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* Diffusion maps

» introduced in S. Lafon’s Ph.D. Thesis in 2004 as a nonlinear
dimensionality reduction tool

» connected data analysis and clustering techniques based on
eigenvectors of similarity matrices with the geometric structure of
non-linear manifolds

» diffusion maps have gained a lot of popularity over the years
years

» often called Laplacian eigenmaps, these manifold learning
techniques
» identify significant variables that live in a lower dimensional space
» while preserving the local proximity between data points



* Diffusion maps

>

>

consider a set of N points V = {xy, X2, ..., xy} inan
D-dimensional space RP

each point (typically) characterizes an image (or an audio stream,
text string, etc.)

if two images x; and x; are similar, then ||x; — x;|| is small

a popular measure of similarity between points in R is defined
using the Gaussian kernel

wj = e Ixl/e

so that the closer x; is from Xx;, the larger w;;

the matrix W = (wj)1<; j<n is symmetric and has positive
coefficients

to normalize W, we define the diagonal matrix D, with

Dj = Y, w; and define L by

L=D"'w,

such that every row of L sums to 1.



4 . .

Diffusion maps
» define the symmetric matrix S = D~'/2WD~1/?
» note S is similar to L, since one can write

S=D"2D" wp~'/? = p'/2 p~1/2 (1)
> as a symmetric matrix, S has an orthogonal basis of eigenvectors
Vo, V1, ..., Vn_1, and N real eig-values 1 = X\g > A1 > ... > An_1
> If we eigen-decompose S as
S=VAVT
with
Wil =vTiv=|

A = Diag(Xo; M, - - -5 AN=1)

then L becomes
L=wAdT 2)

where W =D""2V and ¢ = D'2V, since following (1)
L=D"1238D"2 = D=2y A VT D'/2 = wAdT (3)



° Diffusion maps

» L = D "W is a row-stochastic matrix, \; = 1 and
o= (1,1,...,1)7, and we disregard this trivial pair

> interpret L as a random walk matrix on a weighted graph
G=(V,E, W), where
> the set of nodes consists of the points {x1,..., xn},
> and there is an edge between nodes i and j if and ony if w; > 0

> recall that L; = w;;/deg(/)
» since L; > 0 and L1 =1, then L is a transition probability matrix

> L; denotes the transition probability from point x; to x; in one step
time At=¢
Prix(t+¢) = xj|x(t) = x;} = L.
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The choice of ¢ ,
WU — e_HXI_XjH /€ (4)

The parameter ¢ has a two-fold interpretation:
» ¢ is the squared radius of the neighborhood used to infer local
geometric and density information
> w;is O(1) when x; and x; are in a ball of radius /e
> but wj is exponentially small for points that are more than /e apart

> ¢ represents the discrete time step at which the random walk
jumps from one point to another

e Lafon chose ¢ to be the order of the average smallest non-zero

value of ||x; — xj|[? .

€= D Minjuy |1 — X[ (5)

o Singer/Coifmanetal '~

> (a) if e is relatively too large compared to ||x; — xj| |2, the entries W
will be very close to one

> (b) if € is relatively too small, it leads to almost zero entries for W
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The choice of € (cont)
Neither case too interesting...

> (a): most of the diffusion has taken place
» (b): no diffusion takes places
Pick a value of ¢ that straddles the two boundaries
1. Construct an e-dependent weight matrix W(e), for several e values

2. Compute Nz
T(e)=>_> Wile) (6)
i=1 j=1
3. Plot T(e) using a logarithmic plot. This plot will have two
asymptotic regimes when ¢ — 0 and ¢ —

4. Choose e where the logarithmic plot of T(¢) appears linear.
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Source: Bubacarr Bah, Diffusion Maps: 10°
Analysis and Applications 10 10°



° Diffusion maps

» Interpreting the eigenvectors as functions over our data set, the
diffusion map maps points from the original space to the

eigenvectors of L, £/ : V — RP~1 is defined as
Ly(x:) = (\ovo2(i), Astba(d), - - - Abtn()) (7)

» where we left out the first trivial eigenvalue A1 = 0 & eigenvector
¥y =1, as it does not help differentiate points on the graph.

» stilla map to D — 1 dimensions; but note now that each coordinate
has a factor of A\l which (for moderate values of t) will be rather
small whenever g is small.

» The truncated diffusion map (truncated to k dimensions), which
maps £ : V — RP-1 is given by

L(x) = (Mav2(7)s A5t (), - - s M1 9k1 (1)) (8)



using the left and right eigenvectors of L

L= % Ardrior - (9) Lj = wammm (10)
note ’[haC[:0 =
Z Morpr (1) Z Mor(1)r(f) (
in matrlx form. Lt = oAlw

the probability distribution of a random walk landing at location x;
after exactly t steps, starting at x;

= Pri{x(t) = x[x(0) = x;} (13)
given the random walk interpretation, quantify the similarity
between two points according to the evolution of their probability
distributions; (Weighted /o dlstance btw the probability clouds)

1
DZ (i.J) = Z(L Ll (14)

k=1
where the welght takes into account the empirical local density

of the points by g|vmg larger weight to vertices of lower degree
Dy(i,j) is the diffusion distance at time t.




