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2 Diffusion maps

I introduced in S. Lafon’s Ph.D. Thesis in 2004 as a nonlinear
dimensionality reduction tool

I connected data analysis and clustering techniques based on
eigenvectors of similarity matrices with the geometric structure of
non-linear manifolds

I diffusion maps have gained a lot of popularity over the years
years

I often called Laplacian eigenmaps, these manifold learning
techniques
I identify significant variables that live in a lower dimensional space
I while preserving the local proximity between data points



3 Diffusion maps
I consider a set of N points V = {x1, x2, . . . , xN} in an

D-dimensional space RD

I each point (typically) characterizes an image (or an audio stream,
text string, etc.)

I if two images xi and xj are similar, then ||xi − xj || is small
I a popular measure of similarity between points in RD is defined

using the Gaussian kernel

wij = e−||xi−xj ||2/ε

so that the closer xi is from xj , the larger wij
I the matrix W = (wij)1≤i,j≤N is symmetric and has positive

coefficients
I to normalize W , we define the diagonal matrix D, with

Dii =
∑N

j=1 wij and define L by

L = D−1W ,

such that every row of L sums to 1.



4 Diffusion maps
I define the symmetric matrix S = D−1/2WD−1/2

I note S is similar to L, since one can write

S = D1/2D−1 WD−1/2 = D1/2LD−1/2 (1)
I as a symmetric matrix, S has an orthogonal basis of eigenvectors

v0, v1, . . . , vN−1, and N real eig-values 1 = λ0 ≥ λ1 ≥ . . . ≥ λN−1
I If we eigen-decompose S as

S = V ΛV T

with
VV T = V T V = I

Λ = Diag(λ0, λ1, . . . , λN−1)

then L becomes
L = ΨΛΦT (2)

where Ψ = D−1/2V and Φ = D1/2V , since following (1)

L = D−1/2SD1/2 = D−1/2V Λ V T D1/2 = ΨΛΦT (3)



5 Diffusion maps

I L = D−1W is a row-stochastic matrix, λ0 = 1 and
ψ0 = (1,1, . . . ,1)T , and we disregard this trivial pair

I interpret L as a random walk matrix on a weighted graph
G = (V ,E ,W ), where
I the set of nodes consists of the points {x1, . . . , xN},
I and there is an edge between nodes i and j if and ony if wij > 0

I recall that Lij = wij/deg(i)
I since Lij ≥ 0 and L1 = 1, then L is a transition probability matrix

I Lij denotes the transition probability from point xi to xj in one step
time ∆t = ε

Pr{x(t + ε) = xj |x(t) = xi} = Lij .
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The choice of ε

wij = e−||xi−xj ||2/ε (4)

The parameter ε has a two-fold interpretation:
I ε is the squared radius of the neighborhood used to infer local

geometric and density information
I wij is O(1) when xi and xj are in a ball of radius

√
ε

I but wij is exponentially small for points that are more than
√
ε apart

I ε represents the discrete time step at which the random walk
jumps from one point to another

• Lafon chose ε to be the order of the average smallest non-zero
value of ||xi − xj ||2

ε =
1
k

k∑

i=1

minj:xj 6=xi ||xi − xj ||2 (5)

• Singer/Coifman et al
I (a) if ε is relatively too large compared to ||xi − xj ||2, the entries W

will be very close to one
I (b) if ε is relatively too small, it leads to almost zero entries for W
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The choice of ε (cont)
Neither case too interesting...
I (a): most of the diffusion has taken place
I (b): no diffusion takes places

Pick a value of ε that straddles the two boundaries
1. Construct an ε-dependent weight matrix W (ε), for several ε values
2. Compute

T (ε) =
n∑

i=1

n∑

j=1

Wij(ε) (6)

3. Plot T (ε) using a logarithmic plot. This plot will have two
asymptotic regimes when ε→ 0 and ε→∞

4. Choose ε where the logarithmic plot of T (ε) appears linear.

close to one while a relatively small ε will give almost zero entries for W. The former

means most of the diffusion has taken place while the latter implies very little diffusion

took place. Both scenarios are not very interesting for the purpose of diffusion map

applications. Values of ε that would arouse interest therefore lie between these two

extremes. Based on this idea they proposed the following scheme:

1. Construct a sizeable ε-dependent weight matrix W ≡ W(ε) by (1.1) for several

values of ε.

