Lecture 5: Principal Component Analysis and SVD

Foundations of Data Science:
Algorithms and Mathematical Foundations

Mihai Cucuringu
mihai.cucuringu@stats.ox.ac.uk

CDT in Mathematics of Random System
University of Oxford

21 September, 2023



Singular Value Decomposition (SVD)

Principal Component Analysis

Computational considerations

Robust PCA



2Singular Value Decomposition (SVD)

Given M € R™*"_factorization into a product of three matrices:

M= UzVT,
where

> Ue O(m)ie. UUT = UTU = I (its columns are the left singular
vectors)

» V € O(n) (its columns are the right singular vectors)

> Y is a diagonal matrix, with X; # 0, for i =1,..., min(m, n) being
the singular values of M

» SVD defined for all matrices (rectangular or square) unlike the
popular spectral decomposition
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Singular Value Decomposition (SVD)

>

in many applications, the data matrix M is close to a matrix of
low-rank, and the goal is to find a low-rank matrix which is a good
approximation to the data matrix

consider the SVD of M (sum of yveighted rank-1 matrices)
MZZO’,‘U,‘V/T (1)
fork =1,2,...,r, consider the ;um truncated after k terms
M = Z o1, (2)

which renders M to be of rank k

one can show that My is the best rank-k approximation to M,
where error is measured in Frobenius norm
(Eckart—Young—Mirsky theorem)

recall that for any matrix M, the sum of squares of its singular
values equals the square of the Frobenius norm

2
> of (M) =[|M|[E = (ZZM,?) (3)
i—1

=1 =1



SVD - Computational Considerations

> M,«nis often a very sparse matrix: each entry exists with
probability p (sampling probability)

» the leading singular values and singular vectors can be computed
using iterative techniques at a typical cost of O(pn?)

» eg., via a simple power method: all iterations only require a
matrix-vector product at a cost of pr?

> in the sparse setting, the computational cost is essentially linear
in the number of nonzero entries (m) in the matrix (eg, nonzero
entries in the adjacency matrix (edges in the graph))
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Spectral Decomposition

» |f Mis an n x n symmetric matrix, then
n
M=VAVT =3 " \eveW
k=1

where

» columns of V are eigenvectors and
» Aj; is a diagonal matrix with entries given by eigenvalues \; of M

» A real symmetric matrix M, is positive semi-definite (PSD),
denoted M = 0, if zZ"Mz > 0 for all z € R?

» Let M be a real symmetric n x n matrix. Then, M is positive
semi-definite iff all its eigenvalues \; > 0.

» Spectral norm of matrix: ||M|2 = [ Amax(M)]



i Remarks SVD/eigen-decomposition

» the u; are eigenvectors of MM and the v; are eigenvectors of
MT™M

» MMT and M M are positive semidefinite, so their eigenvalues
are nonnegative

> if \; are the eigenvalues of MT M, then o2 = ); if \; > 0

» if M is square and Hermitian, then the SVD and the eigenvalue
decomposition are the same



Some properties
n n
> Tr(M) = 3> Mg = > A(M)
k=1 k=1
> Frobenius norm, [|M||r = /> Mz = /Tr(M™M)
iy

> Tr(AB) = 7. A;Bj = Tr(BA)

» trace is invariant under cyclic permutation

Tr(ABC) = Tr(BCA) = Tr(CAB) + Tr(ACB)
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Quadratic Forms
» For M a symmetric matrix, interested in solving

max  TH(VIMV) <= max > v My
VeR™™ d Vi,..., VneRd
vT V:/dxd VVTVJ'Z(S

where §;; is the Kronecker delta

1 0=
P00 i#)
> If d =1, this amounts to
max VTMV = )\max(M)
veR"
[[v]2=1

which is maximized by v, the leading eigenvector of M,
corresponding to the largest eigenvalue.



) PCA: example, n=90,p=3,d =2
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» Left: top two PC directions that span the plane that best fits the
data.
> minimizes the sum of distances? from points to the plane
» Right: top two PC score vectors giving the coordinates of the
projection of the 90 observations onto the plane
» The variance in the plane is maximized

PCA dates back to a 1901 paper by Karl Pearson!



