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Course overview

» combines both theoretical and practical approaches

» Goal 1: understand the mathematical, statistical and algorithmic
foundations behind some of the state-of-the-art algorithms for
tasks in machine learning/data mining

> organization and visualization of data clouds

measures of correlation and dependence

dimensionality reduction e

clustering (point clouds and graphs/networks) e

network analysis e

ranking e

regression

vVvyvyVvyyy

» Goal 2: exposure to practical examples drawn from a wide range
of topics including social network analysise, financee, image
processing, biology, engineering, etc

Where appropriate, the latest research developments and trends in the
respective areas will be very briefly presented.
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Books & References
«Slides will be made available on my webpage at:

http://www.stats.ox.ac.uk/~cucuring/MathCDT.htm

e An Introduction to Statistical Learning by James, Witten, Hastie, and
Tibshirani, freely available at
http://faculty.marshall.usc.edu/gareth—james/ISL/
e Ten Lectures and Forty-Two Open Problems in the Mathematics of Data
Science, by Afonso S. Bandeira
https://people.math.ethz.ch/~abandeira/
TenLecturesFortyTwoProblems.pdf
e Mathematics of Data Science, by A. Bandeira, A. Singer, T. Strohmer
https://people.math.ethz.ch/~abandeira/
BandeiraSingerStrohmer-MDS-draft.pdf
e Lecture Notes for Mathematics of Machine Learning , by Afonso S.
Bandeira & Nikita Zhivotovskiy ETH Zurich
https://people.math.ethz.ch/~abandeira/Math_of_MIL_
Lecture_Notes2021.pdf

Popular references in the ML/data mining:
The Elements of Statistical Learning by Hastie, Tibshirani, and
Friedman. http://www—stat.stanford.edu/ElemStatLearn
Pattern Recognition and Machine Learning Book, by C. Bishop.


http://www.stats.ox.ac.uk/~cucuring/MathCDT.htm
http://faculty.marshall.usc.edu/gareth-james/ISL/
https://people.math.ethz.ch/~abandeira/TenLecturesFortyTwoProblems.pdf
https://people.math.ethz.ch/~abandeira/TenLecturesFortyTwoProblems.pdf
https://people.math.ethz.ch/~abandeira/BandeiraSingerStrohmer-MDS-draft.pdf
https://people.math.ethz.ch/~abandeira/BandeiraSingerStrohmer-MDS-draft.pdf
https://people.math.ethz.ch/~abandeira/Math_of_ML_Lecture_Notes2021.pdf
https://people.math.ethz.ch/~abandeira/Math_of_ML_Lecture_Notes2021.pdf
http://www-stat.stanford.edu/ElemStatLearn
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Prerequisites
Probability:
» event, random variable, indicator variable

» probability mass function, probability density function, cumulative
distribution function

joint distribution, marginal distribution
conditional probability, Bayes’s rule
independence

vvyYyy

expectation, variance
» uniform, exponential, binomial, Poisson, Gaussian distributions

Statistics:

» sampling from a population; mean, variance, standard deviation,
median, covariance, correlation, and their sample versions;
histogram, scatter-plots, box-plots;

» linear regression, response and predictor variables, coefficients,
residuals.



Prerequisites

Linear algebra:
» vector and matrix arithmetic; quadratic forms
» eigenvalues and eigenvectors of a matrix
> generalized eigenvalue problems

Programming:
» arithmetic (scalar, vector, and matrix operations)
writing functions
reading in data sets from csv files
using and manipulating data structures (subset a data frame)
installing, loading, and using packages
plotting

vVvYvyyvyy

Wilson et al., Good enough practices in scientific computing, PLoS computational
biology, 2017 Jun 22;13(6)
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A list of tentative topics

1.

6.

Introduction & syllabus

2. Statistical learning

3. Measures of correlation and dependency - (i)

4.