2. Compute

L(ε) =
k∑

i=1

k∑

j=1

Wij(ε) (2.10)

3. Plot L(ε) using a logarithmic plot. This plot will have two asymptotes when

ε → 0 and ε → ∞.

4. Choose ε where the logarithmic plot of L(ε) appears linear.

I would remark that ε-dependent weight matrix W ≡ W(ε) should not be arbitrary

but a sample of the data set being worked on. They implemented the above scheme

in [25].
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Figure 2.1: Logarithmic plots of L(ε) against ε, 1000× 1000 weight matrix from the
data set of the second illustrative example in Section 1.2.2 (left), 2000× 2000 weight
matrix from the data set of the 2D manifold in Section 4.3 (right).

For each of the data sets I used in this dissertation I implemented this scheme to

get an appropriate ε before I implemented the diffusion map algorithm. Figure 2.1

and 2.2 show a sample out the ε values I used in this project. The intersection of

the red dotted line and the blue curve of L versus ε gives the value of ε I used. The

red line is drawn after first observing the shape of the blue curve and identifying an

19

Source: Bubacarr Bah, Diffusion Maps:
Analysis and Applications



8 Diffusion maps
I Interpreting the eigenvectors as functions over our data set, the

diffusion map maps points from the original space to the
eigenvectors of L, L′ : V 7→ RD−1, is defined as

L′t (xi) = (λt
2ψ2(j), λt

3ψ3(j), . . . , λt
DψD(j)) (7)

I where we left out the first trivial eigenvalue λ1 = 0 & eigenvector
ψ1 = 1, as it does not help differentiate points on the graph.

I still a map to D − 1 dimensions; but note now that each coordinate
has a factor of λt

k which (for moderate values of t) will be rather
small whenever λk is small.

I The truncated diffusion map (truncated to k dimensions), which
maps L : V 7→ RD−1, is given by

Lt (xj) = (λt
2ψ2(j), λt

3ψ3(j), . . . , λt
k+1ψk+1(j)) (8)



9 I using the left and right eigenvectors of L

L =
N−1∑

r=0

λrφrψr (9) Lij =
N−1∑

r=0

λrφr (i)ψr (j) (10)

I note that

Lt =
N−1∑

r=0

λt
rφrψr (11) Lt

ij =
N−1∑

r=0

λt
rφr (i)ψr (j) (12)

I in matrix form: Lt = ΦΛt Ψ
I the probability distribution of a random walk landing at location xj

after exactly t steps, starting at xi

Lt
ij = Pr{x(t) = xj |x(0) = xi} (13)

I given the random walk interpretation, quantify the similarity
between two points according to the evolution of their probability
distributions; (Weighted `2 distance btw the probability clouds)

D2
t (i , j) =

N∑

k=1

(Lt
ik − Lt

jk )2 1
dk
, (14)

where the weight 1
dk

takes into account the empirical local density
of the points by giving larger weight to vertices of lower degree

I Dt (i , j) is the diffusion distance at time t .



10 Diffusion Maps
I a matter of choice to tune the parameter t corresponding to the

number of time steps of the random walk (used t = 1)
I using different values of t corresponds to rescaling the axis
I the Euclidean distance between two points in the diffusion map

space introduced in (8) is given by

||L(xi)− L(xj)||2 =
N−1∑

r=1

(
λt

rψr (i)− λt
rψr (j)

)2 (15)

=
N−1∑

r=1

λ2t
r (ψr (i)− ψr (j))2 (16)

I Nadler et al. (2005) have shown that the expression (16) equals
the diffusion distance D2

t (i , j) in (14), when k = N − 1 (when
using all N − 1 (nontrivial) eigenvectors)

I for ease of visualization, use the top k = 2 eigenvectors for the
projections
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Diffusion distance
Weighted `2 distance between the probability clouds; for the weights we
choose 1/dk , that is, inversely proportional to the vertex degrees.
∥∥Lt

i,· − Lt
j,.

