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Multidimensional Scaling (MDS)
I a means of visualizing the level of similarity of individual objects of

a data set using the information contained in the distance matrix

I It aims to place each object in p-dimensional space such that the
between-object distances are preserved as best as possible.

(a) Input: Distance Matrix (b) Output: 2-Dim. Embedding

Figure: Example of a 2-dimensional embedding produced by MDS given the
matrix of distances among cities
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Multidimensional Scaling (MDS)
I Suppose the data to be analyzed is a collection of n objects

xi ∈ Rp, i = 1, . . . ,n
I distance matrix D (size n × n) containing all pairwise distances

between the i th and j th object

D =


D11 D12 D13 . . . D1n
D21 D22 D23 . . . D2n
. . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . .
Dn1 Dn2 Dn3 . . . Dnn

 , (1)

Dij = || xi − xj ||2,Dii = 0. (2)

I Goal: transform D into a cross-product matrix B, with Bij = xᵀ
j xi

and find its eigen-decomposition
I yields an embedding of the n points into Rp that preserves pairwise

(squared) distances
I often used for visualization if p = {2,3}.



6Let us denote by si the sum of entries in row i of D

si =
n∑

j=1

Dij =
n∑

j=1

|| xi − xj ||2

=
n∑

j=1

( || xi ||2 + || xj ||2 −2xᵀ
i xj)

= n || xi ||2 +
n∑

j=1

|| xj ||2 −2xᵀ
i

n∑
j=1

xj (3)

I WLOG, assume points centered at the origin
∑n

i=1 xi = 0

si = n || xi ||2 +
n∑

j=1

|| xj ||2

s =
n∑

i=1

si =
n∑

i=1

n || xi ||2 +
n∑

j=1

|| xj ||2
 = n

n∑
i=1

|| xi ||2 +n
n∑

j=1

|| xj ||2 (4)

=⇒ s = 2n
n∑

i=1

|| xi ||2
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Claim

Dij −
1
n

si −
1
n

sj +
1
n2 s = −2xᵀ

i xj (5)

Proof:
Dij − 1

n si − 1
n sj + 1

n2 s

= || xi − xj ||2 −
1
n

n || xi ||2 +
n∑

j=1

|| xj ||2


−1
n

(
n || xj ||2 +

n∑
i=1

|| xi ||2
)

+
1
n2 2n

n∑
i=1

|| xi ||2

(6)

= || xi − xj ||2 −|| xi ||2 − || xj ||2 −
2
n

n∑
i=1

|| xi ||2 +
2
n

n∑
i=1

|| xi ||2

(7)

= || xi ||2 + || xj ||2 −2xᵀ
i xj − || xi ||2 − || xj ||2 (8)

= −2xᵀ
i xj
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The Gram matrix
I Consider the matrix

B = X T X

I X : p × n of rank p (assuming p < n)
I rank(B) = p, p < n

Spectral decomposition of B

B = UΣUT , (9)

X = Σ
1
2 UT , (10)

X ᵀX = (UΣ
1
2 )(Σ

1
2 Uᵀ) = UΣUT = B

Remark: When considering the spectrum of B, the largest eigenvalues
correspond to the true intrinsic dimension of the data, while the
remaining ones capture the noise.
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Claim B = −1

2
HDH (11)

where H is the scaling matrix
H = I − 1

n
eeᵀ

with e = [1, . . . ,1]T .
• Denote

Sn×1 = [s1, . . . , sn]T

where (recall) si =
∑n

j=1 Dij . Note the following hold true:
De = S and eᵀD = ST (12)

B = −1
2

HDH (13)

= −1
2

(I − 1
n

eeT )D(I − 1
n

eeT ) (14)

= −1
2

(I − 1
n

eeT )(D − 1
n

DeeT ) (15)

= −1
2

(D − 1
n

SeT − 1
n

eeT D +
1
n2 eeT SeT ) (16)

