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Spectral methods

Broadly speaking, they define a class of algorithms with
I INPUT: a matrix (most often, a square matrix)

I OUTPUT: insights obtained by leveraging linear algebraic
techniques (most often, based on the eigenvectors or
singular vectors of the matrix)

Huge success in a variety of domains, including
I network analysis
I graph partitioning
I data analysis
I website ranking
I text classification
I collaborative filtering
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Recall the definition of the graph Laplacian

I Graph Laplacian L = D − A (most popular version)
I A is the adjacency matrix of the graph Aij ≥ 0
I D is a diagonal matrix, Dii denoting the degree of node i

L(i , j) def
=


deg(vi) if i = j
−1 if i 6= j and (i , j) ∈ E(G)

0 otherwise
(1)

I L is symmetric
I eigenvalues λ0 ≤ λ1 ≤ λn−1, eigenvectors φ0, φ1, . . . , φn−1
I every row sum and column sum of L is zero
I thus, λ0 = 0, and φ0 = 1 def

= [1,1, . . . ,1]T since L 1 = 0 1
I the second smallest (smallest non-zero) eigenvalue of L is

the algebraic connectivity (Fiedler value, spectral gap) of G
Lemma If G = (V ,E) is connected and λ0 ≤ λ1 ≤ λn−1 are
the eigenvalues of its Laplacian L, then it holds true that λ1 > 0.
(Stronger result: the multiplicity of the zero eigenvalue is equal
to the number of connected components).



4
Properties of the (random-walk) Laplacian matrix P
• Let W denote the adjacency matrix of a weighted graph.
• The random-walk normalized Laplacian matrix is P = D−1W ;
or I − D−1W , but recall

(I − P)x = x − Px = x − λx = (1− λ)x (2)
Lemma All the eigenvalues of P = D−1W satisfy |λi | ≤ 1,
∀i = 1, . . . ,n
I Let λ be an eigenvalue of P with associated eigenvector x

λ x = P x (3)
I Let im = argmax

1≤i≤n
|xi |,

I Consider the following

λxim =
n∑

j=1

Pim j xj (4)

thus

|λ| =

∣∣∣∣∣∣
n∑

j=1

Pim j
xj

xim

∣∣∣∣∣∣ ≤
n∑

j=1

Pim j

∣∣∣∣ xj

xim

∣∣∣∣ ≤ n∑
j=1

Pim j = 1 (5)
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Combinatorial Laplacian L = D − A

We can further redefine this as follows. Let G1,2 be the graph
on two vertices u and v and one edge eu,v

I Define

LG1,2 =

[
1 −1
−1 1

]
I If x = [x1 x2]

T , note that

xT LG1,2x = (x1 − x2)
2

I Let Gu,v denote a graph on n vertices with only one edge
(between u and v )

I Define the Laplacian of Gu,v as

LGu,v (i , j) =


1 if i = j and i ∈ {u, v}
−1 if i = u and j = v , or vice versa

0 otherwise
(6)
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Combinatorial Laplacian

For a general graph G = (V ,E) define

L(G)
def
=

∑
(u,v)∈E

LGu,v

I Note that LG1,2 has eigenvalues 0 and 2, and so is positive
semidefinite (PSD)

I recall that a symmetric matrix M is PSD if all of its
eigenvalues are non-negative

I recall equivalent PSD condition

xT Mx ≥ 0, for all x ∈ Rn

I using the previous observation that

xT LG1,2x = (x1 − x2)
2

we can show that the Laplacian of every graph is PSD

xT LG x =
∑

(u,v)∈E

(xu − xv )
2 ≥ 0 (7)
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Spectral gap of the Combinatorial Laplacian

Lemma If G = (V ,E) is a connected graph and λ0 ≤ λ1 ≤ λn−1
are the eigenvalues of its (Combinatorial) Laplacian L, then it
holds true that λ1 > 0
Proof:
I let x be an eigenvector of L with associated eigenvalue 0

Lx = 0

I then it must also hold true that

xT L x =
∑

(u,v)∈E

(xu − xv )
2 = 0

I thus, for each pair of nodes u, v connected by an edge, it
holds true that xu = xv

I since G is connected, xu = xv for all pairs of vertices u, v ,
which implies that x is some constant multiple of the all
ones vector 1 = [1,1, . . . ,1]

I eigenspace of λ0 = 0 has dimension 1, and thus λ1 > λ0.
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What about the spectrum of the adjacency matrix A

Let G be a simple graph (no self-loops), w. adjacency matrix A

Because Tr(A) = 0, it holds true that the sum of all eigenvalues
of a A is always 0.
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The complete graph Kn

I the graph where all pairs of nodes are connected
I has an adjacency matrix equal to

A = J − I

I J is the all-1’s matrix
I I is the identity matrix
I For J: rank(J) = 1, only one nonzero eigenvalue equal to n

(with an eigenvector 1 = [1,1, . . . ,1]), and all the
remaining eigenvalues are 0

I note that subtracting the identity shifts all eigenvalues by
-1, because (say x is an eigenvector of J with eigenvalue λ)

Ax = (J − I)x = Jx − x = λx − x = (λ− 1)x

I thus the eigenvalues of Kn are n − 1 and −1 (of multiplicity
n − 1)



10
d-regular graphs

I Graphs where every node is of degree d
I If G is d-regular, then 1= [1,1,. . . ,1] is an eigenvector.
I A 1 = d 1, and hence d is an eigenvalue.
I In general graphs, the largest eigenvalue reveals

information about the average degree and largest degree
Lemma: For a d-regular graph |λi | ≤ d ,∀i = 1,n
Proof:
I Let (λ, x) be an eig-value, eig-vector pair
I Let xm be the component of maximum absolute value

λxm =
n∑

j=1

Amjxj

|λxm| = |
n∑

j=1

Aijxj | ≤
n∑

j=1

Aij |xj | ≤
n∑

j=1

Aij |xm| = d |xm|

thus |λ| ≤ d
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d-regular graphs

Complement graph G: two distinct vertices of G are adjacent if
and only if they are not adjacent in G.

If d = λ1 ≥ λ2 ≥ . . . ≥ λn are all the eigenvalues of G, then the
eigenvalues of the complement graph G are given by

(n − 1− d) and − 1− λi , ∀i = 2,3, . . . ,n − 1,n

I Adjacency matrix of the complement graph G is given by

A = J − I − A (8)

I Since G is (n − 1− d)− regular , the largest eigenvalue of
A is n − 1− d , and 1 is an eigenvector

I Any other eigenvalue must have an eigenvector x ⊥ 1, thus

Ax = (J − I − A)x = (0− 1− λ)x = (−1− λ)x (9)
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Complete bipartite graph Km,n

Exercise: what are its eigenvalues?

I rank(A) = 2

I eigenvalue 0 with multiplicity n − 2,
λ1 = λ2 = . . . = λn−2 = 0

I λn−1, λn 6= 0, λn−1 + λn = 0

I let λ = |λn−1| = |λn|

I Can you find λ by solving Ax = λx ?

I Hint: due to symmetry, try x = [α β]T