∥∥2

`2(RN ,1/d)
=

N∑

k=1

(
Lt

ik − Lt
jk
)2 1

dk

=
N∑

k=1

[
N∑

l=1

λt
lφl (i)ψl (k)− λt

lφl (j)ψl (k)

]2
1
dk

=
N∑

k=1

N∑

l,r=1

λt
lλ

t
r (φl (i)− φl (j)) (φr (i)− φr (j))

ψl (k)ψr (k)

dk

=
N∑

l,r=1

λt
lλ

t
r (φl (i)− φl (j)) (φr (i)− φr (j))

N∑

k=1

ψl (k)ψr (k)

dk

=
N∑

l,r=1

λt
lλ

t
r (φl (i)− φl (j)) (φr (i)− φr (j)) δlr

=
N∑

l=1

λ2t
l (φl (i)− φl (j))2 = D2

t
(
xi , xj

)
.



12Diffusion distance vs Euclidean distance

Why bother?



13Limitations of the Euclidean distance

Figure: Euclidean distance may not be relevant to properly understand the
distance (or similarity) between two points.

Is C is more similar to point B or to point A?
I (left) the natural answer is: C is more similar to B.
I (right) less obvious given the other observed data points... C

should be more similar to A.
I need a new metric for which C and A are closer than C and B

given the geometry of the observed data.



14 Eigenvector colourings
I denote by Ck the colouring of the N data points given by the

eigenvector ψk

I colour of point xi ∈ V is given by the i-th entry in ψk , i.e.

Ck (xi) = ψk (i), for all k = 0, . . . ,N − 1 and i = 1, . . . ,N.

I Ck : eigenvector colouring of order k

I do not confuse with the “graph colouring” terminology

I colorbar: red denotes high values and blue denotes low values, in
the eigenvector entries

I in practice, only the first k eigenvectors are used in the diffusion
map introduced in (8), with k << N − 1 chosen such that
λt

1 ≥ λt
2 . . . ≥ λt

k > δ, but λt
k+1 < δ, where δ is a chosen tolerance

I show how one can extract relevant information from eigenvectors
of much lower order.
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Example

10 Diffusion Maps, Spectral Embedding, and Clustering Algorithms 249
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Fig. 10.2. Figures of a truck taken at five different horizontal angles (top). The
mapping of the 37 images into the first two eigenvectors, based on a Gaussian ker-
nel with standard Euclidean distance between the images as the underlying metric
(bottom). The blue circles correspond to the five specific images shown above

We remark that if data is sampled from a 1-D curve or more gener-
ally from a low dimensional manifold, but not in a uniform manner, the
standard normalized graph Laplacian converges to the FP operator (10.24)
which contains a drift term. Therefore its eigenfunctions depend both on
the geometry of the manifold and on the probability density on it. How-
ever, replacing the isotropic kernel exp(−‖x − y‖2/4ε) by the anisotropic one
exp(−‖x − y‖/4ε)/D(x)D(y) asymptotically removes the effects of density
and retains only those of geometry. With this kernel, the normalized graph
Laplacian converges to the Laplace-Beltrami operator on the manifold [11].

We now consider the characteristics of spectral embedding on the “swiss
roll” dataset, which has been used as a synthetic benchmark in many papers,
see [7,34] and refs. therein. The swiss roll is a 2-D manifold embedded in R3.
A set of n points xi ∈ R3 are generated according to x = (t cos(t), h, t sin(t)),
where t ∼ U [3π/2, 9π/2], and h ∼ U [0,H]. By unfolding the roll, we obtain a
rectangle of length L and width H, where in our example,

L =

∫ 9π/2

3π/2

√(
d

dt
t sin t

)2

+

(
d

dt
tcos(t)

)2

dt ≈ 90 .