Principal Component Analysis - Theoretical considerations
Dimensionality reduction: Given xy, ..., X, € RP for large p, the goal is
to find a lower-dimension representation of the data, and transform
data into n x d where d < p by a linear projection.

» PCA is a linear technique: fits the best hyperplane through data

points by projecting the n points onto a d-dim space

Two equivalent formulations that lead to the same solution:

1. Find the best possible affine d-dim space that fits the given data

(minimize residual). Approx. each x,, k=1,....n
px1 approximation d
~ =
Xk ~ [ + > (Br)ivi

~~ —1
const translation vector =

———
lin comb of basis of d-dim space
Xk ~ p + V B where VTV =lyy
~ N
px1 px1 pxd gx1
2. Find d-dimensional projection of x1, ..., xp, in order to maximize
the variance of the projected points.
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PCA Approach | - best affine d-dim space optimization

formulation
[following book by A. Bandeira, A. Singer and T. Strohmer]

Notation

» Sample mean

M
S
|
(-
X
!
=
N
=S
!
=
N
\'




12Measuring goodness of fit

» In the "least-squares” sense, the PCA objective is:

min Z||Xk—(/£+ V'ﬁk)”%

k=1

> WLOG, we set > 8k = 0, i.e., "center” the points around the
origin.



13Optimizing for u

First-order conditions for ;. correspond to

Vi (Zuxk—u—v-ﬂan) =0

k=1

= (k—p—V-B)=0
k=1

n n
@Zxk—nu— VZﬁk:O
k=1 k=1
Recalling 2221 Bk = 0 from earlier, yields
1 n
pr= n ;::1 Xk

which is the sample mean ., previously defined.
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Optimizing for gk
» We now have ,
.1
r=7 Zxk
k=1

» Recall that V € RP*
» The optimization problem amounts to

n
minimize ) " ||xk — pn — V- BklI3
VB k=1
subjectto V7.V = Iyq
> we can rewrite the objective function as

X1 = pin = V- Bell3+ ||%2 — pin — V- Bo| 3+ - -

» the problem decouples for each k, so we can focus on individual
terms



15Optimizing for gk (cont.)

For a given k, our optimization problem amounts to:

min ||X — ptn — V- Bxl[3
Bk

d
= mgn Xk = 10— > Vi Bll3
g i=1

= Vg0 (X = 10 = Vi(Bi)1 — - = Vi(Bi)i — - — Va(Bi)dll3)

= V] [X—pn— V-5 =0



Optimizing for gy (cont.)

Since

and

and

we arrive at

In vector form:

V- Bk = vi(Bk)1 + - + Va(Bk)as
v/ - vi=0fori#j,
v/ -vi=1fori=j,

Vi (X —pn) = V] - V- Be=0

(By)i = viT (xk — pn),Vi=1,...,d

(B%) = VT (X — n)




17Optimizing for V

> we have 35 = V(X — un)
» substituting 55 into the optimization problem yields

n
minimize § [(xk — pn) = V- VT (X — )3
subjectto V7.V = Iy

» if we consider for each individual term, we have:

Xk = ptn = V- VT (xk — pn)l|3
= [ —ph = O = pn) "V VT = pn = V- VT (3 — o))

> keep inmindthat VT -V =1



18PCA derivation - recap

We have reduced the original problem

minimize Xk — p— VB
i kz;u 1

VT V=Igyq
to

n

minimizez ka — ptn — W T (X — pun) »

VTV=lIgxq £

2
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Now, since ||y||2 = y Ty, we have

%5 = 12 = VVT (3¢ = pan) [ =

= (X — pn— VW (X = 1n)) " (Xk = ptn — VVT (Xk — 1))
= (Xk — n) " (X — ) + (X — ) " WV WV (% — pan)
I
20— pn) VYT (65— an)
= (X — ,Un)T(Xk — pn) —(Xk — ,Un)T VVT(XK — ftn)

does not depend on V

Thus, (5) is equivalent to

n

T T
max Xk — VW' (x, —
VTV:ded;( k Mn) ( k Mn)



20
By using properties of the trace, we see that

u

n

> (X — ,Un)T vv'’ (Xk — pn) =

e —— N ——
1xp PXP  px1

=T [0 = 1) TV (3~ )|
k=1

= Z Tr [VT(Xk — i) (Xk — pn) " V}
k=1

n
= Tr | D VT (% — sn) (X — ) 'V
k=1
n
=Tr | VT (X% — in)(Xk — ) 'V

k=1
=(n—=1)Tr(VTL,V)

where ¥, is the sample covariance matrix (of size n x n).
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Finally ...

