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Multidimensional Scaling (MDS)



4Multidimensional Scaling (MDS)

» a means of visualizing the level of similarity of individual objects of
a data set using the information contained in the distance matrix

> It aims to place each object in p-dimensional space such that the
between-object distances are preserved as best as possible.

1 2 3 4 5 3 7 8 9

BOST NY DC MIAM CHIC SEAT SE LA DENV 0.23 MIAMI
1 BOSTON 0 206 429 1504 963 2976 3095 2979 1949 .
2 NY 206 0 233 1308 802 2815 2934 2786 1771 0.0 - J—
3 pc 429 233 0 1075 &71 2684 2799 2631 1616 -
4 MIAMI 1504 1308 1075 0 1329 3273 3053 2687 2037 a9 ] smams sesto
5 CHICAGO 963 802 671 1329 0 2013 2142 2054 996
6 SEATTLE 2976 2815 2684 3273 2013 0 808 1131 1307
7 SF 3095 2934 2799 3053 2142 808 0 379 1235 032
8 LA 2979 2786 2631 2687 2054 1131 379 0 1059
9 DENVER 1948 1771 1616 2037 996 1307 1235 1059 0

(a) Input: Distance Matrix (b) Output: 2-Dim. Embedding

Figure: Example of a 2-dimensional embedding produced by MDS given the
matrix of distances among cities



5Multidimensional Scaling (MDS)

» Suppose the data to be analyzed is a collection of n objects
xieRPi=1,....n

> distance matrix D (size n x n) containing all pairwise distances
between the i and j object

Diy Di2 Diz ... Dip
Doy Do Doz ... D2p

D= | o , (1)
Dn1 Dn2 Dn3 Dnn

Dj = | xi— x |?, Dj = 0. (@)

» Goal: transform D into a cross-product matrix B, with Bj; = ijx,-
and find its eigen-decomposition

> yields an embedding of the n points into RP that preserves pairwise
(squared) distances

» often used for visualization if p = {2, 3}.



6Let us denote by s; the sum of entries in row / of D

n n

2

si=> Dj=> |x—x|
j=1 =1

n
=D (% 2 +1x 7 —2x7x)
j=1

n n
=nlxB+d gl -2 "x @)
j=1 j=1
» WLOG, assume points centered at the origin >, x; = 0
n
si=nlx 12+ 1% [?
j=1

n

n n n n

2 2 2 2

s=Y si=y (nlx P+X_IxP)=nd_Ix[F+n)_[x]
i=1 j=1 ; i=1 j=1

i=1

—s=2n) | x |2
i=1



Claim

1

1 1
Dj — oSi— St 58 = —2x1X; (5)

n2

1 1
D,'j— 7Si— ES/'—F?S

1 n

2 2 2

—Lx=x B =[x 2> 0% |
=

1 n 1 n
. (n I 1P+ 1 n?) + g2 x|
i=1 i=1

(6)
2 < 2 <
=1 xi=x 2= x 17— *BZ | xi HZWLEZ | x; |2
e i=1
(7)
= x P+1x% P -2x—1x12=1x[* (8)

_ Ty
= —2X; Xj



The Gram matrix

» Consider the matrix
B=X"x

> X :p x nofrank p (assuming p < n)
> rank(B)=p, p<n

Spectral decomposition of B
B=UzUT, (9)
X=xzUT, (10)

XTX = (Us2)(z2UT) = USUT = B

Remark: When considering the spectrum of B, the largest eigenvalues
correspond to the true intrinsic dimension of the data, while the
remaining ones capture the noise.



Claim B_ %HDH

where H is the scaling matrix
H=1——e€el
n
withe=[1,...,1]".
e Denote
Sn><1 = [817' . -73n]T

where (recall) s; = Z}; Dj;. Note the following hold true:
De=S and e D=ST

y
B= —EHDH

- _%(/ - %eeT)D(I— %eeT)
1, 1 - 1
= _5(/_ -ee )(D — —Dee )

1 1

:—é(D—ESeT leeTDJr ! eeTseT )

T

We previously showed that Bj = —3(Dj — s, — 1s;+ 1 s) = x/ x;.

n
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Final remarks on MDS

» classical MDS assumes Euclidean distances
» MDS can be generalized to incorporate additional nonnegative

weights Wj; on each distance (useful when some distances are
missing, or most distances are noisy, but some are known)
The optimization involves minimizing an energy known in the
literature as stress