" Diffusion Maps

» a matter of choice to tune the parameter t corresponding to the
number of time steps of the random walk (used t = 1)

» using different values of t corresponds to rescaling the axis
» the Euclidean distance between two points in the diffusion map
space introduced in (8) is given by

N—1

1£06) = Lo =S (Aabe(i) = Mapr()) (15)

r=1
N—1

= Z )‘gt (¥r(i) — 7ﬁr(/))z (16)
r=1

» Nadler et al. (2005) have shown that the expression (16) equals
the diffusion distance D2(i, /) in (14), when k = N — 1 (when
using all N — 1 (nontrivial) eigenvectors)

» for ease of visualization, use the top k = 2 eigenvectors for the
projections
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Diffusion distance

Weighted /¢, distance between the probability clouds; for the weights we

choose 1/dk, that is, mversely proportional to the vertex degrees.
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"Diffusion distance vs Euclidean distance
Why bother?
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"L imitations of the Euclidean distance
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Figure: Euclidean distance may not be relevant to properly understand the
distance (or similarity) between two points.

Is C is more similar to point B or to point A?
> (left) the natural answer is: C is more similar to B.

» (right) less obvious given the other observed data points... C
should be more similar to A.
> need a new metric for which C and A are closer than C and B
given the geometry of the observed data.
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Eigenvector colourings

>

denote by Ci the colouring of the N data points given by the
eigenvector

colour of point x; € V is given by the i-th entry in ¢y, i.e.

Ck(x;) = k(i), foralk =0,...,N—1andi=1,... N.

» Ci: eigenvector colouring of order k

» do not confuse with the “graph colouring” terminology

» colorbar: red denotes high values and blue denotes low values, in

the eigenvector entries

in practice, only the first k eigenvectors are used in the diffusion
map introduced in (8), with kK << N — 1 chosen such that
A > X5 > M >4, but X\, < &, where § is a chosen tolerance

show how one can extract relevant information from eigenvectors
of much lower order.
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Example
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Figure: Figures of a truck taken at five different horizontal angles (top). The mapping
of the 37 images into the first two eigenvectors, based on a Gaussian kernel with
standard Euclidean distance between the images as the underlying metric (bottom).
The blue circles correspond to the five specific images shown above.

Source: Nadler, Boaz, et al. "Diffusion maps-a probabilistic interpretation for spectral embedding and clustering-algorithms.”
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Swiss roll
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Figure: 5000 points sampled from a wide Swiss roll and embedding into
various diffusion map coordinates. The length and width of the roll are
similar. The spectral embedding via the first two diffusion map coordinates
gives a reasonably nice parametrization of the manifold, uncovering its 2-d
nature.

Source: Nadler, Boaz, et al. "Diffusion maps-a probabilistic interpretation for spectral embedding and clustering algorithms.”
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Swiss roll

Swiss Roll
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18Data set of faces

Figure: Left: set of images randomly permuted. ThIS is the mput of the algorithm.
Right: output of the algorithm, the sequence is recorded with respect to the angle of
rotation of the head (the sequence is to be read from left to right, and top down).

Every image is 112 x 92 pixels, and can be viewed as a point in R'2%% However,
face images are far from being randomly distributed in that high dimensional
Euclidean space. There is only one physically meaningful parameter describing the
images. We will say that the intrinsic dimension of the data set = 1.
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Eigenvector localization

» The phenomenon of eigenvector localization occurs when most
of the components of an eigenvector are zero or close to zero,
and almost all the mass is localized on a relatively small subset of
nodes.

» On the contrary, delocalized eigenvectors have most of their
components small and of roughly the same magnitude.



20 2000 US Census data set

> reports the number of people that migrated from every county to
every other county within US during 1995-2000

> M = (Mj)i<ij<n the total number of people that migrated
between county / and county j (so undirected graph M;; = M;;)
(cannot handle directed graphs in the current framework)

» N = 3107 denotes the number of counties in mainland US
> let P; denote the population of county i
» different similarity measures

M;

M2 M
(1 _ . (2) _ i
w: W, PP

i =pp Wi Eap i =90

» colourings based on latitude reveal the north-south separation

v

W) does a better job at separating the east and west coasts
» W highlights best the separation between north and south



°! Colored by longitude
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Figure: Diffusion map reconstructions from the top two eigenvectors, for
various similarities, with nodes colored by longitude

W) does a better job at separating the east and west coasts.