Thus, the solution to (9) is given by

max  Tr( VTZnV)7 (15)
VT V=Igxd
which is equivalent to
d
+
> 1
V1....Vd€mRa’7)7(v/Vj:5ij 2 Vi &nVk, ( 6)

whose solution is given by the top d leading eigenvectors of ¥ ,.



22Deriva’[ion of PCA: Approach Il - d-dimensional
projection that preserves the most variance

Goal: We wish to

» find an orthonormal basis {v4, ..., v4} of a d-dimensional
subspace
» such that the projection of the original data {x, ..., x,} on this

subspace has the most variance.

Mathematically:

» Let V be a matrix of dimension p x d with v; (i =1,...,d) as its
i™ column, so that VTV = I4.4.

» The projected points yx, (k = 1,...,n) are given by

Y= VTx
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PCA Il - Optimize variance
» Goal: aim for the projected points y4, ..., y, to have as much
variance as possible

n
> Recall that Var[y] = -1+ Z (vk — ¥)?; our goal is equivalent to
n

2
max Z Vi —1 Z VTx;
VT V=lyyq

k=1

(17)

n

= VT (x — 18
VTr\ygﬁxdk_1 y (Xk = pn) (18)
= XP  pxi
— max Tr(V'L,V), (19)
VT V=Iyxqg

> since ||A|2 = Tr(AT A)
1 n

> sample covariance matrix > = —— (Xk — pon)(Xk — pn) T
— k=

» The two approaches for the derivation of PCA are equivalent.
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First direction in which variance is maximized (d = 1)
Perform PCA on X, an n x p matrix with rows x;,i =1,....n
Let B = {vy, o, ..., v4} be an orthonormal basis of the d—dimensional
subspace, and let
vi = argmax Var[XV]]
vi€B, vl v;=1

Rewrite this in terms of the covariance matrix C = nl—1XTX

Var[Xv)] = 715 (X)) T (Xv;) (20)
= Vi X Xy (21)
= v/ Cv; (22)
Solve this constrained optimization by using Lagrange Multipliers
L(vi, M) =v{ Cvy + M (1 — v4 »y) (23)

By imposing the condition V, L(v1, A1) = 0, we have
2Cvi —2\v; =0 = Cvy = \vy = A\ = v Cvy

i.e. the projection variance is the (first) eigenvalue.
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Intuition
» PCA considers the eigenvector decomposition of ¥,

> analyzes the projection of the centered data points (after having
subtracted the sample mean ;) on the top k eigenvectors of the
sample covariance matrix ¥, as principal components

» where the top k eigenvectors are those associated with the
largest k eigenvalues

What about the cost?



26Compu’[ing the Principal Components (I - via spectral

decomposition)

Algorithmic considerations:

» Compute top eigenvectors of the sample covariance matrix ¥, of
size px p
1
n—1

o= > 0k — ) — )"
pa

where p is the sample mean vector.

Naive way
> building ¥, takes O(np?)

» finding the spectral decomposition takes O(p®) work

» overall complexity O(max{np?, p°})



27Computing the Principal Components (Il - via SVD)

Let X of size p x nbe given by X = [x1, X2, ..., Xp]
n

Yn= lkz;(xk_ﬂ)(xk_ﬂ)T: 15 (X—MT) (X—MT)T (24)

Consider the SVD of
X— 1T = LDRT
then

_1
"“n

1

)N (X—M1T)(X—/1,1T)T:%LDRTH’DLT:E

LD?LT  (25)

so L corresponds to the eigenvectors of X ,. Why bother?
Computing the SVD of (X — x17) takes O(min(n?p, p2n))
» if interested only in the top d eigenvectors = O(npd)

» randomized algorithms for an approximate solution
= O(pnlogd + (p + n)d?)



