

Lecture 5: Principal Component Analysis and SVD

Foundations of Data Science:
Algorithms and Mathematical Foundations

Mihai Cucuringu
mihai.cucuringu@stats.ox.ac.uk

CDT in Mathematics of Random System
University of Oxford

21 September, 2023

Singular Value Decomposition (SVD)

Principal Component Analysis

Computational considerations

Robust PCA

Singular Value Decomposition (SVD)

Given $M \in \mathbb{R}^{m \times n}$, factorization into a product of three matrices:

$$M = U\Sigma V^T,$$

where

- ▶ $U \in O(m)$ i.e. $UU^T = U^T U = I$ (its columns are the left singular vectors)
- ▶ $V \in O(n)$ (its columns are the right singular vectors)
- ▶ Σ is a diagonal matrix, with $\Sigma_{ii} \neq 0$, for $i = 1, \dots, \min(m, n)$ being the singular values of M
- ▶ SVD defined for all matrices (rectangular or square) unlike the popular spectral decomposition

Singular Value Decomposition (SVD)

- ▶ in many applications, the data matrix M is close to a matrix of low-rank, and the goal is to find a low-rank matrix which is a good approximation to the data matrix
- ▶ consider the SVD of M (sum of r weighted rank-1 matrices)

$$M = \sum_{i=1}^r \sigma_i u_i v_i^T \quad (1)$$

- ▶ for $k = 1, 2, \dots, r$, consider the sum truncated after k terms

$$M_k = \sum_{i=1}^k \sigma_i u_i v_i^T \quad (2)$$

which renders M_k to be of rank k

- ▶ one can show that M_k is the best rank- k approximation to M , where error is measured in Frobenius norm
(Eckart–Young–Mirsky theorem)
- ▶ recall that for any matrix M , the sum of squares of its singular values equals the square of the Frobenius norm

$$\sum_{i=1}^r \sigma_i^2(M) = \|M\|_F^2 := \left(\sum_{i=1}^m \sum_{j=1}^n M_{ij}^2 \right)^2 \quad (3)$$

SVD - Computational Considerations

- ▶ $M_{n \times n}$ is often a very sparse matrix: each entry exists with probability p (sampling probability)
- ▶ the leading singular values and singular vectors can be computed using iterative techniques at a typical cost of $O(pn^2)$
- ▶ eg., via a simple *power method*: all iterations only require a matrix-vector product at a cost of pn^2
- ▶ in the sparse setting, the computational cost is essentially linear in the number of nonzero entries (m) in the matrix (eg, nonzero entries in the adjacency matrix (edges in the graph))

Spectral Decomposition

- If M is an $n \times n$ symmetric matrix, then

$$M = V \Lambda V^T = \sum_{k=1}^n \lambda_k v_k v_k^T,$$

where

- columns of V are eigenvectors and
- Λ_{ii} is a diagonal matrix with entries given by eigenvalues λ_i of M
- A real symmetric matrix $M_{n \times n}$ is positive semi-definite (PSD), denoted $M \succeq 0$, if $z^T M z \geq 0$ for all $z \in \mathbb{R}^d$
- Let M be a real symmetric $n \times n$ matrix. Then, M is positive semi-definite iff all its eigenvalues $\lambda_i \geq 0$.
- Spectral norm of matrix: $\|M\|_2 = |\lambda_{\max}(M)|$

Remarks SVD/eigen-decomposition

- ▶ the u_i are eigenvectors of MM^T and the v_i are eigenvectors of M^TM
- ▶ MM^T and M^TM are positive semidefinite, so their eigenvalues are nonnegative
- ▶ if λ_i are the eigenvalues of M^TM , then $\sigma_i^2 = \lambda_i$ if $\lambda_i > 0$
- ▶ if M is square and Hermitian, then the SVD and the eigenvalue decomposition are the same

