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Singular Value Decomposition (SVD)

Given M ∈ Rm×n, factorization into a product of three matrices:

M = UΣV T ,
where

I U ∈ O(m) i.e. UUT = UT U = I (its columns are the left singular
vectors)

I V ∈ O(n) (its columns are the right singular vectors)

I Σ is a diagonal matrix, with Σii 6= 0, for i = 1, . . . ,min(m,n) being
the singular values of M

I SVD defined for all matrices (rectangular or square) unlike the
popular spectral decomposition
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Singular Value Decomposition (SVD)

I in many applications, the data matrix M is close to a matrix of
low-rank, and the goal is to find a low-rank matrix which is a good
approximation to the data matrix

I consider the SVD of M (sum of weighted rank-1 matrices)

M =
r∑

i=1

σiuivT
i (1)

I for k = 1,2, . . . , r , consider the sum truncated after k terms

Mk =
k∑

i=1

σiuivT
i (2)

which renders Mk to be of rank k
I one can show that Mk is the best rank-k approximation to M,

where error is measured in Frobenius norm
(Eckart–Young–Mirsky theorem)

I recall that for any matrix M, the sum of squares of its singular
values equals the square of the Frobenius norm

∑

i=1

σ2
i (M) = ||M||2F :=




m∑

i=1

n∑

j=1

M2
ij




2

(3)
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SVD - Computational Considerations

I Mn×n is often a very sparse matrix: each entry exists with
probability p (sampling probability)

I the leading singular values and singular vectors can be computed
using iterative techniques at a typical cost of O(pn2)

I eg., via a simple power method : all iterations only require a
matrix-vector product at a cost of pn2

I in the sparse setting, the computational cost is essentially linear
in the number of nonzero entries (m) in the matrix (eg, nonzero
entries in the adjacency matrix (edges in the graph))
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Spectral Decomposition

I If M is an n × n symmetric matrix, then

M = V ΛV T =
n∑

k=1

λkvkvT
k ,

where
I columns of V are eigenvectors and
I Λii is a diagonal matrix with entries given by eigenvalues λi of M

I A real symmetric matrix Mn×n is positive semi-definite (PSD),
denoted M < 0, if zT Mz ≥ 0 for all z ∈ Rd

I Let M be a real symmetric n × n matrix. Then, M is positive
semi-definite iff all its eigenvalues λi ≥ 0.

I Spectral norm of matrix: ‖M‖2 = |λmax (M)|
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Remarks SVD/eigen-decomposition

I the ui are eigenvectors of MMT and the vi are eigenvectors of
MT M

I MMT and MT M are positive semidefinite, so their eigenvalues
are nonnegative

I if λi are the eigenvalues of MT M, then σ2
i = λi if λi > 0

I if M is square and Hermitian, then the SVD and the eigenvalue
decomposition are the same
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Some properties

I Tr(M) =
n∑

k=1
Mkk =

n∑
k=1

λk (M)

I Frobenius norm, ‖M‖F =
√∑

i,j
M2

ij =
√

Tr(MT M)

I Tr(AB) =
∑n

i,j=1 AijBji = Tr(BA)

I trace is invariant under cyclic permutation

Tr(ABC) = Tr(BCA) = Tr(CAB) 6= Tr(ACB)
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Quadratic Forms
I For M a symmetric matrix, interested in solving

max
V∈Rn×d

V T V=Id×d

Tr(V T MV )⇐⇒ max
v1,...,vn∈Rd

vT
i vj=δij

n∑

k=1

vT
k Mvk

where δij is the Kronecker delta

δij =

{
1 i = j
0 i 6= j

I If d = 1, this amounts to

max
v∈Rn

||v ||2=1

vT Mv = λmax (M)

which is maximized by v , the leading eigenvector of M,
corresponding to the largest eigenvalue.
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PCA: example, n = 90, p = 3, d = 2

I Left: top two PC directions that span the plane that best fits the
data.
I minimizes the sum of distances2 from points to the plane

I Right: top two PC score vectors giving the coordinates of the
projection of the 90 observations onto the plane
I The variance in the plane is maximized