We previously showed that Bij = −1
2(Dij − 1

n si − 1
n sj + 1

n2 s) = xT
i xj .
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Final remarks on MDS
I classical MDS assumes Euclidean distances
I MDS can be generalized to incorporate additional nonnegative

weights Wij on each distance (useful when some distances are
missing, or most distances are noisy, but some are known)

I The optimization involves minimizing an energy known in the
literature as stress

StressD(x1, . . . , xn) =

 ∑
1≤i<j≤n

(dij − ||xi − xj ||)2

1/2

(17)

I one approach (De Leeuw) to minimize stress is to iteratively
minimize a (simple convex) majorizing function of two variables

I for a generic function f , with input variable X , we say that g(X ,Y )
majorizes f (X ) if g(X ,Y ) ≥ f (X ) & g(X ,X ) = f (X )

I non-metric MDS (monotonic relationship btw. the item-item
dissimilarities and the Euclidean distances btw. items)

I ordinal embedding: find an embedding of n points {~xi}
n
i=1 in Rd s.t.

∀(i , j , k , l) ∈ C, ‖~xi − ~xj‖2 < ‖~xk − ~xl‖2, (18)
where C denotes the set of ordinal constraints.
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Dimensionality Reduction

Data representation
I Inputs are real-valued vectors in a high-dimensional space

I Linear structure: data lives in a low-dimensional subspace

I Nonlinear structure: data lives on a low-dimensional submanifold
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Dimensionality Reduction

I Inputs (high dimensional) x1, x2, . . . , xn points in RD

I Outputs (low dimensional) y1, y2, . . . , yn points in Rd (d << D)

I Goals:

I Nearby points remain nearby.

I Distant points remain distant.
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Non-metric MDS for manifolds?

I The (rank) ordering of Euclidean distances is NOT preserved in
”manifold learning”

I Euclidean distance can be misleading (dumbbell cloud of points)
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Preserving structure
I To preserve structure preserve the geodesic distance and not the

Euclidean distance!
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Nonlinear manifolds
I PCA and MDS measure the Euclidean distance

I what matters most is the geodesic distance (shortest path
distance)
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Preserving structure
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Lots of methods
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Graph-Based Methods
I Isomap Algorithm

I Global approach: Preserves global pairwise distances
I Joshua B Tenenbaum, Vin de Silva, John C Langford, A global

geometric framework for nonlinear dimensionality reduction
I Science (2000)
I 16,377 (2023) citations

I Locally Linear Embedding (LLE) Algorithm
I Local approach: Nearby points should map nearby
I Roweis, Sam T., and Lawrence K. Saul. ”Nonlinear dimensionality

reduction by locally linear embedding”, Science (2000)
I 18,000 (2023) citations

I Laplacian Eigenmaps Algorithm
I Local approach: minimizes approx. the same value as LLE
I Belkin, Mikhail, and Partha Niyogi. Laplacian eigenmaps for

dimensionality reduction and data representation, Neural
computation (2003)

I 9,300 (2023) citations
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Isomap - Key Idea
Use geodesic instead of Euclidean distances in MDS:
I For neighboring points: the Euclidean distance is a good

approximation to the geodesic distance
I For distant points estimate: the distance by a series of short hops

between neighboring points
I Find shortest paths in a graph with edges connecting neighboring

data points

Assumptions
I Graph is connected.
I Neighborhoods on the graph reflect neighborhoods on the manifold

(no shortcuts connect different portions of swiss roll.)
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Isomap: Step 1 - Building adjacency graph
Neighbourhood selection - many options:
I k-nearest neighbours
I inputs within radius r
I prior knowledge.

Graph is discretized approximation of submanifold:

Computation (in Rd )
I kNN scales naively as O(n2d)
I fast methods exploit data structures: O(nd + kn), O(ndk)
I approximate nearest neighbor O

( 1
εd

log n
)
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Isomap: 2 - Estimate geodesics

I Dynamic programming

I Weight edges by local distances.

I Compute shortest paths through graph.

I Geodesic distances

I Estimate by lengths of shortest paths: denser sampling = better
estimates.