Some properties

- ▶ $\text{Tr}(M) = \sum_{k=1}^n M_{kk} = \sum_{k=1}^n \lambda_k(M)$
- ▶ Frobenius norm, $\|M\|_F = \sqrt{\sum_{i,j} M_{ij}^2} = \sqrt{\text{Tr}(M^T M)}$
- ▶ $\text{Tr}(AB) = \sum_{i,j=1}^n A_{ij}B_{ji} = \text{Tr}(BA)$
- ▶ trace is invariant under cyclic permutation

$$\text{Tr}(ABC) = \text{Tr}(BCA) = \text{Tr}(CAB) \neq \text{Tr}(ACB)$$

Quadratic Forms

- For M a symmetric matrix, interested in solving

$$\max_{\substack{V \in \mathbb{R}^{n \times d} \\ V^T V = I_{d \times d}}} \text{Tr}(V^T M V) \iff \max_{\substack{v_1, \dots, v_n \in \mathbb{R}^d \\ v_i^T v_j = \delta_{ij}}} \sum_{k=1}^n v_k^T M v_k$$

where δ_{ij} is the Kronecker delta

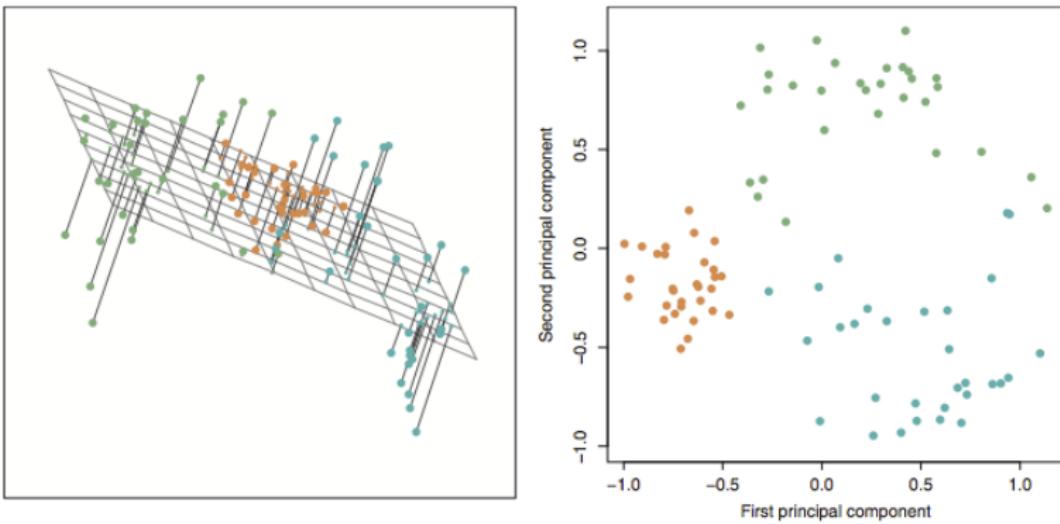
$$\delta_{ij} = \begin{cases} 1 & i = j \\ 0 & i \neq j \end{cases}$$

- If $d = 1$, this amounts to

$$\max_{\substack{v \in \mathbb{R}^n \\ \|v\|_2 = 1}} v^T M v = \lambda_{\max}(M)$$

which is maximized by v , the leading eigenvector of M , corresponding to the largest eigenvalue.

PCA: example, $n = 90$, $p = 3$, $d = 2$



- ▶ Left: top two PC directions that span the plane that best fits the data.
 - ▶ minimizes the sum of distances² from points to the plane
- ▶ Right: top two PC score vectors giving the coordinates of the projection of the 90 observations onto the plane
 - ▶ The variance in the plane is maximized

PCA dates back to a 1901 paper by Karl Pearson!

Principal Component Analysis - Theoretical considerations

Dimensionality reduction: Given $x_1, \dots, x_n \in \mathbb{R}^p$ for large p , the goal is to find a lower-dimension representation of the data, and transform data into $n \times d$ where $d \ll p$ by a linear projection.