1/2
Stressp(x1,...,Xn) = ( Z (dj — [Ixi — Xj)2> (17)
1<i<j<n

one approach (De Leeuw) to minimize stress is to iteratively

minimize a (simple convex) majorizing function of two variables

for a generic function f, with input variable X, we say that g(X, Y)

majorizes f(X) if g(X, Y) > f(X) & g(X, X) = f(X)

non-metric MDS (monotonic relationship btw. the item-item

dissimilarities and the Euclidean distances btw. items)

ordinal embedding: find an embedding of n points {X;}/_, in R? s.t.
V(i j k1) € C, 1% — Xjll2 < [ Xk — Xill2, (18)

where C denotes the set of ordinal constraints.
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Dimensionality Reduction

Data representation
> Inputs are real-valued vectors in a high-dimensional space

> Linear structure: data lives in a low-dimensional subspace

» Nonlinear structure: data lives on a low-dimensional submanifold
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Dimensionality Reduction

» Inputs (high dimensional) x1, X, .. ., X, points in RP

» Outputs (low dimensional) yy, yo, . .., yn points in RY(d << D)

> Goals:

> Nearby points remain nearby.

> Distant points remain distant.



13Non—metric MDS for manifolds?

» The (rank) ordering of Euclidean distances is NOT preserved in
"manifold learning”

» Euclidean distance can be misleading (dumbbell cloud of points)

d(A,C) <d(A,B) d(A,C) > d(A,B)
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Preserving structure
> To preserve structure preserve the geodesic distance and not the

Euclidean distance!
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Nonlinear manifolds

» PCA and MDS measure the Euclidean distance

» what matters most is the geodesic distance (shortest path
distance)

PCA and MDS measure the
A Euclidean distance

What is important is the geodesic distance

Unroll the manifold
o—— —0
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Preserving structure

PCA projection
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LLE projection IsoMap projection
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17I_ots of methods

Swiss-roll data

MDS: 16.1676s

PCA: 0.08175s

LLE: 0.48407s
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18Guraph-Based Methods

» Isomap Algorithm
> Global approach: Preserves global pairwise distances
» Joshua B Tenenbaum, Vin de Silva, John C Langford, A global
geometric framework for nonlinear dimensionality reduction
» Science (2000)
> 16,377 (2023) citations

» Locally Linear Embedding (LLE) Algorithm
» Local approach: Nearby points should map nearby
> Roweis, Sam T., and Lawrence K. Saul. "Nonlinear dimensionality
reduction by locally linear embedding”, Science (2000)
> 18,000 (2023) citations

» Laplacian Eigenmaps Algorithm
> Local approach: minimizes approx. the same value as LLE
» Belkin, Mikhail, and Partha Niyogi. Laplacian eigenmaps for
dimensionality reduction and data representation, Neural
computation (2003)
> 9,300 (2023) citations



Isomap
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Isomap - Key Idea
Use geodesic instead of Euclidean distances in MDS:
» For neighboring points: the Euclidean distance is a good
approximation to the geodesic distance
» For distant points estimate: the distance by a series of short hops
between neighboring points
> Find shortest paths in a graph with edges connecting neighboring
data points

Assumptions
» Graph is connected.

» Neighborhoods on the graph reflect neighborhoods on the manifold
(no shortcuts connect different portions of swiss roll.)
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Isomap: Step 1 - Building adjacency graph
Neighbourhood selection - many options:

» k-nearest neighbours
» inputs within radius r
» prior knowledge.
Graph is discretized approximation of submanifold:

Computation (in R9)
» kNN scales naively as O(n?d)
> fast methods exploit data structures: O(nd + kn), O(ndk)
> approximate nearest neighbor O (;—d log n)
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Isomap: 2 - Estimate geodesics

» Dynamic programming

> Weight edges by local distances.

» Compute shortest paths through graph.
» Geodesic distances

> Estimate by lengths of shortest paths: denser sampling = better
estimates.

» Computation

» Dijikstra’s algorithm for shortest paths O(n? log n + n?m)



23isomap: 3 - Classical/Metric MDS

» Embedding

> Top d eigenvectors of Gram matrix yield the desired embedding
(recall the previous material on cMDS)

» Dimensionality

> Number of significant eigenvalues yield estimate of dimensionality
(look for a large spectral gap)

» Computation
» Top d eigenvectors can be computed in O(n?d)

Summary of the ISOMAP Algorithm:
1. k-nearest neighbors
2. shortest paths through graph
3. MDS on geodesic distances



24 .
Swiss Roll

n (points) =1024
k (neighbors) =12



Isomap: Two-dimensional embedding of hand images (from Josh.
Tenenbaum, Vin de Silva, John Langford 2000)

)

n =2000, k =6, D=64x64

HAngar axtengan

¥

Whist rofation



26
The digit 2
Isomap: two-dimensional embedding of hand-written ‘2’ (from Josh.
Tenenbaum, Vin de Silva, John Langford 2000)

B Bottom loop articulation
-

Top arch articulation

-

n =1000, r=4.2, D=20x20 %
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Faces

Isomap: three-dimensional embedding of faces (from Josh.
Tenenbaum, Vin de Silva, John Langford 2000)

n =698, k=6

-

Up-cawn pase

8~
o 0 s . "N
R o, T a !

