on its perimeter, and this holds true for all
Gershgorin circles of the matrix W

▸ since all eigenvalues of W lie in the union of the Gershgorin
circles, all eigenvalues λi must satisfy

∣λi ∣ ≤ 1 (28)
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-Almost-Page-Rank

W =

⎛
⎜
⎜
⎜
⎜
⎝

0 0 1 1
2

1
3 0 0 0
1
3

1
2 0 1

2
1
3

1
2 0 0

⎞
⎟
⎟
⎟
⎟
⎠

(29)

When solving Wx = λx , we obtain as eigenvector of W associated to
eigenvalue λ = 1 the vector x = [x1,x2,x3,x4]

T = [12
31 ,

4
31 ,

9
31 ,

6
31]

T

▸ somewhat surprisingly, page 3 is no longer the most important
one, but page 1 is

▸ the apparently important page 3 (which has three webpages
linking to it) has only one outgoing link, which gets all its “voting
power”, and that link points to page 1.

• Important: we only need to compute the eigenvector associated with
the eigenvalue 1 (also the largest one), which can be computed fast
with standard power iteration, also very scalable for very large graphs
(even with billions on nodes!).
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Zachary’s Karate club network
Arguably the most famous network data set: the Zachary’s Karate club
network, a friendship network of 34 members of a karate club at a US
university in the 1970s.
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7/20/2016 Karate_Cuneyt_Akcora.png (565×485)

https://upload.wikimedia.org/wikipedia/commons/2/2b/Karate_Cuneyt_Akcora.png 1/1

The club split into two different factions as a result of an internal
dispute, and the members of each faction are known (one of the few
cases when a proxy for the ”ground truth" is known).
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Modularity in unweighted & undirected networks
▸ for a given a partition of a network into k non-overlapping groups

of nodes, we would like to know what is the expected number of
connections within a group

▸ if nodes i and j have degrees ki and kj , the probability that in a
random network they are neighbours, ie. (i , j) ∈ E , is given by

P[(i , j) ∈ E] =
kikj

2m
(30)

where m is the total number of edges in G
▸ the expected number of edges within a group is

1
2
∑
i,j

kikj

2m
δ(xi ,xj) (31)

where xi is the community to which node i is assigned

δ(xi ,xj) = {
1 if gi = gj
0 if gi ≠ gj

(32)
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Modularity in unweighted & undirected networks
▸ if there are k groups of nodes in the network, then the numbder of

edges within groups is given by
1
2
∑
i,j

Aijδ(xi ,xj) (33)

▸ consider the difference between the actual versus the expected
number of edges that connect vertices of similar types/groups

Q =
1
2
∑
i,j

Aijδ(xi ,xj)

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
what we observe in the network

−E
⎡
⎢
⎢
⎢
⎢
⎣

1
2
∑
i,j

Aijδ(xi ,xj)

⎤
⎥
⎥
⎥
⎥
⎦

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
what we expect at random

(34)

=
1
2
∑
i,j

Aijδ(xi ,xj) −
1
2
∑
i,j

kikj

2m
δ(xi ,xj) (35)

=
1
2
∑
i,j

(Aij −
kikj

2m
) δ(xi ,xj) (36)

▸ in practice, one considers the fraction of edges, not the number
1

2m
∑
i,j

(Aij −
kikj

2m
) δ(xi ,xj) (37)
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Modularity in unweighted & undirected networks

Q =
1

2m
∑
i,j

(Aij −
kikj

2m
) δ(xi ,xj) (38)

=
1

2m
∑
i,j

Bijδ(xi ,xj) (39)

▸ where the modularity matrix B is defined as

Bij = Aij −
kikj

2m
(40)

▸ can be extended to
▸ weighted networks, with the strengths replacing the degrees
▸ to directed networks, ki kj

m replacing ki kj

2m

▸ the modularity Q can be seen as the quality of the partition
▸ we aim to maximize Q in order to find communities
▸ community-detection methods optimize for partitions with high

modularity
▸ very rich literature on modularity optimization (including spectral).
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The Newman-Girvan algorithm
▸ a popular algorithm to maximize Q by Newman & Girvan

Girvan, Michelle, and Mark EJ Newman. “Community structure in social
and biological networks". Proceedings of the National Academy of
Sciences (PNAS) (2002). Google Scholar: 16,201 (2021); 18,700 (2023)

▸ recall: the betweenness centrality of an edge is the number of
shortest paths between vertex pairs that run along the edge in
question, summed over all vertex pairs

▸ the Girvan & Newman algorithm involves simply
▸ calculating the betweenness of all edges in the network,
▸ removing the one with highest betweenness
▸ repeating this process until no edges remain.