- ▶ PCA is a linear technique: fits the best hyperplane through data points by projecting the n points onto a d -dim space

Two equivalent formulations that lead to the same solution:

1. Find the best possible affine d -dim space that fits the given data (minimize residual). Approx. each x_k , $k = 1, \dots, n$

$$\begin{aligned}
 & \text{p} \times 1 \text{ approximation} \\
 \underbrace{x_k}_{p \times 1} & \approx \underbrace{\mu}_{\text{const translation vector}} + \underbrace{\sum_{i=1}^d (\beta_k)_i v_i}_{\text{lin comb of basis of } d\text{-dim space}}
 \end{aligned}$$

$$\underbrace{x_k}_{p \times 1} \approx \underbrace{\mu}_{p \times 1} + \underbrace{V}_{p \times d} \underbrace{\beta_k}_{d \times 1} \quad \text{where } V^T V = I_{d \times d}$$

2. Find d -dimensional projection of x_1, \dots, x_n , in order to maximize the variance of the projected points.

PCA Approach I - best affine d -dim space optimization formulation

[following book by A. Bandeira, A. Singer and T. Strohmer]

Notation

- ▶ Sample mean

$$\mu_n = \frac{1}{n} \sum_{k=1}^n x_k$$

- ▶ Sample covariance matrix

$$\Sigma_M = \frac{1}{n-1} \sum_{k=1}^n (x_k - \mu_n)(x_k - \mu_n)^T$$

Measuring goodness of fit

- ▶ In the "least-squares" sense, the PCA objective is:

$$\min_{\substack{\mu, V, \beta_k \\ V^T V = I_{d \times d}}} \sum_{k=1}^n \|x_k - (\mu + V \cdot \beta_k)\|_2^2$$

- ▶ WLOG, we set $\sum \beta_k = 0$, i.e., "center" the points around the origin.

Optimizing for μ

First-order conditions for μ correspond to

$$\begin{aligned}
 \nabla_{\mu} \left(\sum_{k=1}^n \|x_k - \mu - V \cdot \beta_k\|_2^2 \right) &= 0 \\
 \iff \sum_{k=1}^n (x_k - \mu - V \cdot \beta_k) &= 0 \\
 \iff \sum_{k=1}^n x_k - n\mu - V \sum_{k=1}^n \beta_k &= 0
 \end{aligned}$$

Recalling $\sum_{k=1}^n \beta_k = 0$ from earlier, yields

$$\mu^* = \frac{1}{n} \sum_{k=1}^n x_k$$

which is the sample mean μ_n previously defined.

Optimizing for β_k

- ▶ We now have

$$\mu^* = \frac{1}{n} \sum_{k=1}^n x_k$$

- ▶ Recall that $V \in \mathbb{R}^{p \times d}$
- ▶ The optimization problem amounts to

$$\begin{aligned} & \underset{V, \beta_k}{\text{minimize}} && \sum_{k=1}^n \|x_k - \mu_n - V \cdot \beta_k\|_2^2 \\ & \text{subject to} && V^T \cdot V = I_{d \times d} \end{aligned}$$

- ▶ we can rewrite the objective function as

$$\|x_1 - \mu_n - V \cdot \beta_1\|_2^2 + \|x_2 - \mu_n - V \cdot \beta_2\|_2^2 + \dots$$

- ▶ the problem **decouples** for each k , so we can focus on individual terms

Optimizing for β_k (cont.)

For a given k , our optimization problem amounts to:

$$\min_{\beta_k} \|x_k - \mu_n - V \cdot \beta_k\|_2^2$$

$$= \min_{\beta_k} \|x_k - \mu_n - \sum_{i=1}^d v_i \cdot \beta_{k_i}\|_2^2$$

$$= \nabla_{(\beta_k)_i} (\|x_k - \mu_n - v_i(\beta_k)_1 - \dots - v_i(\beta_k)_i - \dots - v_d(\beta_k)_d\|_2^2)$$

$$\iff v_i^T [x_k - \mu_n - V \cdot \beta_k]^1 = 0$$

Optimizing for β_k (cont.)

Since

$$V \cdot \beta_k = v_1(\beta_k)_1 + \dots + v_d(\beta_k)_d,$$

and

$$v_i^T \cdot v_j = 0 \text{ for } i \neq j,$$

and

$$v_i^T \cdot v_j = 1 \text{ for } i = j,$$

we arrive at

$$v_i^T(x_k - \mu_n) - v_i^T \cdot V \cdot \beta_k = 0$$

$$(\beta_k^*)_i = v_i^T(x_k - \mu_n), \forall i = 1, \dots, d$$

In vector form:

$$(\beta_k^*) = V^T(x_k - \mu_n)$$

Optimizing for V

- ▶ we have $\beta_k^* = V^T(x_k - \mu_n)$
- ▶ substituting β_k^* into the optimization problem yields

$$\begin{aligned} & \underset{V}{\text{minimize}} && \sum_{k=1}^n \|(x_k - \mu_n) - V \cdot V^T(x_k - \mu_n)\|_2^2 \\ & \text{subject to} && V^T \cdot V = I_{d \times d} \end{aligned}$$