Figure: Figures of a truck taken at five different horizontal angles (top). The mapping
of the 37 images into the first two eigenvectors, based on a Gaussian kernel with
standard Euclidean distance between the images as the underlying metric (bottom).
The blue circles correspond to the five specific images shown above.

Source: Nadler, Boaz, et al. ”Diffusion maps-a probabilistic interpretation for spectral embedding and clustering algorithms.”



16 Swiss roll

Figure: 5000 points sampled from a wide Swiss roll and embedding into
various diffusion map coordinates. The length and width of the roll are
similar. The spectral embedding via the first two diffusion map coordinates
gives a reasonably nice parametrization of the manifold, uncovering its 2-d
nature.

Source: Nadler, Boaz, et al. ”Diffusion maps-a probabilistic interpretation for spectral embedding and clustering algorithms.”



17
Swiss roll

Figure: 5000 points sampled from a narrow Swiss roll and embedding into
the first two diffusion map coordinates.

Source: Nadler, Boaz, et al. ”Diffusion maps - a probabilistic interpretation for spectral embedding and clustering algorithms.”
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Data set of faces

Figure: Left: set of images randomly permuted. This is the input of the algorithm.
Right: output of the algorithm, the sequence is recorded with respect to the angle of
rotation of the head (the sequence is to be read from left to right, and top down).

Every image is 112 × 92 pixels, and can be viewed as a point in R112×92 However,
face images are far from being randomly distributed in that high dimensional
Euclidean space. There is only one physically meaningful parameter describing the
images. We will say that the intrinsic dimension of the data set = 1.

asassss



19 Eigenvector localization

I The phenomenon of eigenvector localization occurs when most
of the components of an eigenvector are zero or close to zero,
and almost all the mass is localized on a relatively small subset of
nodes.

I On the contrary, delocalized eigenvectors have most of their
components small and of roughly the same magnitude.
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2000 US Census data set
I reports the number of people that migrated from every county to

every other county within US during 1995-2000

I M = (Mij)1≤i,j≤N the total number of people that migrated
between county i and county j (so undirected graph Mij = Mji )
(cannot handle directed graphs in the current framework)

I N = 3107 denotes the number of counties in mainland US

I let Pi denote the population of county i

I different similarity measures

W (1)
ij =

M2
ij

PiPj
; W (2)

ij =
Mij

Pi + Pj
; W (3)

ij = 5500
Mij

PiPj

I colourings based on latitude reveal the north-south separation

I W (1) does a better job at separating the east and west coasts
I W (2) highlights best the separation between north and south
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Colored by longitude
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Figure: Diffusion map reconstructions from the top two eigenvectors, for
various similarities, with nodes colored by longitude
W (1) does a better job at separating the east and west coasts.
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Colored by latitude
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Figure: Diffusion map reconstructions from the top two eigenvectors, for
various similarities, with nodes colored by longitude

W (2) highlights best the separation between north and south.



23Spectrum of the graph Laplacian matrix
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Figure: Histogram of the top 500 eigenvalues of matrix L for different
similarity matrices W (i).
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Figure: Eigenvector colourings for the similarity matrix Wij =
M2

ij
Pi Pj

.
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Figure: Further eigenvector colourings for the similarity matrix Wij =
M2

ij
Pi Pj

.
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Figure: Histogram of eigenvectors φ1, φ7, φ28, φ83 of L = D−1W (1)

I φ1 provides a meaningful partitioning that separates the East from the Midwest;
entries in [−0.03, 0.03] with few entries of zero magnitude.

I however, eigenvectors φ7, φ28 and φ83 are localized: they have their larger
entries localized on a specific subregion of the map (highlighted in blue or red in
the colorings), while taking small values in magnitude on the rest of the domain.