N %
1

Lighting direction
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Properties of Isomap
Strengths
> preserves the global data structure
> performs global optimization
» non-parametric (the only parameter is the neighbourhood size)
> provable convergence guarantees
> given that x; is sampled sufficiently dense, ISOMAP will approximate
closely the original distance as measured in manifold M
> approx. geodesic distance in M by short Euclidean distance hops
Weaknesses
> very slow: need to compute pairwise shortest path between all
sample pairs (i, ): Global + Non-sparse + Cubic complexity O(n®)
> sensitive to "shortcuts”
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ISOMAP- Theoretical considerations
-Convergence proof rests upon the idea that one can approximate the
geodesic distance in M by short Euclidean distance hops.
-Consider the following quantities for a pair of points x,y € M
> dy(x,y) = inf,{length(v)}
where v varies over the set of smooth arcs connecting x to y in M
> dg(x,y) = minp(||Xo — x1|[ + ... + [[Xp—1 — Xpl[)
where P varies over all paths along the edges of G starting from
the source node x = xp and ending at y = xp

> ds(x,y) = minp(du(Xo, X1) + - .. + du(Xp—1, Xp))
» one can show that dy, =~ ds and ds = dg, leading to the desired
result that dg ~ dy
Main result in [Bernstein, de Silva, Langford, and Tenenbaum 2000]:
(under a long list of assumptions), the following is valid for all x,y € M
(1 = A)du(x,y) < dg(x,y) < (1+ A2)du(x.y), (19)

where A1, s relate to the minimum radius of curvature of M, and to a
certain -sampling condition for every point on M.




Locally Linear Embedding (LLE)



*Locally Linear Embedding (LLE)
Assumption:

> data lies on a manifold: each sample and its neighbors lie on an
approximately linear subspace

Approach:
1. Approximate the data cloud by a set of linear patches

2. Glue these patches together on a low-dimensional subspace in
such a way that the neighborhood relationships between patches
are preserved.

Properties:
1. can obtain highly nonlinear embeddings
2. not prone to get stuck at local minima
3. sparse graphs lead to sparse problems, hence scalable

https://cs.nyu.edu/~roweis/lle/algorithm.html

e Roweis, Sam T., and Lawrence K. Saul. Nonlinear dimensionality
reduction by locally linear embedding, Science (2000): 2323-2326.
Google Scholar: 14957(2020); 16416 (2021); 17136 (2022); 18,000(2023)


https://cs.nyu.edu/~roweis/lle/algorithm.html
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LLE: Main Steps

Steps
1. Nearest neighbour search.
2. Solve for reconstruction weights W & Least-squares fits.
3. Compute embedding coordinates Y using weights W
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Step 1: nearest neighbour search

Foreachnode X;,i=1,...,n
» compute the distance from X; to every other point X;

» find the K smallest distances

» assign the corresponding points to be neighbours of X;

More efficient computationally:
» use standard algorithms for k-nearest neighbor (k-nn) search

> or even settle for approximation algorithms, that compute
k-nearest neighbors

» Randomized approximate nearest neighbors algorithm, Peter
Wilcox Jones, Andrei Osipov, and Vladimir Rokhlin, PNAS 2011
https://www.pnas.org/content/108/38/15679.full

» nearest neighbor search is an established area in theoretical
computer science.


https://www.pnas.org/content/108/38/15679.full

34
Step 2: computing the reconstruction weights W
» characterize local geometry of each neighbourhood by weights W

» compute weights by reconstructing each input (linearly) from
neighbours (assume neighbours lie on locally linear patches of a
low-dimensional manifold)

Minimize reconstruction error
> write each point as a linear combination of its neighbors

» weights chosen to minimize the reconstruction error
2

min 3| X -3 WX (20
i=1 j

» set W; = 0, if X; is not a neighbor of X;

weights must sum to one: }_; Wj = 1 (invariance to translation)

» optimal weights WW; obey an important symmetry: for any
particular data point, they are invariant to rotations, rescalings, and
translations of that data point and its neighbors