I Computation

I Djikstra’s algorithm for shortest paths O(n2 log n + n2m)
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Isomap: 3 - Classical/Metric MDS

I Embedding
I Top d eigenvectors of Gram matrix yield the desired embedding

(recall the previous material on cMDS)

I Dimensionality
I Number of significant eigenvalues yield estimate of dimensionality

(look for a large spectral gap)

I Computation
I Top d eigenvectors can be computed in O(n2d)

Summary of the ISOMAP Algorithm:
1. k-nearest neighbors
2. shortest paths through graph
3. MDS on geodesic distances
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Swiss Roll
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Hands
Isomap: Two-dimensional embedding of hand images (from Josh.
Tenenbaum, Vin de Silva, John Langford 2000)
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The digit 2
Isomap: two-dimensional embedding of hand-written ‘2’ (from Josh.
Tenenbaum, Vin de Silva, John Langford 2000)
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Faces
Isomap: three-dimensional embedding of faces (from Josh.
Tenenbaum, Vin de Silva, John Langford 2000)
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Properties of Isomap
Strengths
I preserves the global data structure
I performs global optimization
I non-parametric (the only parameter is the neighbourhood size)
I provable convergence guarantees

I given that xi is sampled sufficiently dense, ISOMAP will approximate
closely the original distance as measured in manifold M

I approx. geodesic distance in M by short Euclidean distance hops
Weaknesses
I very slow: need to compute pairwise shortest path between all

sample pairs (i , j): Global + Non-sparse + Cubic complexity O(n3)
I sensitive to ”shortcuts”
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ISOMAP- Theoretical considerations
-Convergence proof rests upon the idea that one can approximate the
geodesic distance in M by short Euclidean distance hops.
-Consider the following quantities for a pair of points x , y ∈ M
I dM(x , y) = infγ{length(γ)}

where γ varies over the set of smooth arcs connecting x to y in M
I dG(x , y) = minP(||x0 − x1||+ . . .+ ||xp−1 − xp||)

where P varies over all paths along the edges of G starting from
the source node x = x0 and ending at y = xp

I dS(x , y) = minP(dM(x0, x1) + . . .+ dM(xp−1, xp))
I one can show that dM ≈ dS and dS ≈ dG, leading to the desired

result that dG ≈ dM

Main result in [Bernstein, de Silva, Langford, and Tenenbaum 2000]:
(under a long list of assumptions), the following is valid for all x , y ∈ M

(1− λ1)dM(x , y) ≤ dG(x , y) ≤ (1 + λ2)dM(x , y), (19)

where λ1, λ2 relate to the minimum radius of curvature of M, and to a
certain δ-sampling condition for every point on M.
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Locally Linear Embedding (LLE)
Assumption:
I data lies on a manifold: each sample and its neighbors lie on an

approximately linear subspace

Approach:
1. Approximate the data cloud by a set of linear patches

2. Glue these patches together on a low-dimensional subspace in
such a way that the neighborhood relationships between patches
are preserved.

Properties:
1. can obtain highly nonlinear embeddings

2. not prone to get stuck at local minima

3. sparse graphs lead to sparse problems, hence scalable
https://cs.nyu.edu/˜roweis/lle/algorithm.html
• Roweis, Sam T., and Lawrence K. Saul. Nonlinear dimensionality
reduction by locally linear embedding, Science (2000): 2323-2326.
Google Scholar: 14957(2020); 16416 (2021); 17136 (2022); 18,000 (2023)

https://cs.nyu.edu/~roweis/lle/algorithm.html
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LLE: Main Steps

Steps
1. Nearest neighbour search.

