

Lecture 9: Spectral Graph Theory

Foundations of Data Science:
Algorithms and Mathematical Foundations

Mihai Cucuringu
mihai.cucuringu@stats.ox.ac.uk

CDT in Mathematics of Random System
University of Oxford

22 September, 2023

Spectral methods

Broadly speaking, they define a class of algorithms with

- ▶ INPUT: a matrix (most often, a square matrix)
- ▶ OUTPUT: insights obtained by leveraging linear algebraic techniques (most often, based on the eigenvectors or singular vectors of the matrix)

Huge success in a variety of domains, including

- ▶ network analysis
- ▶ graph partitioning
- ▶ data analysis
- ▶ website ranking
- ▶ text classification
- ▶ collaborative filtering

Recall the definition of the graph Laplacian

- ▶ Graph Laplacian $L = D - A$ (most popular version)
- ▶ A is the adjacency matrix of the graph $A_{ij} \geq 0$
- ▶ D is a diagonal matrix, D_{ii} denoting the degree of node i

$$L(i,j) \stackrel{\text{def}}{=} \begin{cases} \deg(v_i) & \text{if } i = j \\ -1 & \text{if } i \neq j \text{ and } (i,j) \in E(G) \\ 0 & \text{otherwise} \end{cases} \quad (1)$$

- ▶ L is symmetric
- ▶ eigenvalues $\lambda_0 \leq \lambda_1 \leq \lambda_{n-1}$, eigenvectors $\phi_0, \phi_1, \dots, \phi_{n-1}$
- ▶ every row sum and column sum of L is zero
- ▶ thus, $\lambda_0 = 0$, and $\phi_0 = \mathbf{1} \stackrel{\text{def}}{=} [1, 1, \dots, 1]^T$ since $L \mathbf{1} = 0 \mathbf{1}$
- ▶ the second smallest (smallest non-zero) eigenvalue of L is the **algebraic connectivity (Fiedler value, spectral gap)** of G

Lemma If $G = (V, E)$ is **connected** and $\lambda_0 \leq \lambda_1 \leq \lambda_{n-1}$ are the eigenvalues of its Laplacian L , then it holds true that $\lambda_1 > 0$. (Stronger result: the multiplicity of the zero eigenvalue is equal to the number of connected components).

Properties of the (random-walk) Laplacian matrix P

- Let W denote the adjacency matrix of a weighted graph.
- The random-walk normalized Laplacian matrix is $P = D^{-1}W$; or $I - D^{-1}W$, but recall

$$(I - P)x = x - Px = x - \lambda x = (1 - \lambda)x \quad (2)$$

Lemma All the eigenvalues of $P = D^{-1}W$ satisfy $|\lambda_i| \leq 1$,

$\forall i = 1, \dots, n$

- Let λ be an eigenvalue of P with associated eigenvector x

$$\lambda x = P x \quad (3)$$

- Let $i_m = \underset{1 \leq i \leq n}{\operatorname{argmax}} |x_i|$,
- Consider the following

$$\lambda x_{i_m} = \sum_{j=1}^n P_{i_m j} x_j \quad (4)$$

thus

$$|\lambda| = \left| \sum_{j=1}^n P_{i_m j} \frac{x_j}{x_{i_m}} \right| \leq \sum_{j=1}^n P_{i_m j} \left| \frac{x_j}{x_{i_m}} \right| \leq \sum_{j=1}^n P_{i_m j} = 1 \quad (5)$$

Combinatorial Laplacian $L = D - A$

We can further redefine this as follows. Let $G_{1,2}$ be the graph on two vertices u and v and one edge $e_{u,v}$

- ▶ Define

$$L_{G_{1,2}} = \begin{bmatrix} 1 & -1 \\ -1 & 1 \end{bmatrix}$$

- ▶ If $x = [x_1 \ x_2]^T$, note that

$$x^T L_{G_{1,2}} x = (x_1 - x_2)^2$$

- ▶ Let $G_{u,v}$ denote a graph on n vertices with only one edge (between u and v)
- ▶ Define the Laplacian of $G_{u,v}$ as

$$L_{G_{u,v}}(i,j) = \begin{cases} 1 & \text{if } i = j \text{ and } i \in \{u, v\} \\ -1 & \text{if } i = u \text{ and } j = v, \text{ or vice versa} \\ 0 & \text{otherwise} \end{cases}$$

(6)

Combinatorial Laplacian

For a general graph $G = (V, E)$ define

$$L(G) \stackrel{\text{def}}{=} \sum_{(u,v) \in E} L_{G_{u,v}}$$

- ▶ Note that $L_{G_{1,2}}$ has eigenvalues 0 and 2, and so is positive semidefinite (PSD)
- ▶ recall that a symmetric matrix M is PSD if all of its eigenvalues are non-negative
- ▶ recall equivalent PSD condition

$$x^T M x \geq 0, \text{ for all } x \in \mathbb{R}^n$$

- ▶ using the previous observation that

$$x^T L_{G_{1,2}} x = (x_1 - x_2)^2$$

we can show that the Laplacian of every graph is PSD

$$x^T L_G x = \sum_{(u,v) \in E} (x_u - x_v)^2 \geq 0 \quad (7)$$

Spectral gap of the Combinatorial Laplacian

Lemma If $G = (V, E)$ is a connected graph and $\lambda_0 \leq \lambda_1 \leq \lambda_{n-1}$ are the eigenvalues of its (Combinatorial) Laplacian L , then it holds true that $\lambda_1 > 0$