PCA dates back to a 1901 paper by Karl Pearson!
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Principal Component Analysis - Theoretical considerations
Dimensionality reduction: Given x1, . . . , xn ∈ Rp for large p, the goal is
to find a lower-dimension representation of the data, and transform
data into n × d where d � p by a linear projection.
I PCA is a linear technique: fits the best hyperplane through data

points by projecting the n points onto a d-dim space
Two equivalent formulations that lead to the same solution:

1. Find the best possible affine d-dim space that fits the given data
(minimize residual). Approx. each xk , k = 1, . . . ,n

p×1 approximation︷︸︸︷
xk ≈ µ︸︷︷︸

const translation vector

+
d∑

i=1

(βk )ivi

︸ ︷︷ ︸
lin comb of basis of d-dim space

xk︸︷︷︸
p×1

≈ µ︸︷︷︸
p×1

+ V︸︷︷︸
p×d

βk︸︷︷︸
d×1

where V T V = Id×d

2. Find d-dimensional projection of x1, . . . , xn, in order to maximize
the variance of the projected points.
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PCA Approach I - best affine d-dim space optimization
formulation
[following book by A. Bandeira, A. Singer and T. Strohmer]

Notation

I Sample mean

µn =
1
n

n∑

k=1

xk

I Sample covariance matrix

ΣM =
1

n − 1

n∑

k=1

(xk − µn)(xk − µn)T
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Measuring goodness of fit

I In the ”least-squares” sense, the PCA objective is:

min
µ,V ,βk

V T V=Idxd

n∑

k=1

||xk − (µ+ V · βk )||22

I WLOG, we set
∑
βk = 0, i.e., ”center” the points around the

origin.
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Optimizing for µ
First-order conditions for µ correspond to

∇µ
(

n∑

k=1

||xk − µ− V · βk ||22

)
= 0

⇐⇒
n∑

k=1

(xk − µ− V · βk ) = 0

⇐⇒
n∑

k=1

xk − nµ− V
n∑

k=1

βk = 0

Recalling
∑n

k=1 βk = 0 from earlier, yields

µ∗ =
1
n

n∑

k=1

xk

which is the sample mean µn previously defined.
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Optimizing for βk

I We now have

µ∗ =
1
n

n∑

k=1

xk

I Recall that V ∈ Rp×d

I The optimization problem amounts to

minimize
V ,βk

n∑

k=1

||xk − µn − V · βk ||22

subject to V T · V = Idxd

I we can rewrite the objective function as

||x1 − µn − V · β1||22 + ||x2 − µn − V · β2||22 + · · ·

I the problem decouples for each k , so we can focus on individual
terms
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Optimizing for βk (cont.)

For a given k , our optimization problem amounts to:

min
βk
||xk − µn − V · βk ||22

= min
βk
||xk − µn −

d∑

i=1

vi · βki ||22

= ∇(βk )i
(||xk − µn − vi(βk )1 − ...− vi(βk )i − ...− vd (βk )d ||22)

⇐⇒ vT
i [xk − µn − V · βk ]1 = 0
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Optimizing for βk (cont.)

Since
V · βk = v1(βk )1 + ...+ vd (βk )d ,

and
vT

i · vj = 0 for i 6= j ,

and
vT

i · vj = 1 for i = j ,

we arrive at
vT

i (xk − µn)− vT
i · V · βk = 0

(β∗k )i = vT
i (xk − µn), ∀i = 1, . . . ,d

In vector form:
(β∗k ) = V T (xk − µn)



17
Optimizing for V

I we have β∗k = V T (xk − µn)

I substituting β∗k into the optimization problem yields

minimize
V

n∑

k=1

||(xk − µn)− V · V T (xk − µn)||22

subject to V T · V = Idxd

I if we consider for each individual term, we have:

||xk − µn − V · V T (xk − µn)||22
= [xT

k − µT
n − (xk − µn)T · V · V T ][xk − µn − V · V T (xk − µn)]d

I keep in mind that V T · V = I
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PCA derivation - recap