> weights characterize intrinsic geometric properties of each
neighborhood, as opposed to properties that depend on a
particular frame of reference.

v



Step 3: computing the LLE Embeddlng
> aim to find points y; € R?,i = 1,..., nto minimize

Z Z wiy;|”

i=1

ZYiyiT = lgxd
=
Zyi = Ogx1

» condition (22) means that the points are uncorrelated
» condition (23) centers outputs on origin

> (22) + (23) impose unit covariance matrix
>
>

> subject to

this eliminates the trivial solution y; =0,i=1,...,n
explicitly, if we denote by y;(k) the k' entry of y;, we get

n n
(Z y,-y,-T) => (") Zy, =(YTY)y
i=1 ki i=1



36Step 3: computing the LLE Embedding

» (from prev slide), if we denote by y;(k) the k" entry of y;, we get

n n
(Z y,-y,-T> => ") Z yi(k
i=1 Koo

> where k,j=1,....d

> Yis an n x d matrix given by

(25)

» think of YTY as a scaled version of the covariance matrix for the

vectors y;.



37Step 3: computing the LLE Embedding

> to find the embedding y, e R we seek, recall we aim to minimize

> Z wiy;|? (26)
i=1
n
= Z (y,- - Z Wik}’k> <}/i - Z Wi/}’/>
j =1
n
= ZY, Yi— Z i Z Wiy — Z Z Wiy Vit
i=1 i=1 k=1
+ Z Z Wik Yk Z Wiryi (27)

i=1 k=1

n
= Y- Z iy y; - Z Wiy}’ Yt

ij=1 ij=1 ij=1

+ ) (Z Wik Wil) 787 (28)

k=1 \i=1



38Step 3: computing the LLE Embedding
=D oyilyi— > wiylyi - Z wiy/ ¥ + Z (Z Wk,Wk/> 787

ij=1 ij=1 ij=1 ij=1

n
=> (5,'] — Wi — W + Z Wkiij> v y(29)

ij=1 k=1
n
= > My, (30)
ij=1 N
where M,'/' = 5,‘/ — W — Wi + Z Wi Wi (31)
k=1

> Mis an n x n symmetric matrix M = (I — W) (I — W)
» M is non-negative (all its eigenvalues are non-negative)
» denoting by 1, the all-ones vector of length n, and observing that
the rows of W sum to 1, yields
MI=(I-WT(I-W1=(I-W)T1-1)=0 (32)
> 1 is an eigenvector with corresponding eigenvalue A = 0.
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Denote by Y the k' column of Y defined in (25)

y1(k)
Yk = : (33)
Yn(k)
Note that
d n
SVimy, =" (Z Yie(j) (MYk)(j)) (34)
k=1 k=1 \ j=1
d n n
=> (Z Ye() D M; Yk(f)) (35)
k=1 \ j=1 i=1
n d
=) M (Z Yi(j) Yk(:)> (36)
ij=1 k=1
n d n
=> M (Z Yj(k)}’i(k)> => My'y, (37)
ij=1 k=1 ij=1

which is where we left off in (30) for the original objective function.
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Computing the Locally Linear Embedding (LLE) (cont.)

Altogether, the initial objective function

n

n
S W=D wyl? (38)
i=1 j=1
becomes J
y min y > Y MY
Ty ey d k=1 (39)
s.t. YTY = Iy,

Yclp=0,Vk=1,...,d
Also note that ;
> Myy[y; = trace(YTMY) (40)
ij=1
To minimize the obj in (39) subject to the constraints, we next consider
the Lagrangian.
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Computing the Locally Linear Embedding (LLE) (cont.)

» To minimize the obj in (39) subject to the constraints, we next
consider the Lagrangian

Q

L(Y17"'7Yd7 ¢17“'7¢)d ZYKMYK_Z¢k Yk Yk_1) (41)
k=1

» This is actually a relaxation since we discarded

» all the off-diagonal constraints from YTY = I4
> and also the centering constraints Y1, =0

> It will turn out that the solution of the relaxed problem will satisfy all
the required constraints in (39)

» consider the partials

oL

gy, = (M+M))Yi—26Yi (42)
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Computing the Locally Linear Embedding (LLE) (cont.)

> taking partials

oL
7 (M +MT) Yy — 2 Y (43)

> leads to
MYy = ok Yk (44)

making Yj an eigenvector of M
> since M is symmetric, the condition Y'Y = /, holds

> also, the all-ones vector 1, is an eigenvector, and thus all other
eigenvectors satisfy Yy 1,=0

» Lis thus a sum of d eigenvalues, which is minimized by choosing
Y, to be the d eigenvectors corresponding to the d smallest
eigenvalues, ignoring the first trivial eigenvector 1.