22Colored by latitude
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Figure: Diffusion map reconstructions from the top two eigenvectors, for
various similarities, with nodes colored by longitude

W) highlights best the separation between north and south.



23Spectrum of the graph Laplacian matrix
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Figure: Histogram of the top 500 eigenvalues of matrix L for different
similarity matrices W(),
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Figure: Histogram of eigenvectors ¢1, ¢7, ¢og, ¢g3 of L = D=1 W)

» ¢ provides a meaningful partitioning that separates the East from the Midwest;
entries in [—0.03, 0.03] with few entries of zero magnitude.

> however, eigenvectors ¢7, ¢2s and ¢g3 are localized: they have their larger
entries localized on a specific subregion of the map (highlighted in blue or red in
the colorings), while taking small values in magnitude on the rest of the domain.



“The graph partitioning problem (GPP)

» Investigate the connection of such geographically cohesive
coloured subgraphs with the (GPP)

» In general, the GPP seeks to decompose a graph into K disjoint
subgraphs (clusters), while minimizing the sum of the weights of
the “cut” edges, i.e., edges with endpoints in different clusters

» Given the number of clusters K, the Weighted-Min-Cut problem is
an optimization problem that computes a partition Py, ..., Pk of
the vertex set, by minimizing the weights of the cut edges

k
Weighted Cut(Ps, ..., Pk) = Y Ew(P;, i), (17)

i=1

where Ey(X,Y) = >,cx jcy Wj, and X denotes the complement
of X.



28Spectral clustering

» extensive literature survey on spectral clustering algorithms: Von
Luxburg, Ulrike. "A tutorial on spectral clustering.” Statistics and
computing 17.4 (2007): 395-416

https://arxiv.org/abs/0711.0189

» & the popular spectral relaxation introduced by Shi and Malik
(early 2000s)

» When dividing a graph into two smaller subgraphs, one wishes to
minimize the sum of the weights on the edges across two
different subgraphs, and simultaneously, maximize the sum of the
weights on the edges within the subgraphs.

» Alternatively, one tries to maximize the ratio between the latter
quantity and the former, i.e., between the weights of the inside
edges and the weights of the outside edges.

» We regard the US states as the clusters, and investigate the
possibility that the isolated coloured regions that emerge
correspond to local cuts in the weighted graph


https://arxiv.org/abs/0711.0189

29Clus’[ering

» denote by S the matrix of size N x N (N = 49 the number of
mainland US states) that aggregates the similarities between
counties at the level of states

» if state i has k counties with indices x1, ..., Xk, and state j has /
counties with indices yj, ..., y;, then we consider the k x |
submatrix _

Vvivj = W{X17---7Xk}7{y17“'7y/} (18)

and denote by S; the sum of the k/ entries in W,

» heatmap shows the components of the matrix S on a logarithmic
scale, where the intensity of entry (/,j) denotes the aggregated
similarity between states i and j



*Cluster-Cluster Meta Adjacency Matrix
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Sji is “inside degree” of state /, d’” S;i, which measures the
internal similarity between the countles of state i

denote by d°! = SN u2i Siu (i.e., the sum of the non-diagonal
elements in row /) the ° ‘outside degree” of node /, which
measures the similarity/migration between the counties of state i
and all other counties outside of state /

denote by d’a”o dm, the “ratio degree” of node i which

straddles the boundary between intra-state and inter-state
migration

a large ratio degree is a good indicative that a state is very well
connected internally, and has little connectivity with the outside
world, and thus is a good candidate for a cluster.

the Table ranks the top 15 states within the US in terms of their
ratio degree.
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Figure: Heatmap of the inter-state migration flows. Rows (and columns) are
sorted by the ratio degrees of the states. The intensity of entry (i, ) denotes,
on a logarithmic scale, the similarity between states / and j, i.e., the sum of
all entries in the submatrix W; ;
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rank | state | ratio degree
1. VA 26.7
2. MI 20.4
3. GA 19.9
4, IN 19.7
5. TX 19.0
6. ME 18.9
7. NY 18.7
8. MO 18.5
9. CO 17.1
10. | LA 16.6
11. | MS 16.1
12. | CA 15.7
13. | OH 15.6
14. | WI 14.5

Table: Top 15 states within the US, ordered by ratio degree.



Figure: Top three eigenvectors correspond to global cuts between various
coasts within the US. The only state that stands out individually is Michigan
(MI) for k = 3, which has rank 2.
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Eigenvector colorings vs Ratio Degree
k=4

> k = 4: the largest entries correspond to counties in Virginia (VA)
which is also ranked 1%

» k =5: Wisconsin (WI) ranked 14

> k = 6: the states coloured in dark red and dark blue are Georgia
(GA) with rank 3, and Missouri (MO) of rank 8

» k = 7: Michigan (M), of rank 2, stands out as the only dark blue
coloured state.