We have reduced the original problem

minimize
µ,V ,βk

V T V=Id×d

n∑

k=1

‖xk − µ− Vβk‖22 (4)

to

minimize
V T V=Id×d

n∑

k=1

∥∥∥xk − µn − VV>(xk − µn)
∥∥∥

2

2
(5)
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Now, since ‖y‖22 = y>y , we have
∥∥xk − µn − VV>(xk − µn)

∥∥2
2 =

= (xk − µn − VV>(xk − µn))>(xk − µn − VV>(xk − µn)) (6)

= (xk − µn)>(xk − µn) + (xk − µn)> VV>VV>︸ ︷︷ ︸
I

(xk − µn)

− 2(xk − µn)>VV>(xk − µn) (7)

= (xk − µn)>(xk − µn)︸ ︷︷ ︸
does not depend on V

−(xk − µn)>VV>(xk − µn) (8)

Thus, (5) is equivalent to

max
V>V=Id×d

n∑

k=1

(xk − µn)>VV>(xk − µn) (9)
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By using properties of the trace, we see that

n∑
k=1

(xk − µn)>︸ ︷︷ ︸
1× p

VV>︸ ︷︷ ︸
p × p

(xk − µn)︸ ︷︷ ︸
p×1

=

=
n∑

k=1

Tr
[
(xk − µn)>VV>(xk − µn)

]
(10)

=
n∑

k=1

Tr
[
V>(xk − µn)(xk − µn)>V

]
(11)

= Tr

[
n∑

k=1

V>(xk − µn)(xk − µn)>V

]
(12)

= Tr

[
V>

n∑

k=1

(xk − µn)(xk − µn)>V

]
(13)

= (n − 1) Tr(V T ΣnV ) (14)

where Σn is the sample covariance matrix (of size n × n).
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Finally ...

Thus, the solution to (9) is given by

max
V>V=Id×d

Tr(V>ΣnV ), (15)

which is equivalent to

max
v1....vd∈Rn,vi vj=δij

d∑

k=1

v>k Σnvk , (16)

whose solution is given by the top d leading eigenvectors of Σn.
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Derivation of PCA: Approach II - d-dimensional
projection that preserves the most variance

Goal: We wish to
I find an orthonormal basis {v1, . . . , vd} of a d-dimensional

subspace
I such that the projection of the original data {x1, . . . , xn} on this

subspace has the most variance.

Mathematically:
I Let V be a matrix of dimension p × d with vi (i = 1, . . . ,d) as its

i th column, so that V T V = Id×d .

I The projected points yk , (k = 1, . . . ,n) are given by

yk = V>xk
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PCA II - Optimize variance

I Goal: aim for the projected points y1, . . . , yn to have as much
variance as possible

I Recall that Var[y ] = 1
n−1

n∑
k=1

(yk − y)2; our goal is equivalent to

max
V>V=Id×d

n∑

k=1

∥∥∥∥∥V>xk − 1
n

n∑

i=1

V>xi

∥∥∥∥∥

2

(17)

⇐⇒ max
V>V=Id×d

n∑

k=1

∥∥∥∥∥∥∥
V>︸︷︷︸
d × p

(xk − µn︸ ︷︷ ︸
p×1

)

∥∥∥∥∥∥∥

2

(18)

⇐⇒ max
V>V=Id×d

Tr(V>ΣnV ), (19)

I since ‖A‖2F = Tr(A>A)

I sample covariance matrix Σ =
1

n − 1

n∑
k=1

(xk − µn)(xk − µn)T

I The two approaches for the derivation of PCA are equivalent.
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First direction in which variance is maximized (d = 1)
Perform PCA on X , an n × p matrix with rows xi , i = 1, . . . ,n
Let B = {v1, v2, ..., vd} be an orthonormal basis of the d−dimensional
subspace, and let

v1 = argmax
vi∈B, vT

i vi=1
Var[Xvi ]

Rewrite this in terms of the covariance matrix C = 1
n−1X>X

Var[Xvi ] = 1
n−1(Xvi)

>(Xvi) (20)

= vi
1

n−1X>Xvi (21)