Laplacian Eigenmaps



4‘i_aplacian Eigenmaps

Belkin, Mikhail, and Partha Niyogi. Laplacian eigenmaps and spectral
techniques for embedding and clustering” Advances in neural
information processing systems. 2002

Google Scholar citations: 5858 (2023); 5458 (2022); 5062 (2021); 4435
(2020);
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Laplacian Eigenmaps

e Input: a set {xy,..., x,} of npoints, x; € RP

e Output: find a set {y;....,yn}, v € RP such that y; represents x; as

best as possible.
¢ Assumption: x; € M, where M is a manifold embedded in RP.
Algorithm:

» Construct a graph G = (V, E), undirected and symmetric, where
V =xq,..., X, and (x;, x;) € E if x; is "close” to x;, where "close”
means, for example, that

> x; and x; are at most e distance apart
» or that x; is within the K nearest neighbors of x; (or vice versa for
symmetry).

» Choose weights for each edge; use a Gaussian Kernel

e IX=xIE/t i (x;, x;)) € E
a={ e (45)

0 otherwise.

» alternatively, we can use a "parameter-free” approach: W = 1 if
(xi, X;) € E, and Wj; = 0 otherwise.
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Laplacian Eigenmaps
» Define the diagonal matrix D of row sums of W

D,',' = Z l/Vij (46)
j

» Build graph Laplacian L = D — W (symmetric, positive definite)
» Find eigenvectors of the generalized eigenvector problem
Lf = \Df (47)
> let fy,..., fy be the solutions to the eigenvalue problem ordered
suchthat0 = \g < ... < Ay, thatis

Lfy = ADf
Lfi = ADf
: (48)
Lfy = ADfy
» drop fy = [1,...,1]” and define the embedding of x; into RY

Xi = (f(i), - .. fa(i)) (49)
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Laplacian Eigenmaps - Analysis
> considering the mapping of the original points x; to the line.

» nearby points in R? (corresponding to connected points in the
graph G) should be mapped to nearby points on the line.

» denote this map by (y1,...,¥n), with y; € R.

> areasonable criterion for such a map is

i, S0 e
i.f

» if x; and x; are close, then Wj; is large, thus there is heavy penalty if
those are mapped apart.
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Laplacian Eigenmaps - derivation (R)
> i y)PWy = Z — 2y +y7) W

ij
= Z}’/ SOWp—2> yiyWi+ > Y W
i J i.f J i
= Z%’ZD/’/ - ZZYIYjVVij + Z}/,-szj
i i J
= ZY:‘Y/D/] + Zy/'ij// - zzyiyj W
.f i i

=2 yy(D-W);=2yTLy
ij
» which also shows that L is positive semidefinite
» the minimization problemis argmin y'Ly
> to remove an arbitrary scaling from the embedding & eliminate the
trivial solution, add the constraint  y" Dy = 1

argmin  y'Ly (51)
yTDy=1
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Laplacian Eigenmaps

>
>

>

D;; construed as a measure of the importance of vertex i

the normalization D' L (equivalent to the normalization above),
has a probabilistic interpretation
consider the Lagrangian

H=y"Ly+ Xy Dy —1) (52)
differentiate and equate to zero
(L+ LTy =XD+ D)y, (53)
which amounts to
Ly = \Dy (54)

thus, y is an eigenvector; enforce y” Dy = 1 by dividing y by the
scaling factor (3>, y2D;)'/2

for y an eigenvector, the objective function evaluates to

yTLy = \y"Dy = X\ due to the constraint

optimal solution: eigenvector of the smallest eigenvalue

1, is an eigenvector with eigenvalue 0 (due to the row stochastic
normalization); discard this solution

use eigenvector corresponding to the next smallest eigenvalue
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Laplacian Eigenmaps - the d-dimensional case
» so far we looked at the case of embedding into 1-D
» in the more general case, we are looking for a d-dimensional
embedding, that is, a matrix

Y:(y‘h""yd)v inRn (55)

> the i row is the embedding of the i point in R?. Each column is of
length n and gives one of the coordinates.
> in this setting, we aim to minimize

STy — yD|2wWy = ... = 2 trace(YTLY) (56)

ij
where y() is the i-th row of Y, that is the d-dimensional
representation of x;

» the minimization problem becomes

min trace(YTLY) (57)
YTDY=|

> as before, the solution is given by the eigenvectors of L
corresponding to the lowest eigenvalues, after discarding the
constant eigenvector 1, corresponding to eigenvalue A =0
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