▸ if two or more edges tie for highest betweenness, then one can
either choose one at random to remove, or simultaneously remove
all of them

Many other algorithmic approaches: spectral, Louvain modularity
algorithm, ...
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Milestones in Community Structure Detection

Girvan, Newman

Newman
Fast algorithm for 
detecting community 
structure in networks

Clauset, Newman, Moore
Finding community 
structure in very large 
networks

Over 5000 papers
On the topic Community 

Structure  Detection

Modularity and Community 

Structure Detection

Community structure in 
social and biological 
networks

2002 2003 2004 2006 2007-2017

Newman

Source: Chandole, Kabre, Aggarwal
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The karate club example
The Girvan-Newman algorithm on the karate club example:
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The karate club example
The Girvan-Newman algorithm on the karate club example forced to
produce exactly 2 groups.
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Network summaries

Degrees and the degree distribution
Clustering coefficients

Graph theory notions
Small graphs and motifs
Models for networks

Erdös-Renyi random graphs
Watts-Strogatz small world model
Preferential Attachment Model (Price,
Barabási-Albert)
Stochastic Block Model (SBM)

Network Centrality Measures
Modularity optimization
Further topics within networks
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Further topics within networks

▸ many networks have a hierarchical structure (food webs, GICS
decomposition: sectors, groups, etc). How do we take this into
account when, for example, denoising the empirical correlation
matrix?

▸ networks may also be dynamic; each given network data is a
snapshot in time

▸ edges in networks may be of different types (as in knowledge
graphs), leading to multilayer/multiplex networks

▸ certain networks have structures beyond the usual clustering, eg
core-periphery

▸ anomaly detection (fraud detection in financial transaction
networks)

▸ network change-point detection (NCPD) (identification of market
regimes)
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A range of structures in networks
Idealized block models of network adjacency matrices; darker blocks
correspond to denser connections among its component nodes.

5

(a) Low-dimensional structure (b) Core-periphery structure

(c) Expander or complete
graph

(d) Bipartite structure

FIG. 1. Idealized block models of network adjacency matri-
ces; darker blocks correspond to denser connections among
its component nodes. Figure 1a illustrates a low-dimensional
“hot dog” or “pancake” structure; Fig. 1b illustrates a “core-
periphery” structure; Fig. 1c illustrates an unstructured ex-
pander or complete graph; and Fig. 1d illustrates a bipar-
tite graph. Our example networks are the Zachary Karate
Club [59] in Fig. 1a and a realization of a random-graph
block model in Figs. 1b–1d. For Fig. 1b we only show the
largest connected component (LCC), whereas the networks
in Figs. 1c and 1d are connected. The parameters for the
block models are as follows: (b) α11 = 0.3, α22 = 0.001,
α12 = 0.005, n1 = 50 nodes, and n2 = 950 nodes (the
LCC has 615 nodes); (c) α11 = α22 = α12 = 0.01, and
n1 + n2 = 1000 nodes; (d) α11 = α22 = 0, α12 = 0.02, and
n1 = n2 = 500 nodes.

matrix A to a 2× 2 block matrix:

A =

(
A11 AT12
A12 A22

)
,

where Aij = αij~1~1
T , where the “1-vector” ~1 is a column

vector of the appropriate dimension that contains a 1
in every entry and αij ∈ R+. Thus, each block in A has
uniform values for all its elements, and larger values of αij
correspond to stronger interactions between nodes. The
structure of A is then determined based on the relative
sizes of α11, α12, and α22. The various relative sizes of
these three scalars have a strong bearing on the structure
of the network associated with A. We illustrate several
examples in Fig. 1. For the block models that we use for
three of its panels, one block has n1 nodes and the second
block has n2 nodes, and a node in block i is connected
to a node in block j with probability αij [61].

• Low-dimensional structure. In Fig. 1a, we il-
lustrate the case in which α11 ≈ α22 � α12. In this
case, each half of the network interacts with itself
more densely than it interacts with the other half of
the network. This “hot dog” or “pancake” struc-
ture corresponds to the situation in which there
are two (or any number, in the case of networks
more generally) dense communities of nodes that
are reasonably well-balanced in the sense that each

community has roughly the same number of nodes.
In this case, the network embeds relatively well in
a one-dimensional, two-dimensional, or other low-
dimensional space. Spectral clustering or other
clustering methods often find meaningful commu-
nities in such networks, and one can often readily
construct meaningful and interpretable visualiza-
tions of network structure.