27The graph partitioning problem (GPP)

I Investigate the connection of such geographically cohesive
coloured subgraphs with the (GPP)

I In general, the GPP seeks to decompose a graph into K disjoint
subgraphs (clusters), while minimizing the sum of the weights of
the “cut” edges, i.e., edges with endpoints in different clusters

I Given the number of clusters K , the Weighted-Min-Cut problem is
an optimization problem that computes a partition P1, . . . ,PK of
the vertex set, by minimizing the weights of the cut edges

Weighted Cut(P1, . . . ,Pk ) =
k∑

i=1

Ew (Pi ,Pi), (17)

where Ew (X ,Y ) =
∑

i∈X ,j∈Y Wij , and X denotes the complement
of X .



28 Spectral clustering
I extensive literature survey on spectral clustering algorithms: Von

Luxburg, Ulrike. ”A tutorial on spectral clustering.” Statistics and
computing 17.4 (2007): 395-416

https://arxiv.org/abs/0711.0189

I & the popular spectral relaxation introduced by Shi and Malik
(early 2000s)

I When dividing a graph into two smaller subgraphs, one wishes to
minimize the sum of the weights on the edges across two
different subgraphs, and simultaneously, maximize the sum of the
weights on the edges within the subgraphs.

I Alternatively, one tries to maximize the ratio between the latter
quantity and the former, i.e., between the weights of the inside
edges and the weights of the outside edges.

I We regard the US states as the clusters, and investigate the
possibility that the isolated coloured regions that emerge
correspond to local cuts in the weighted graph

https://arxiv.org/abs/0711.0189


29 Clustering

I denote by S the matrix of size N × N (N = 49 the number of
mainland US states) that aggregates the similarities between
counties at the level of states

I if state i has k counties with indices x1, . . . , xk , and state j has l
counties with indices y1, . . . , yl , then we consider the k × l
submatrix

W̃i,j = W{x1,...,xk},{y1,...,yl} (18)

and denote by Sij the sum of the kl entries in W̃i,j

I heatmap shows the components of the matrix S on a logarithmic
scale, where the intensity of entry (i , j) denotes the aggregated
similarity between states i and j



30Cluster-Cluster Meta Adjacency Matrix
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.
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I Sii is “inside degree” of state i , d in
i = Sii , which measures the

internal similarity between the counties of state i

I denote by dout
i =

∑N
u=1,u 6=i Si,u (i.e., the sum of the non-diagonal

elements in row i) the “outside degree” of node i , which
measures the similarity/migration between the counties of state i
and all other counties outside of state i

I denote by d ratio
i =

d in
i

dout
i

, the “ratio degree” of node i which
straddles the boundary between intra-state and inter-state
migration

I a large ratio degree is a good indicative that a state is very well
connected internally, and has little connectivity with the outside
world, and thus is a good candidate for a cluster.

I the Table ranks the top 15 states within the US in terms of their
ratio degree.
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Figure: Heatmap of the inter-state migration flows. Rows (and columns) are
sorted by the ratio degrees of the states. The intensity of entry (i , j) denotes,
on a logarithmic scale, the similarity between states i and j , i.e., the sum of
all entries in the submatrix W̃i,j
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rank state ratio degree
1. VA 26.7
2. MI 20.4
3. GA 19.9
4. IN 19.7
5. TX 19.0
6. ME 18.9
7. NY 18.7
8. MO 18.5
9. CO 17.1
10. LA 16.6
11. MS 16.1
12. CA 15.7
13. OH 15.6
14. WI 14.5

Table: Top 15 states within the US, ordered by ratio degree.
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Figure: Top three eigenvectors correspond to global cuts between various
coasts within the US. The only state that stands out individually is Michigan
(MI) for k = 3, which has rank 2.
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Eigenvector colorings vs Ratio Degree

k = 7

I k = 4: the largest entries correspond to counties in Virginia (VA)
which is also ranked 1st

I k = 5: Wisconsin (WI) ranked 14
I k = 6: the states coloured in dark red and dark blue are Georgia

(GA) with rank 3, and Missouri (MO) of rank 8
I k = 7: Michigan (MI), of rank 2, stands out as the only dark blue

coloured state.