Proof:

- ▶ let x be an eigenvector of L with associated eigenvalue 0

$$Lx = \mathbf{0}$$

- ▶ then it must also hold true that

$$x^T L x = \sum_{(u,v) \in E} (x_u - x_v)^2 = 0$$

- ▶ thus, for each pair of nodes u, v connected by an edge, it holds true that $x_u = x_v$
- ▶ since G is connected, $x_u = x_v$ for all pairs of vertices u, v , which implies that x is some constant multiple of the all ones vector $\mathbf{1} = [1, 1, \dots, 1]$
- ▶ eigenspace of $\lambda_0 = 0$ has dimension 1, and thus $\lambda_1 > \lambda_0$.

What about the spectrum of the adjacency matrix A

Let G be a simple graph (no self-loops), w. adjacency matrix A

Because $Tr(A) = 0$, it holds true that the sum of all eigenvalues of A is always 0.

The complete graph K_n

- ▶ the graph where all pairs of nodes are connected
- ▶ has an adjacency matrix equal to

$$A = J - I$$

- ▶ J is the all-1's matrix
- ▶ I is the identity matrix
- ▶ For J : $\text{rank}(J) = 1$, only one nonzero eigenvalue equal to n (with an eigenvector $\mathbf{1} = [1, 1, \dots, 1]$), and all the remaining eigenvalues are 0
- ▶ note that subtracting the identity shifts all eigenvalues by -1, because (say x is an eigenvector of J with eigenvalue λ)

$$Ax = (J - I)x = Jx - x = \lambda x - x = (\lambda - 1)x$$

- ▶ thus the eigenvalues of K_n are $n - 1$ and -1 (of multiplicity $n - 1$)

d-regular graphs

- ▶ Graphs where every node is of degree d
- ▶ If G is d -regular, then $\mathbf{1} = [1, 1, \dots, 1]$ is an eigenvector.
- ▶ A $\mathbf{1} = d \mathbf{1}$, and hence d is an eigenvalue.
- ▶ In general graphs, the largest eigenvalue reveals information about the average degree and largest degree

Lemma: For a d -regular graph $|\lambda_i| \leq d, \forall i = 1, n$

Proof:

- ▶ Let (λ, x) be an eig-value, eig-vector pair
- ▶ Let x_m be the component of maximum absolute value

$$\lambda x_m = \sum_{j=1}^n A_{mj} x_j$$

$$|\lambda x_m| = \left| \sum_{j=1}^n A_{ij} x_j \right| \leq \sum_{j=1}^n |A_{ij}| |x_j| \leq \sum_{j=1}^n d |x_m| = d |x_m|$$

thus $|\lambda| \leq d$

d-regular graphs

Complement graph \overline{G} : two distinct vertices of \overline{G} are adjacent if and only if they are **not** adjacent in G .

If $d = \lambda_1 \geq \lambda_2 \geq \dots \geq \lambda_n$ are all the eigenvalues of G , then the eigenvalues of the complement graph \overline{G} are given by

$$(n - 1 - d) \quad \text{and} \quad -1 - \lambda_i, \quad \forall i = 2, 3, \dots, n - 1, n$$

- ▶ Adjacency matrix of the complement graph \overline{G} is given by

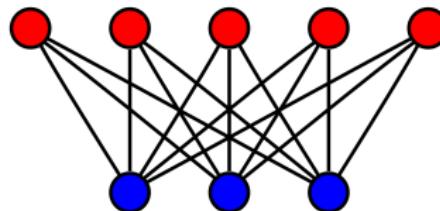
$$\overline{A} = J - I - A \quad (8)$$

- ▶ Since \overline{G} is $(n - 1 - d)$ - *regular*, the largest eigenvalue of \overline{A} is $n - 1 - d$, and $\mathbf{1}$ is an eigenvector
- ▶ Any other eigenvalue must have an eigenvector $x \perp \mathbf{1}$, thus

$$\overline{A}x = (J - I - A)x = (0 - 1 - \lambda)x = (-1 - \lambda)x \quad (9)$$

Complete bipartite graph $K_{m,n}$

Exercise: what are its eigenvalues?



- ▶ $\text{rank}(A) = 2$
- ▶ eigenvalue 0 with multiplicity $n - 2$,
 $\lambda_1 = \lambda_2 = \dots = \lambda_{n-2} = 0$
- ▶ $\lambda_{n-1}, \lambda_n \neq 0, \lambda_{n-1} + \lambda_n = 0$
- ▶ let $\lambda = |\lambda_{n-1}| = |\lambda_n|$
- ▶ Can you find λ by solving $Ax = \lambda x$?
- ▶ Hint: due to symmetry, try $x = [\alpha \ \beta]^T$