• Core-periphery structure. In Fig. 1b, we illus-
trate the case in which α11 � α12 � α22. This
is an example of a network with a density-based
“core-periphery” structure [24, 25, 62–64]. In these
cases, there is a core set of nodes that are rela-
tively well-connected amongst themselves as well
as to a peripheral set of nodes that interact very
little amongst themselves.

• Expander or complete graph. In Fig. 1c, we
illustrate the case in which α11 ≈ α12 ≈ α22.
This corresponds to a network with little or no dis-
cernible structure. For example, if α11 = α12 =
α22 = 1, then the graph is a clique (i.e., the
complete graph). Alternatively, if the graph is
a constant-degree expander, then α11 ≈ α12 ≈
α22 � 1. As discussed in Appendix A, constant-
degree expanders are the metric spaces that embed
least well in low-dimensional Euclidean spaces. In
terms of the idealized block model in Fig. 1, they
“look like” complete graphs, and partitioning them
would not yield network structure that one should
expect to construe as meaningful. Informally, they
are largely unstructured when viewed at large size
scales.

• Bipartite structure. In Fig. 1d, we illustrate
the case in which α12 � α11 ≈ α22. This cor-
responds to a bipartite or nearly-bipartite graph.
Such networks arise, e.g., when there are two dif-
ferent types of nodes, such that one type of node
connects only to (or predominantly to) nodes of the
other type [65].

Most methods for algorithmic detection of communi-
ties have been developed and validated using the intuition
that networks have some sort of low-dimensional struc-
ture [5, 25, 36]. As an example, consider the infamous
Zachary Karate Club network [59], which we show in
Fig. 1a. This well-known benchmark graph, which seems
to be an almost obligatory example to discuss in papers
that discuss community structure [66, 67], clearly “looks
like” it has a nice low-dimensional structure. For exam-
ple, there is a clearly identifiable left half and right half,
and two-dimensional visualizations of the network (such
as that in Fig. 1a) highlight that bipartition. Indeed, the
Zachary Karate Club network possesses well-balanced
and (quoting Herbert Simon [68]) “nearly decomposable”
communities; and the nodes in each community are more
densely connected to nodes in the same community than
they are to nodes in the other community. Relatedly,

Jeub, L. G., Balachandran, P., Porter, M. A., Mucha, P. J., & Mahoney, M. W. (2015). Think locally, act locally: Detection of small,
medium-sized, and large communities in large networks. Physical Review E, 91(1), 012821
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Temporal (or time-dependent) networks
▸ networks for which either the nodes or the edges (or both) change

over time
▸ voting networks (U.S. Senate roll call vote similarities) encoding

the pairwise agreement/similarity between their voting, specified
independently for each 2-year Congress

▸ social networks where new connections are formed over time, and
also new users join the network.

▸ daily correlation matrices, co-occurrence network, co-jumps
networks

Temporal networks

Temporal networks (aka time-dependent networks) are networks
in which the nodes and/or edges (and their weight) change in
time.

Example: network of mobile phone calls
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Temporal (or time-dependent) networks
▸ network for which either the nodes or the edges (or both) change

over time
▸ interslice connections (dashed lines) are encoded by Tjrs,

specifying the coupling of node j to itself between slices r and s

Mucha, P. J., Richardson, T., Macon, K., Porter, M. A., & Onnela, J. P. Community structure in time-dependent, multiscale, and
multiplex networks. Science, 328(5980), 876-878 (2010)
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Multilayer networks

Kivelä, M., Arenas, A., Barthelemy, M., Gleeson, J. P., Moreno, Y., & Porter, M. A. (2014). Multilayer networks. Journal of complex
networks, 2(3), 203-271.
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Hypergraphs
▸ certain applications require moving beyond pairwise connections
▸ eg., co-authorship networks: multiple authors write a joint paper
▸ in hypergraphs, the edges (denoted as hyperedges) are allowed to

connect more than two nodes
▸ k -regular hypergraph: every node has degree k , i.e., it is contained

exactly in k hyperedges;
▸ often represented as tensors
▸ in a financial context, it can be used to capture

▸ co-jump behaviour: events in which a subset of stocks co-jump
within the same short time interval