= v>i Cvi (22)

Solve this constrained optimization by using Lagrange Multipliers

L(v1, λ1) = v>1 Cv1 + λ1(1− v>1 v1) (23)

By imposing the condition ∇v1L(v1, λ1) = 0, we have

2Cv1 − 2λ1v1 = 0⇒ Cv1 = λ1v1 ⇒ λ1 = v>1 Cv1

i.e. the projection variance is the (first) eigenvalue.
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Intuition

I PCA considers the eigenvector decomposition of Σn

I analyzes the projection of the centered data points (after having
subtracted the sample mean µn) on the top k eigenvectors of the
sample covariance matrix Σn as principal components

I where the top k eigenvectors are those associated with the
largest k eigenvalues

What about the cost?
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Computing the Principal Components (I - via spectral
decomposition)
Algorithmic considerations:

I Compute top eigenvectors of the sample covariance matrix Σn of
size p × p

Σn =
1

n − 1

n∑

k=1

(xk − µ)(xk − µ)T

where µ is the sample mean vector.

Naive way
I building Σn takes O(np2)

I finding the spectral decomposition takes O(p3) work

I overall complexity O(max{np2,p3})
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Computing the Principal Components (II - via SVD)
Let X of size p × n be given by X = [x1, x2, . . . , xn]

Σn =
1
n

n∑

k=1

(xk − µ)(xk − µ)T =
1
n

(
X − µ1T

)(
X − µ1T

)T
(24)

Consider the SVD of
X − µ1T = LDRT

then

Σn =
1
n

(X − µ1T )(X − µ1T )T =
1
n

LD RT R︸ ︷︷ ︸
=I

DLT =
1
n

LD2LT (25)

so L corresponds to the eigenvectors of Σn. Why bother?
Computing the SVD of (X − µ1T ) takes O(min(n2p,p2n))

I if interested only in the top d eigenvectors⇒ O(npd)

I randomized algorithms for an approximate solution
⇒ O(pn log d + (p + n)d2)
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Distributed SVD - decentralised implementation

I distributed computation of the extremal eigenvectors
I El Karoui, N. and d’Aspremont, A., 2010. Second order accurate

distributed eigenvector computation for extremely large matrices.
Electronic Journal of Statistics, 4, pp.1345-1385

I show that averaging eigenvectors of randomly subsampled
matrices efficiently approximates the true eigenvectors of the
original matrix, under certain conditions on the spectral
decomposition

holds with high probability. In what follows, we will prove asimilar bound on‖M −S‖2 using incoherence
conditions on the spectral decomposition ofM .

2.1 Computational benefits

Computingk leading eigenvectors and eigenvalues of a symmetric matrixof dimensionn using iterative
algorithms such as the power or Lanczos methods (see [GVL90,Chap. 8-9] for example) only requires
matrix vector products, hence can be performed inO(kn2) flops when the matrix is dense. However,
this cost is reduced toO(kCard(M)) flops for sparse matricesM . Because the matrixS defined in (1)
has onlypn2 nonzero coefficients on average, the cost of computingk leading eigenvalues/eigenvectors
of S will typically be 1/p times smaller than that of performing the same task on the full matrix M . Of
course, sampling the matrixS still requiresO(n2) flops, but can be done in a single pass over the data
and be fully distributed. In what follows, we will show that,under incoherence conditions, averaging the
eigenvectors of many independently subsampled matrices produces second order accurate approximations
of the original spectral decomposition. While the global computational cost of this averaging procedure may
not be globally lower, it is decomposed into many much smaller computations, and is thus particularly well
adapted to large clusters of simple, loosely connected machines (Amazon EC2, Hadoop, etc.).

...
n log n n log nn log nn log nn2

n2 n2
Data

CPU & Mem.

Cost

Figure 1: Our objective here is to approximate the spectral decomposition problem of sizeO(n2) by solving
many independent problems of much smaller size.