28Distributed SVD - decentralised implementation

» distributed computation of the extremal eigenvectors

» El Karoui, N. and d’Aspremont, A., 2010. Second order accurate
distributed eigenvector computation for extremely large matrices.
Electronic Journal of Statistics, 4, pp.1345-1385

» show that averaging eigenvectors of randomly subsampled
matrices efficiently approximates the true eigenvectors of the
original matrix, under certain conditions on the specitral
decomposition

Data n?

7 \\

CPU & Mem. n? nlogn | | nlogn | | nlogn nlogn
Cost




29Distributed SVD - Matrix Subsampling

Subsampling procedure in

» [AMO7] Achlioptas & McSherry. Fast computation of low-rank
matrix approximations. Journal of the ACM, 54(2), 2007.

approximates a symmetric matrix M using a subset of its coefficients.

> the entries of M are independently sampled as

S = {M,-j/p with prf)bability p
0 otherwise
where p € [0, 1] is the sampling probability
» Thm 1.4 in [AM07] shows that when n is large enough
IM — S||2 < 4]|M||\/n/p (26)

holds with high probability.



30

Matrix Subsampling
> consider the spectral decomposition of M = "7, Aju;u,

with eigenvalues \y > Ao > ... \p
» define subsampling matrix Q € S, with idd Bernoulli coeffs

{1/p with probability p
Q)=

0 otherwise
> leading to

Q=117+ 1;”0 (27)

where C has idd entries with mean zero and variance once, as

~_JV/(=p)p  with probability p
T p/(1 —p) otherwise
» allowing to write the sampled matrix as

S=MoQ=M+ Z)\ uju; )EM—i—E (28)

» bound the spectral norm of the reS|duaI matrix E as n — oo; is
||[El|2 is small, then S is a good approx. of M in spectral terms.



“\ssues with PCA

>
>

>

cannot handle nonlinearity in the data

very often, the real data has samples grossly corrupted
(measurement errors, adversarial attacks)

sensitivity to outliers - PCA fails even with a few outliers

0 .. . . ° . ° > ® .. i L] : :.O s -
Image Credit: Yuxin Chen ’
another way to look at PCA
minimizeL:rank(L):kHX - LHF (29)

where X is the data matrix of size p x n with the n samples
X17X27---7Xn
find the best rank-k approximation of X
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Nuclear norm of a matrix

>

>
>
|

rank: number of nonzero singular values of matrix L,xm

rank minimization is NP-hard
what to replace the rank constraint of L with?
the sum of the singular values of L, denoted as the nuclear norm
min{n,m}
L= > oi(L) (30)

i=1

where o;(L) denotes the i-th singular value of L

the nuclear norm is the tightest convex relaxation of the rank
constraint, i.e., the nuclear norm ball {L : ||L||« < 1} is the convex
hull of the collection of unit-norm rank-1 matrices

{uvT - |lull2 = [|v]]2 = 1}

can be shown to lead to a convex program that can be solved
efficiently in polynomial time

does not require knowledge of the rank a-priori
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Robust PCA - a convex relaxation

» ideally we would like to solve
mig rank(L) + A|[S||o

L (31)
st. M=L+S
> relax to
min  [[L[|. + A[| S]]+
LS (32)
st. M=L+ S
» || - ||« is the nuclear norm
> || - ||1 is the entry-wise ¢4 norm

> )\ > 0 is a regularization parameter balancing the two terms: the
low-rankness vs the sparsity
(32) is exact with high probability, under the following conditions:
» for small enough rank (as high as n/polylog(n))
» and randomly located nonzero entries in S

» and small enough ||S]||g < cr?
Candes, Emmanuel J., Xiaodong Li, Yi Ma, and John Wright. Robust principal
component analysis? Journal of the ACM (JACM) 58, no. 3 (2011): 1-37.
(Google scholar citations: 5430 (2020), 6380 (2021), 6580.(2022), 7500 (2023))
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