▸ co-occurrence events: multiple companies mentioned in the same
news article

Credit: Wikipedia

Note there is a reading group organized this term in the Statistics Department, by
Gesine Reinert where some of our joint students and postdocs will be involved.
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Higher-order organization of complex networks
▸ explores higher-order organization of complex networks at the

level of small network subgraphs/motifs
▸ networks exhibit rich higher-order organizational structures

exposed by clustering on higher-order connectivity patterns

NETWORK SCIENCE

Higher-order organization of
complex networks
Austin R. Benson,1 David F. Gleich,2 Jure Leskovec3*

Networks are a fundamental tool for understanding and modeling complex systems in physics,
biology, neuroscience, engineering, and social science. Many networks are known to exhibit rich,
lower-order connectivity patterns that can be captured at the level of individual nodes and
edges. However, higher-order organization of complex networks—at the level of small network
subgraphs—remains largely unknown. Here, we develop a generalized framework for clustering
networks on the basis of higher-order connectivity patterns.This framework provides
mathematical guarantees on the optimality of obtained clusters and scales to networks with
billions of edges.The framework reveals higher-order organization in a number of networks,
including information propagation units in neuronal networks and hub structure in transportation
networks. Results show that networks exhibit rich higher-order organizational structures
that are exposed by clustering based on higher-order connectivity patterns.

N
etworks are a standard representation of
data throughout the sciences, and higher-
order connectivity patterns are essential to
understanding the fundamental structures
that control and mediate the behavior of

many complex systems (1–7). The most common
higher-order structures are small network sub-
graphs,whichwe refer to asnetworkmotifs (Fig. 1A).
Network motifs are considered building blocks
for complex networks (1, 8). For example, feed-
forward loops (Fig. 1A,M5) have proven funda-
mental to understanding transcriptional regulation
networks (9); triangularmotifs (Fig. 1A,M1–M7) are
crucial for social networks (4); open bidirectional
wedges (Fig. 1A, M13) are key to structural hubs
in the brain (10); and two-hop paths (Fig. 1A,
M8–M13) are essential to understanding air traf-
fic patterns (5). Although network motifs have
been recognized as fundamental units of net-
works, the higher-order organization of networks
at the level of network motifs largely remains an
open question.
Here, we use higher-order network structures

to gain new insights into the organization of com-
plex systems. We develop a framework that iden-
tifies clusters of networkmotifs. For each network
motif (Fig. 1A), a different higher-order clustering
may be revealed (Fig. 1B), which means that dif-
ferent organizational patterns are exposed, de-
pending on the chosen motif.
Conceptually, given a network motif M, our

framework searches for a cluster of nodes Swith
two goals. First, the nodes in S should participate
in many instances ofM. Second, the set S should
avoid cutting instances ofM, which occurs when
only a subset of the nodes fromamotif are in the
set S (Fig. 1B). More precisely, given a motif M,
the higher-order clustering framework aims to
find a cluster (defined by a set of nodes S) that

minimizes the following ratio:

fM ðSÞ ¼ cutM ðS; SÞ=min½volM ðSÞ; volM ðSÞ�
ð1Þ

where S denotes the remainder of the nodes (the
complement of S), cutM(S,S) is the number of
instances of motifM with at least one node in S
and one in S, and volM (S) is the number of nodes

in instances ofM that reside in S. Equation 1 is a
generalization of the conductance metric in spec-
tral graph theory, one of the most useful graph
partitioning scores (11). We refer to fM(S) as the
motif conductance of S with respect toM.
Finding the exact set of nodes S thatminimizes

themotif conductance is computationally infeasible
(12). To approximatelyminimize Eq. 1 and, hence,
to identify higher-order clusters, we developed an
optimization framework that provably finds near-
optimal clusters [supplementarymaterials (13)].
We extend the spectral graph clustering method-
ology, which is based on the eigenvalues and eigen-
vectors of matrices associated with the graph (11),
to account for higher-order structures innetworks.
The resulting method maintains the properties of
traditional spectral graphclustering: computational
efficiency, ease of implementation, andmathemati-
cal guarantees on the near-optimality of obtained
clusters. Specifically, the clusters identified by our
higher-order clustering framework satisfy themotif
Cheeger inequality (14), which means that our
optimization framework finds clusters that are at
most a quadratic factor away from optimal.
The algorithm (illustrated in Fig. 1C) efficiently

identifies a cluster of nodes S as follows:
• Step 1: Given a network and a motif M of

interest, form the motif adjacency matrix WM

whose entries (i, j) are the co-occurrence counts
of nodes i and j in the motifM: (WM)ij = number
of instances of M that contain nodes i and j.