2. Solve for reconstruction weights W & Least-squares fits.

3. Compute embedding coordinates Y using weights W



33
Step 1: nearest neighbour search
For each node Xi , i = 1, . . . ,n
I compute the distance from Xi to every other point Xj

I find the K smallest distances

I assign the corresponding points to be neighbours of Xj

More efficient computationally:
I use standard algorithms for k -nearest neighbor (k-nn) search

I or even settle for approximation algorithms, that compute
k -nearest neighbors

I Randomized approximate nearest neighbors algorithm, Peter
Wilcox Jones, Andrei Osipov, and Vladimir Rokhlin, PNAS 2011
https://www.pnas.org/content/108/38/15679.full

I nearest neighbor search is an established area in theoretical
computer science.

https://www.pnas.org/content/108/38/15679.full
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Step 2: computing the reconstruction weights W
I characterize local geometry of each neighbourhood by weights Wij
I compute weights by reconstructing each input (linearly) from

neighbours (assume neighbours lie on locally linear patches of a
low-dimensional manifold)

Minimize reconstruction error
I write each point as a linear combination of its neighbors
I weights chosen to minimize the reconstruction error

min
W

∑
i=1

Xi −
∑

j

WijXj

2

(20)

I set Wij = 0, if Xj is not a neighbor of Xi
I weights must sum to one:

∑
ij Wij = 1 (invariance to translation)

I optimal weights Wij obey an important symmetry: for any
particular data point, they are invariant to rotations, rescalings, and
translations of that data point and its neighbors

I weights characterize intrinsic geometric properties of each
neighborhood, as opposed to properties that depend on a
particular frame of reference.
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Step 3: computing the LLE Embedding
I aim to find points yi ∈ Rd , i = 1, . . . ,n to minimize

n∑
i=1
||yi −

n∑
j=1

wijyj ||2 (21)

I subject to n∑
i=1

yiyT
i = Id×d (22)

n∑
i=1

yi = 0d×1 (23)

I condition (22) means that the points are uncorrelated
I condition (23) centers outputs on origin
I (22) + (23) impose unit covariance matrix
I this eliminates the trivial solution yi = 0, i = 1, . . . ,n
I explicitly, if we denote by yi(k) the k th entry of yi , we get(

n∑
i=1

yiyT
i

)
kj

=
n∑

i=1

(yiyT
i )kj =

n∑
i=1

yi(k)yi(j) = (Y T Y )kj (24)
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Step 3: computing the LLE Embedding
I (from prev slide), if we denote by yi(k) the k th entry of yi , we get(

n∑
i=1

yiyT
i

)
kj

=
n∑

i=1

(yiyT
i )kj =

n∑
i=1

yi(k)yi(j) = (Y T Y )kj

I where k , j = 1, . . . ,d

I Y is an n × d matrix given by

Y =


− yT

1 −
− yT

2 −
...

− yT
n −

 (25)

I think of Y T Y as a scaled version of the covariance matrix for the
vectors yi .
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Step 3: computing the LLE Embedding
I to find the embedding yi ∈ Rd we seek, recall we aim to minimize

n∑
i=1
||yi −

n∑
j=1

wijyj ||2 (26)

=
n∑

i=1

(
yi −

n∑
k=1

wikyk

)T (
yi −

n∑
l=1

wilyl

)

=
n∑

i=1

yT
i yi −

n∑
i=1

yT
i

n∑
l=1

wilyl −
n∑

i=1

n∑
k=1

wikyT
k yi+

+
n∑

i=1

n∑
k=1

wikyT
k

n∑
l=1

wilyl (27)

=
n∑

i,j=1

δijyT
i yj −

n∑
i,j=1

wijyT
i yj −

n∑
i,j=1

wjiyT
i yj+

+
n∑

k ,l=1

(
n∑

i=1

wikwil

)
yT

k yl (28)
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Step 3: computing the LLE Embedding

=
n∑

i,j=1

δijyT
i yj −

n∑
i,j=1

wijyT
i yj −

n∑
i,j=1

wjiyT
i yj +

n∑
i,j=1

(
n∑

k=1

wkiwkj

)
yT

i yj

=
n∑

i,j=1

(
δij − wij − wji +

n∑
k=1

wkiwkj

)
yT

i yj(29)

=
n∑

i,j=1

MijyT
i yj (30)

where Mij = δij − wij − wji +
n∑

k=1

wkiwkj (31)