- ▶ if we consider for each individual term, we have:

$$\begin{aligned} & \|x_k - \mu_n - V \cdot V^T(x_k - \mu_n)\|_2^2 \\ &= [x_k^T - \mu_n^T - (x_k - \mu_n)^T \cdot V \cdot V^T][x_k - \mu_n - V \cdot V^T(x_k - \mu_n)]d \end{aligned}$$

- ▶ keep in mind that $V^T \cdot V = I$

PCA derivation - recap

We have reduced the original problem

$$\underset{\substack{\mu, V, \beta_k \\ V^T V = \mathbb{I}_{d \times d}}}{\text{minimize}} \sum_{k=1}^n \|x_k - \mu - V\beta_k\|_2^2 \quad (4)$$

to

$$\underset{V^T V = \mathbb{I}_{d \times d}}{\text{minimize}} \sum_{k=1}^n \|x_k - \mu_n - VV^\top(x_k - \mu_n)\|_2^2 \quad (5)$$

Now, since $\|y\|_2^2 = y^\top y$, we have

$$\begin{aligned} \|x_k - \mu_n - VV^\top(x_k - \mu_n)\|_2^2 &= \\ &= (x_k - \mu_n - VV^\top(x_k - \mu_n))^\top (x_k - \mu_n - VV^\top(x_k - \mu_n)) \end{aligned} \quad (6)$$

$$\begin{aligned} &= (x_k - \mu_n)^\top (x_k - \mu_n) + (x_k - \mu_n)^\top \underbrace{VV^\top VV^\top}_{\mathbb{I}} (x_k - \mu_n) \\ &\quad - 2(x_k - \mu_n)^\top VV^\top (x_k - \mu_n) \end{aligned} \quad (7)$$

$$\begin{aligned} &= \underbrace{(x_k - \mu_n)^\top (x_k - \mu_n)}_{\text{does not depend on } V} - (x_k - \mu_n)^\top VV^\top (x_k - \mu_n) \end{aligned} \quad (8)$$

Thus, (5) is equivalent to

$$\max_{V^\top V = \mathbb{I}_{d \times d}} \sum_{k=1}^n (x_k - \mu_n)^\top VV^\top (x_k - \mu_n) \quad (9)$$

By using properties of the trace, we see that

$$\sum_{k=1}^n \underbrace{(x_k - \mu_n)^\top}_{1 \times p} \underbrace{VV^\top}_{p \times p} \underbrace{(x_k - \mu_n)}_{p \times 1} =$$

$$= \sum_{k=1}^n \text{Tr} \left[(x_k - \mu_n)^\top VV^\top (x_k - \mu_n) \right] \quad (10)$$

$$= \sum_{k=1}^n \text{Tr} \left[V^\top (x_k - \mu_n) (x_k - \mu_n)^\top V \right] \quad (11)$$

$$= \text{Tr} \left[\sum_{k=1}^n V^\top (x_k - \mu_n) (x_k - \mu_n)^\top V \right] \quad (12)$$

$$= \text{Tr} \left[V^\top \sum_{k=1}^n (x_k - \mu_n) (x_k - \mu_n)^\top V \right] \quad (13)$$

$$= (n-1) \text{Tr}(V^\top \Sigma_n V) \quad (14)$$

where Σ_n is the sample covariance matrix (of size $n \times n$).

Finally ...

Thus, the solution to (9) is given by

$$\max_{V^\top V = \mathbb{I}_{d \times d}} \text{Tr}(V^\top \Sigma_n V), \quad (15)$$

which is equivalent to

$$\max_{v_1, \dots, v_d \in \mathbb{R}^n, v_i v_j = \delta_{ij}} \sum_{k=1}^d v_k^\top \Sigma_n v_k, \quad (16)$$

whose solution is given by the top d leading eigenvectors of Σ_n .