SCIENCE sciencemag.org 8 JULY 2016 • VOL 353 ISSUE 6295 163

1Institute for Computational and Mathematical Engineering,
Stanford University, Stanford, CA 94305, USA. 2Department
of Computer Science, Purdue University, West Lafayette, IN
47906, USA. 3Computer Science Department, Stanford
University, Stanford, CA 94305, USA.
*Corresponding author. Email: jure@cs.stanford.edu

Fig. 1. Higher-order network structures and the higher-order network clustering framework.
(A) Higher-order structures are captured by network motifs. For example, all 13 connected three-node directed
motifs are shownhere. (B)ClusteringofanetworkbasedonmotifM7. ForagivenmotifM, our frameworkaims to
find a set of nodes S that minimizes motif conductance, fM(S), which we define as the ratio of the number of
motifs cut (filled triangles cut) to theminimumnumber of nodes in instances of themotif in eitherS orS (13). In
this case, there is onemotif cut. (C) Thehigher-order networkclustering framework.Given agraph and amotif of
interest (in this case,M7), the framework forms amotif adjacencymatrix (WM) by counting the number of times
two nodes co-occur in an instance of the motif. An eigenvector of a Laplacian transformation of the motif
adjacencymatrix is then computed.The ordering s of the nodes provided by the components of the eigenvector
(15) produces nested sets Sr = {s1, …, sr} of increasing size r.We prove that the set Sr with the smallest motif-
based conductance, fM(Sr), is a near-optimal higher-order cluster (13).
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Credit: Benson, Austin R., David F. Gleich, and Jure Leskovec. Higher-order organization of complex networks. Science 353.6295
(2016): 163-166.
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Core-Periphery Networks
Chaojun Wang, Core-Periphery Trading Networks, (2016)

Li and Schüerhoff - muni bonds Hollifield, Neklyudov, Spatt - ABS Bech and Atalay - Fed funds

ESRB - Interest rate swaps ESRB - Credit default swaps ESRB - FX forwards

Figure 1 – Core-periphery networks in OTC markets

crisis-induced regulations (such as the Volcker Rule) and higher bank capital requirements,

which have increased the cost of access to dealers’ balance sheets. My results suggest that,

aside from financial stability benefits (which I do not model), weighting capital requirements

by asset liquidity can foster more efficient provision of dealer intermediation.

The model works as follows. A finite number of ex-ante identical agents form bilateral

trading relationships in a continuous-time trading game. It is costly for agents to hold asset

inventory beyond their immediate needs. Dealers arise endogenously to form the core of the

market, exploiting their central position to balance inventory risk by quickly netting many

purchases against many sales. Dealers compete in their pricing of immediacy to maintain long

term trading relationships with peripheral buyside firms. As more dealers compete for trades,

each dealer must post a narrower bid-ask spread, while requiring a higher intermediation

compensation given its reduced ability to balance inventory. The equilibrium number of

dealers is such that the equilibrium spread, driven by trade competition, is just enough

to cover the dealer sustainable spread driven by inventory balancing. Figure 2 depicts an

example equilibrium core-periphery network of 23 agents, 3 of whom emerge as dealers.

Weill (2007), Meli (2002), Adrian, Moench, and Shin (2010), Adrian, Etula, and Shin (2010).

2

Figure: Core-periphery trading networks in OTC markets.
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Core-Periphery structure in (undirected) networks
Structure that consists of densely connected core vertices C and
sparsely connected peripheral vertices P (where V = C ∪P)
▸ core vertices in C tend to be well-connected both among

themselves and to peripheral vertices in P
▸ peripheral vertices are sparsely connected to other vertices.

A stochastic block model for core-periphery

A = pcc pcp

pcp ppp
(41)

Ã = 1 1
1 0 (42)

▸ pcc = pcp = 1 and ppp = 0: idealized block model, leading to an
adjacency matrix of rank 2

▸ nc & np the number of core and peripheral vertices; nc + np = n
▸ extension to directed networks: A. Elliott, A. Chiu, M. Bazzi, G.

Reinert, M. Cucuringu, Core-periphery structure in directed
networks, Proc. of the Royal Society A 476, no. 2241
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Anomaly detection - identification of heavy structures
The weights of the edges within such structures are considerably larger
than the average weight of the ambient graph.
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Network Change-point detection (NCPD)
▸ dynamic networks that are temporal sequences of graph snapshots
▸ goal: detect abrupt changes in their structure
▸ cross-correlation networks of daily stock returns (computed over a

one-month interval) from the SP 500 index in a period of ∼ 20
years (Feb. 2000 - Dec. 2020).