I M is an n × n symmetric matrix M = (I −W )T (I −W )

I M is non-negative (all its eigenvalues are non-negative)
I denoting by 1n the all-ones vector of length n, and observing that

the rows of W sum to 1, yields
M1 = (I −W )T (I −W )1 = (I −W )T (1− 1) = 0 (32)

I 1 is an eigenvector with corresponding eigenvalue λ = 0.
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Denote by Yk the k th column of Y defined in (25)

Yk =

y1(k)
...

yn(k)

 (33)

Note that
d∑

k=1

Y T
k MYk =

d∑
k=1

 n∑
j=1

Yk (j) (MYk )(j)

 (34)

=
d∑

k=1

 n∑
j=1

Yk (j)
n∑

i=1

MjiYk (i)

 (35)

=
n∑

i,j=1

Mij

(
d∑

k=1

Yk (j)Yk (i)

)
(36)

=
n∑

i,j=1

Mij

(
d∑

k=1

yj(k)yi(k)

)
=

n∑
i,j=1

MijyT
i yj (37)

which is where we left off in (30) for the original objective function.
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Computing the Locally Linear Embedding (LLE) (cont.)

Altogether, the initial objective function

n∑
i=1
||yi −

n∑
j=1

wijyj ||2 (38)

becomes

min
Y1, . . . ,Yd

d∑
k=1

Y T
k MYk

s.t. Y T Y = Id ,
Yk1n = 0, ∀k = 1, . . . ,d

(39)

Also note that
n∑

i,j=1

MijyT
i yj = trace(Y T MY ) (40)

To minimize the obj in (39) subject to the constraints, we next consider
the Lagrangian.



41
Computing the Locally Linear Embedding (LLE) (cont.)

I To minimize the obj in (39) subject to the constraints, we next
consider the Lagrangian

L(Y1, . . . ,Yd , φ1, . . . , φd ) =
d∑

k=1

Y T
k MYk −

d∑
k=1

φk (Y T
k Yk − 1) (41)

I This is actually a relaxation since we discarded
I all the off-diagonal constraints from Y T Y = Id
I and also the centering constraints Yk 1n = 0

I It will turn out that the solution of the relaxed problem will satisfy all
the required constraints in (39)

I consider the partials

∂L
∂Yk

= (M + MT )Yk − 2φkYk (42)
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Computing the Locally Linear Embedding (LLE) (cont.)

I taking partials
∂L
∂Yk

= (M + MT )Yk − 2φkYk (43)

I leads to
MYk = φkYk (44)

making Yk an eigenvector of M

I since M is symmetric, the condition Y T Y = Id holds

I also, the all-ones vector 1n is an eigenvector, and thus all other
eigenvectors satisfy Yk1n = 0

I L is thus a sum of d eigenvalues, which is minimized by choosing
Yk to be the d eigenvectors corresponding to the d smallest
eigenvalues, ignoring the first trivial eigenvector 1n.
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Laplacian Eigenmaps

Belkin, Mikhail, and Partha Niyogi. Laplacian eigenmaps and spectral
techniques for embedding and clustering” Advances in neural
information processing systems. 2002

Google Scholar citations: 5858 (2023); 5458 (2022); 5062 (2021); 4435
(2020);
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Laplacian Eigenmaps
• Input: a set {x1, . . . , xn} of n points, xi ∈ RD

• Output: find a set {y1. . . . , yn}, yi ∈ RD such that yi represents xi as
best as possible.
• Assumption: xi ∈M, whereM is a manifold embedded in RD.
Algorithm:
I Construct a graph G = (V ,E), undirected and symmetric, where

V = x1, . . . , xn, and (xi , xj) ∈ E if xi is ”close” to xj , where ”close”
means, for example, that
I xi and xj are at most ε distance apart
I or that xi is within the K nearest neighbors of xj (or vice versa for

symmetry).