Derivation of PCA: Approach II - d -dimensional projection that preserves the most variance

Goal: We wish to

- ▶ find an orthonormal basis $\{v_1, \dots, v_d\}$ of a d -dimensional subspace
- ▶ such that the projection of the original data $\{x_1, \dots, x_n\}$ on this subspace has the most variance.

Mathematically:

- ▶ Let V be a matrix of dimension $p \times d$ with v_i ($i = 1, \dots, d$) as its i^{th} column, so that $V^T V = \mathbb{I}_{d \times d}$.
- ▶ The projected points y_k , ($k = 1, \dots, n$) are given by

$$y_k = V^T x_k$$

PCA II - Optimize variance

- Goal: aim for the projected points y_1, \dots, y_n to have as much variance as possible

- Recall that $\text{Var}[y] = \frac{1}{n-1} \sum_{k=1}^n (y_k - \bar{y})^2$; our goal is equivalent to

$$\max_{V^\top V = \mathbb{I}_{d \times d}} \sum_{k=1}^n \left\| V^\top x_k - \frac{1}{n} \sum_{i=1}^n V^\top x_i \right\|^2 \quad (17)$$

$$\iff \max_{V^\top V = \mathbb{I}_{d \times d}} \sum_{k=1}^n \left\| \underbrace{V^\top}_{d \times p} \underbrace{(x_k - \mu_n)}_{p \times 1} \right\|^2 \quad (18)$$

$$\iff \max_{V^\top V = \mathbb{I}_{d \times d}} \text{Tr}(V^\top \Sigma_n V), \quad (19)$$

- since $\|A\|_F^2 = \text{Tr}(A^\top A)$
- sample covariance matrix $\Sigma = \frac{1}{n-1} \sum_{k=1}^n (x_k - \mu_n)(x_k - \mu_n)^\top$
- The two approaches for the derivation of PCA are equivalent.

First direction in which variance is maximized ($d = 1$)

Perform PCA on X , an $n \times p$ matrix with rows $x_i, i = 1, \dots, n$

Let $B = \{v_1, v_2, \dots, v_d\}$ be an orthonormal basis of the d -dimensional subspace, and let

$$v_1 = \underset{v_i \in B, v_i^T v_i = 1}{\operatorname{argmax}} \operatorname{Var}[Xv_i]$$

Rewrite this in terms of the covariance matrix $C = \frac{1}{n-1} X^T X$

$$\operatorname{Var}[Xv_i] = \frac{1}{n-1} (Xv_i)^T (Xv_i) \quad (20)$$

$$= v_i \frac{1}{n-1} X^T X v_i \quad (21)$$

$$= v_i^T C v_i \quad (22)$$

Solve this constrained optimization by using Lagrange Multipliers

$$L(v_1, \lambda_1) = v_1^T C v_1 + \lambda_1 (1 - v_1^T v_1) \quad (23)$$

By imposing the condition $\nabla_{v_1} L(v_1, \lambda_1) = 0$, we have

$$2Cv_1 - 2\lambda_1 v_1 = 0 \Rightarrow Cv_1 = \lambda_1 v_1 \Rightarrow \lambda_1 = v_1^T Cv_1$$

i.e. the projection variance is the (first) eigenvalue.

- ▶ PCA considers the eigenvector decomposition of Σ_n
- ▶ analyzes the projection of the centered data points (after having subtracted the sample mean μ_n) on the top k eigenvectors of the sample covariance matrix Σ_n as *principal components*
- ▶ where the top k eigenvectors are those associated with the largest k eigenvalues

What about the cost?

Computing the Principal Components (I - via spectral decomposition)

Algorithmic considerations:

- ▶ Compute top eigenvectors of the sample covariance matrix Σ_n of size $p \times p$

$$\Sigma_n = \frac{1}{n-1} \sum_{k=1}^n (x_k - \mu)(x_k - \mu)^T$$

where μ is the sample mean vector.