▸ covariate information available: volatility, volume, etc
▸ move beyond the traditional uni/multi-variate time series for

change-point detection (often based on cumsum statistics)
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returns. The first two digits denote the month, followed by the year.
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104
Graph Neural Networks
Intuition behind GNN embedding approaches: at each iteration (search depth,
layer) the nodes aggregate information from their local neighbors; as this
process iterates, nodes gather information from further reaches of the graphs
▸ at each layer k , a representation of each node is available hk

▸ each node v AGGREGATEs the representations/embedding of the nodes
in its immediate neighborhood {hk−1

u ,∀u ∈ N(v)} into a single vector
hk−1
N(v) (this depends on node embeddings from previous iteration k − 1)

▸ next, hk−1
N(v) is CONCATenated with hk−1

v , and fed through a fully
connected layer with nonlinear activation function σ, whose output is ↦ hk

v

hk
v ← σ (W k

⋅CONCAT(hk−1
v ,hk−1

N(v))) (43)
▸ in order to learn useful, predictive representations in a fully unsupervised

setting, one can apply a graph-based loss function to the final output
embeddings zu, and tune the weight matrices W k and parameters of the
AGGREGATE function via stochastic gradient descent.

Remarks
▸ graph-based loss fcn. promotes nearby nodes to have similar representations,

while enforcing that the representations of far-away nodes are highly distinct
▸ when the representations are used for a specific downstream task, the

unsupervised loss above is replaced/augmented by a task-specific objective
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Relevant literature for applications of networks in finance

1. “Sentiment Correlation in Financial News Networks and Associated Market Movements",
Wan, Yang, Marinov, Calliess, Zohren, Dong, Scientific Reports 11, 3062 (2021)

2. “Temporal Graph Networks for Deep Learning on Dynamic Graphs", Rossi, Chamberlain,
Frasca, Eynard, Monti, Bronstein, https://arxiv.org/abs/2006.10637

3. “Topological structures in the equities market network", Gregory Leibon, Scott Pauls, Daniel
Rockmore, and Robert Savell, PNAS 2008, 105 (52) 20589-20594

4. “Modeling the Stock Relation with Graph Networks for Overnight Stock Movement
Prediction", IJCAI-20, https://www.ijcai.org/Proceedings/2020/0626.pdf

5. “Modeling the Momentum Spillover Effect for Stock Prediction via Attribute-Driven Graph
Attention Networks", AAAI Conference on Artificial Intelligence, 35(1), 55-62

6. “Knowledge Graph-based Event Embedding Framework for Financial Quantitative
Investments", Cheng, Yang, Wang, Zhang, Zhang, SIGIR 2020

7. “Analysis of Equity Markets: A Graph Theory Approach analysis of equity markets a graph
theory approach", https://evoq-eval.siam.org/Portals/0/Publications/
SIURO/Volume%2010/Analysis_Equity_Markets_A_Graph_Theory_Approach.
pdf?ver=2018-02-28-145946-083

8. “Stock Network Stability After Crashes Based on Entropy Method", Front. Phys., 12 June
2020 https://doi.org/10.3389/fphy.2020.00163

9. “Stock market network’s topological stability: Evidence from planar maximally filtered graph
and minimal spanning tree", International Journal of Modern Physics B (2015)

10. “Correlation based networks of equity returns sampled at different time horizons"
https://arxiv.org/pdf/physics/0605251.pdf

11. “Stability Analysis of Company Co-Mention Network and Market Graph Over Time Using
Graph Similarity Measures", J. Open Innov. Technol. Mark. Complex. 2019

https://arxiv.org/abs/2006.10637
https://www.ijcai.org/Proceedings/2020/0626.pdf
https://evoq-eval.siam.org/Portals/0/Publications/SIURO/Volume%2010/Analysis_Equity_Markets_A_Graph_Theory_Approach.pdf?ver=2018-02-28-145946-083 
https://evoq-eval.siam.org/Portals/0/Publications/SIURO/Volume%2010/Analysis_Equity_Markets_A_Graph_Theory_Approach.pdf?ver=2018-02-28-145946-083 
https://evoq-eval.siam.org/Portals/0/Publications/SIURO/Volume%2010/Analysis_Equity_Markets_A_Graph_Theory_Approach.pdf?ver=2018-02-28-145946-083 
https://doi.org/10.3389/fphy.2020.00163
https://arxiv.org/pdf/physics/0605251.pdf
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