I Choose weights for each edge; use a Gaussian Kernel

Wij =

{
e−||xi−xj ||2/t if (xi , xj) ∈ E
0 otherwise.

(45)

I alternatively, we can use a ”parameter-free” approach: Wij = 1 if
(xi , xj) ∈ E , and Wij = 0 otherwise.
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Laplacian Eigenmaps
I Define the diagonal matrix D of row sums of W

Dii =
∑

j

Wij (46)

I Build graph Laplacian L = D −W (symmetric, positive definite)
I Find eigenvectors of the generalized eigenvector problem

Lf = λDf (47)
I let f0, . . . , fd be the solutions to the eigenvalue problem ordered

such that 0 = λ0 ≤ . . . ≤ λd , that is

L f0 = λD f0
L f1 = λD f1

... (48)
L fd = λD fd

I drop f0 = [1, . . . ,1]T and define the embedding of xi into Rd

xi 7→ (f0(i), . . . , fd (i)) (49)
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Laplacian Eigenmaps - Analysis

I considering the mapping of the original points xi to the line.

I nearby points in RD (corresponding to connected points in the
graph G) should be mapped to nearby points on the line.

I denote this map by (y1, . . . , yn), with yi ∈ R.

I a reasonable criterion for such a map is

min
y1,...,yn

∑
i,j

(yi − yj)
2Wij . (50)

I if xi and xj are close, then Wij is large, thus there is heavy penalty if
those are mapped apart.
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Laplacian Eigenmaps - derivation (R)∑
i,j

(yi − yj)
2Wij =

∑
i,j

(y2
i − 2yiyj + y2

j )Wij

=
∑

i

y2
i

∑
j

Wij − 2
∑
i,j

yiyjWij +
∑

j

y2
j

∑
i

Wij

=
∑

i

y2
i Dii − 2

∑
i,j

yiyjWij +
∑

j

y2
j Djj

=
∑
i,j

yiyjDij +
∑
i,j

yiyjDij − 2
∑
i,j

yiyjWij

= 2
∑
i,j

yiyj(D −W )ij = 2yT Ly

I which also shows that L is positive semidefinite
I the minimization problem is argmin yT Ly
I to remove an arbitrary scaling from the embedding & eliminate the

trivial solution, add the constraint yT Dy = 1
argmin
yT Dy=1

yT Ly (51)
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Laplacian Eigenmaps
I Dii construed as a measure of the importance of vertex i
I the normalization D−1L (equivalent to the normalization above),

has a probabilistic interpretation
I consider the Lagrangian

H = yT Ly + λ(yT Dy − 1) (52)
I differentiate and equate to zero

(L + LT )y = λ(D + DT )y , (53)
I which amounts to

Ly = λDy (54)
I thus, y is an eigenvector; enforce yT Dy = 1 by dividing y by the

scaling factor (
∑

i y2
i Dii)

1/2

I for y an eigenvector, the objective function evaluates to
yT Ly = λyT Dy = λ due to the constraint

I optimal solution: eigenvector of the smallest eigenvalue
I 1n is an eigenvector with eigenvalue 0 (due to the row stochastic

normalization); discard this solution
I use eigenvector corresponding to the next smallest eigenvalue
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Laplacian Eigenmaps - the d-dimensional case
I so far we looked at the case of embedding into 1-D
I in the more general case, we are looking for a d-dimensional

embedding, that is, a matrix

Y = (y1, . . . , yd ), yi ∈ Rn (55)

I the i th row is the embedding of the i point in Rd . Each column is of
length n and gives one of the coordinates.

I in this setting, we aim to minimize∑
i,j

||y (i) − y (j)||2Wij = . . . = 2 trace(Y T LY ) (56)

where y (i) is the i-th row of Y , that is the d-dimensional
representation of xi

I the minimization problem becomes

min
Y T DY=I

trace(Y T LY ) (57)

I as before, the solution is given by the eigenvectors of L
corresponding to the lowest eigenvalues, after discarding the
constant eigenvector 1n corresponding to eigenvalue λ = 0
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