Naive way

- ▶ building Σ_n takes $O(np^2)$
- ▶ finding the spectral decomposition takes $O(p^3)$ work
- ▶ overall complexity $O(\max\{np^2, p^3\})$

Computing the Principal Components (II - via SVD)

Let X of size $p \times n$ be given by $X = [x_1, x_2, \dots, x_n]$

$$\Sigma_n = \frac{1}{n} \sum_{k=1}^n (x_k - \mu)(x_k - \mu)^T = \frac{1}{n} (X - \mu \mathbf{1}^T) (X - \mu \mathbf{1}^T)^T \quad (24)$$

Consider the SVD of

$$X - \mu \mathbf{1}^T = LDR^T$$

then

$$\Sigma_n = \frac{1}{n} (X - \mu \mathbf{1}^T) (X - \mu \mathbf{1}^T)^T = \frac{1}{n} L D \underbrace{R^T R}_{= \mathbb{I}} D L^T = \frac{1}{n} L D^2 L^T \quad (25)$$

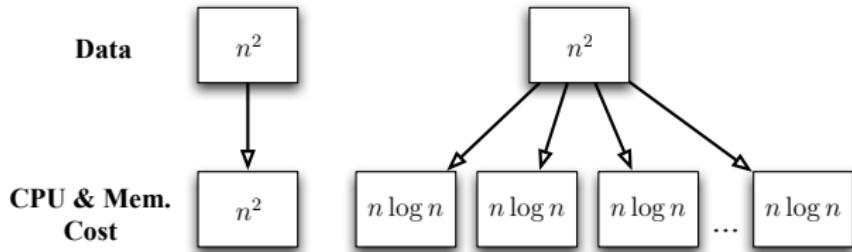
so L corresponds to the eigenvectors of Σ_n . Why bother?

Computing the SVD of $(X - \mu \mathbf{1}^T)$ takes $O(\min(n^2 p, p^2 n))$

- ▶ if interested only in the top d eigenvectors $\Rightarrow O(npd)$
- ▶ randomized algorithms for an approximate solution
 $\Rightarrow O(pn \log d + (p + n)d^2)$

Distributed SVD - decentralised implementation

- ▶ distributed computation of the extremal eigenvectors
- ▶ El Karoui, N. and d'Aspremont, A., 2010. *Second order accurate distributed eigenvector computation for extremely large matrices*. Electronic Journal of Statistics, 4, pp.1345-1385
- ▶ show that averaging eigenvectors of randomly subsampled matrices efficiently approximates the true eigenvectors of the original matrix, under certain conditions on the spectral decomposition



Distributed SVD - Matrix Subsampling

Subsampling procedure in

- ▶ [AM07] Achlioptas & McSherry. *Fast computation of low-rank matrix approximations*. Journal of the ACM, 54(2), 2007.

approximates a symmetric matrix M using a subset of its coefficients.

- ▶ the entries of M are independently sampled as

$$S_{ij} = \begin{cases} M_{ij}/p & \text{with probability } p \\ 0 & \text{otherwise} \end{cases}$$

where $p \in [0, 1]$ is the sampling probability

- ▶ Thm 1.4 in [AM07] shows that when n is large enough

$$\|M - S\|_2 \leq 4\|M\|_\infty \sqrt{n/p} \quad (26)$$

holds with high probability.

Matrix Subsampling

- ▶ consider the spectral decomposition of $M = \sum_{i=1}^n \lambda_i u_i u_i^T$ with eigenvalues $\lambda_1 > \lambda_2 > \dots > \lambda_n$
- ▶ define subsampling matrix $Q \in S_n$ with iid Bernoulli coeffs

$$Q_{ij} = \begin{cases} 1/p & \text{with probability } p \\ 0 & \text{otherwise} \end{cases}$$

- ▶ leading to

$$Q = 11^T + \sqrt{\frac{1-p}{p}} C \quad (27)$$

where C has iid entries with mean zero and variance once, as

$$C_{ij} = \begin{cases} \sqrt{(1-p)p} & \text{with probability } p \\ -\sqrt{p/(1-p)} & \text{otherwise} \end{cases}$$

- ▶ allowing to write the sampled matrix as

$$S = M \circ Q = M + \sqrt{\frac{1-p}{p}} \left(\sum_{i=1}^n \lambda_i (u_i u_i^T) \circ C \right) \equiv M + E \quad (28)$$

- ▶ bound the spectral norm of the residual matrix E as $n \rightarrow \infty$; is $\|E\|_2$ is small, then S is a good approx. of M in spectral terms.