2.2 Sparse matrix approximations

Let us write the spectral decomposition ofM ∈ Sn as

M =

n∑

i=1

λiuiu
T
i

whereui ∈ Rn for i = 1, . . . , n andλ ∈ Rn are the eigenvalues ofM with λ1 > . . . > λn (we assume they
are all distinct). Letα ∈ [0, 1]n, we measure theincoherenceof the matrixM as

µ(M,α) =

n∑

i=1

|λi|nαi‖ui‖2∞ (3)

Note that this definition is slightly different from that used in [CT09] because we do not seek to reconstruct
the matrixM exactly, so the tail of the spectrum can be partially neglected in our case. As we will see
below, the fact that we only seek an approximation also allows us to handle sparse eigenvectors.

3
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Distributed SVD - Matrix Subsampling

Subsampling procedure in
I [AM07] Achlioptas & McSherry. Fast computation of low-rank

matrix approximations. Journal of the ACM, 54(2), 2007.
approximates a symmetric matrix M using a subset of its coefficients.

I the entries of M are independently sampled as

Sij =

{
Mij/p with probability p
0 otherwise

where p ∈ [0,1] is the sampling probability

I Thm 1.4 in [AM07] shows that when n is large enough

||M − S||2 ≤ 4||M||∞
√

n/p (26)

holds with high probability.
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Matrix Subsampling

I consider the spectral decomposition of M =
∑n

i=1 λiuiuT
i

with eigenvalues λ1 > λ2 > . . . λn
I define subsampling matrix Q ∈ Sn with idd Bernoulli coeffs

Qij =

{
1/p with probability p
0 otherwise

I leading to

Q = 11T +

√
1− p

p
C (27)

where C has idd entries with mean zero and variance once, as

Cij =

{√
(1− p)p with probability p
−
√

p/(1− p) otherwise
I allowing to write the sampled matrix as

S = M ◦Q = M +

√
1− p

p

(
n∑

i=1

λi(uiuT
i ) ◦ C

)
≡ M + E (28)

I bound the spectral norm of the residual matrix E as n→∞; is
||E ||2 is small, then S is a good approx. of M in spectral terms.
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Issues with PCA

I cannot handle nonlinearity in the data
I very often, the real data has samples grossly corrupted

(measurement errors, adversarial attacks)
I sensitivity to outliers - PCA fails even with a few outliers

Image Credit: Yuxin Chen

I another way to look at PCA

minimizeL:rank(L)=k ||X − L||F (29)

where X is the data matrix of size p × n with the n samples
x1, x2, . . . , xn

I find the best rank-k approximation of X
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Nuclear norm of a matrix

I rank: number of nonzero singular values of matrix Ln×m

I rank minimization is NP-hard
I what to replace the rank constraint of L with?
I the sum of the singular values of L, denoted as the nuclear norm

||L||∗ :=

min{n,m}∑

i=1

σi(L) (30)

where σi(L) denotes the i-th singular value of L
I the nuclear norm is the tightest convex relaxation of the rank

constraint, i.e., the nuclear norm ball {L : ||L||∗ ≤ 1} is the convex
hull of the collection of unit-norm rank-1 matrices
{uvT : ||u||2 = ||v ||2 = 1}

I can be shown to lead to a convex program that can be solved
efficiently in polynomial time

I does not require knowledge of the rank a-priori
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Robust PCA - a convex relaxation

I ideally we would like to solve
min
L,S

rank(L) + λ||S||0

s.t. M = L + S
(31)

I relax to
min
L,S

||L||∗ + λ||S||1

s.t. M = L + S
(32)

I || · ||∗ is the nuclear norm
I || · ||1 is the entry-wise `1 norm
I λ > 0 is a regularization parameter balancing the two terms: the

low-rankness vs the sparsity
(32) is exact with high probability, under the following conditions:
I for small enough rank (as high as n/polylog(n))
I and randomly located nonzero entries in S
I and small enough ||S||0 ≤ cn2

Candès, Emmanuel J., Xiaodong Li, Yi Ma, and John Wright. Robust principal
component analysis? Journal of the ACM (JACM) 58, no. 3 (2011): 1-37.
(Google scholar citations: 5430 (2020), 6380 (2021), 6580 (2022), 7500 (2023))
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