Issues with PCA

- ▶ cannot handle nonlinearity in the data
- ▶ very often, the real data has samples grossly corrupted (measurement errors, adversarial attacks)
- ▶ sensitivity to outliers - PCA fails even with a few outliers

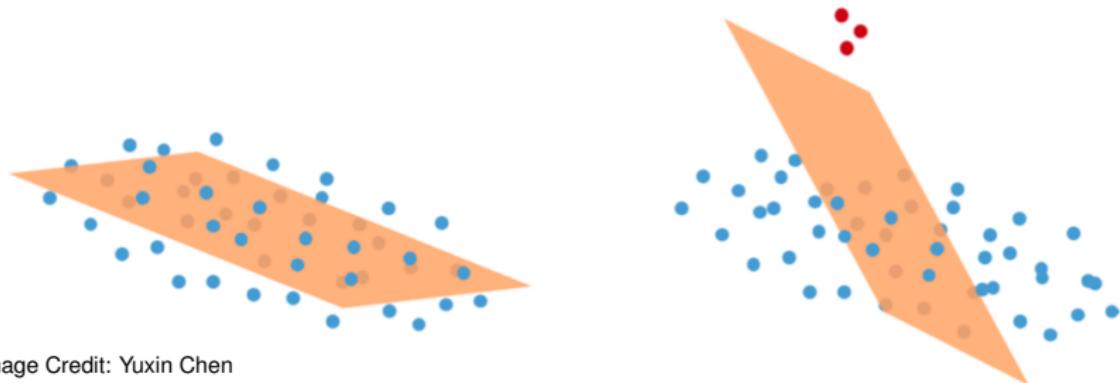


Image Credit: Yuxin Chen

- ▶ another way to look at PCA

$$\underset{L: \text{rank}(L)=k}{\text{minimize}} ||X - L||_F \quad (29)$$

where X is the data matrix of size $p \times n$ with the n samples

X_1, X_2, \dots, X_n

- ▶ find the best rank- k approximation of X

Nuclear norm of a matrix

- ▶ rank: number of nonzero singular values of matrix $L_{n \times m}$
- ▶ rank minimization is NP-hard
- ▶ what to replace the rank constraint of L with?
- ▶ the sum of the singular values of L , denoted as the **nuclear norm**

$$\|L\|_* := \sum_{i=1}^{\min\{n,m\}} \sigma_i(L) \quad (30)$$

where $\sigma_i(L)$ denotes the i -th singular value of L

- ▶ the nuclear norm is the tightest convex relaxation of the rank constraint, i.e., the nuclear norm ball $\{L : \|L\|_* \leq 1\}$ is the convex hull of the collection of unit-norm rank-1 matrices $\{uv^T : \|u\|_2 = \|v\|_2 = 1\}$
- ▶ can be shown to lead to a convex program that can be solved efficiently in polynomial time
- ▶ does not require knowledge of the rank a-priori

Robust PCA - a convex relaxation

- ▶ ideally we would like to solve

$$\begin{aligned} & \min_{L, S} \text{rank}(L) + \lambda \|S\|_0 \\ & \text{s.t. } M = L + S \end{aligned} \tag{31}$$

- ▶ relax to

$$\begin{aligned} & \min_{L, S} \|L\|_* + \lambda \|S\|_1 \\ & \text{s.t. } M = L + S \end{aligned} \tag{32}$$

- ▶ $\|\cdot\|_*$ is the *nuclear norm*
- ▶ $\|\cdot\|_1$ is the entry-wise ℓ_1 norm
- ▶ $\lambda > 0$ is a regularization parameter balancing the two terms: the *low-rankness* vs the *sparsity*

(32) is exact with high probability, under the following conditions:

- ▶ for small enough rank (as high as $n/\text{polylog}(n)$)
- ▶ and randomly located nonzero entries in S
- ▶ and small enough $\|S\|_0 \leq cn^2$

Candès, Emmanuel J., Xiaodong Li, Yi Ma, and John Wright. *Robust principal component analysis?* Journal of the ACM (JACM) 58, no. 3 (2011): 1-37.

(Google scholar citations: 5430 (2020), 6380 (2021), 6580 (2022), 7500 (2023))