5. Singular Value Decomposition (SVD), rank-k approximation,

Measures of correlation and dependency - (ii)

Principal Component Analysis (PCA)
PCA in high dimensions and random matrix theory
(Marcenko-Pastur); applications to finance

Nonlinear dimensionality reduction methods:

Multidimensional scaling, ISOMAP, Locally Linear Embedding
(LLE), Laplacian Eigenmaps

Diffusion Maps and Vector Diffusion Maps

. Basics of spectral graph theory
10.
11.

Networks (i) intro, summary statistics, motifs, networks models
Networks (ii) network centrality measures, modularity,
core-periphery, further topics on networks
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Topics

12.

13.
14.
15.

16.
17.
18.

19.
20.

21.

Random Graphs Properties

Clustering:
k-means, Spectral clustering and Cheeger’s inequality
Stochastic Block Models: spectral & semidefinite relaxations
Constrained clustering, clustering of signed graphs &

correlation clustering, clustering directed graphs (digraphs)

Estimation from pairwise measurements:
The Page-Rank algorithm
Ranking from pairwise incomplete noisy information
Angular/Group synchronization (spectral & semidefinite
programming relaxations)

Regression:
OLS & practical considerations
Modern regression: Ridge, LASSO, Elastic Net

Misc:

Low-rank matrix completion, Procrustess analysis,
Multiplicative Weights Update Algorithm



° Additional Topics (if we had more time)

1. Classification: logistic regression, support vector machines, linear
discriminant analysis.

2. Tree-based methods for classification and regression
3. Bagging, Boosting, Random Forests

4. The Multiplicative Weights Update Method: a Meta Algorithm and
Applications
e Arora, Sanjeev, Elad Hazan, Satyen Kale; Theory of Computing 2012

5. Johnson-Lindenstrauss Lemma; approximate nearest neighbors



’ Additional Topics (if we had more time)

Other potential topics
6. electrical networks and random walks

7. graph sparsification and Laplacian linear system solvers (Lx = b)
8. graph embeddings from noisy distances
9. non-negative matrix factorization (NMF)

10. matrix algorithms using sampling; sketch of a large matrix
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What is data science/data mining?

Given (usually very large) data sets, how do you discover structural
properties and make predictions?

Two very broad categories of problems:

» Unsupervised learning: discover structure. E.g., given
measurements Xi, ..., Xp, learn some underlying group structure
based on the pattern of similarity between pairs of points
("working in the blind”)

» Supervised learning: make predictions. E.g., given measurements
(X1, Y1), ...(Xn, Yn), learn a model to predict Y; from X;

» Semi-supervised learning: only for m (with m << n) observations
we have both predictor + response measurements.

> “the more you fit, the more you overfit’
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What is data science/data mining?

Given (usually very large) data sets, how do you discover structural
properties and make predictions?

Two very broad categories of problems:

» MOST OF THIS COURSE — — —— >>> Unsupervised learning:
discover structure. E.g., given measurements Xj, ..., X, learn
some underlying group structure based on the pattern of similarity
between pairs of points ("working blind”)

» Supervised learning: make predictions. E.g., given measurements
(X1, Y1), ...(Xn, Yn), learn a model to predict Y; from X;

» Semi-supervised learning: only for m (with m << n) observations
we have both predictor + response measurements.

> “the more you fit, the more you overfit’
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This course

» Combines both applied and theoretical perspectives, though for
some of the topics the emphasis will be on the algorithms &
methodology

Aim to understand what is it that we are trying to do

> Often, it’s not enough to load your data in Python/R/Matlab, use
any available packages and expect to get an answer that makes
sense/is reasonable

» Understand your data! Data is often very messy, noisy and
incomplete

» Be able to identify what the end goal is, and based on that (and
the given data) identify what tools are available
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Trade-offs: exact versus approximation

» Many problems are computationally hard to solve exactly

» In order to come up with tractable algorithms (that run in
polynomial time) aim for an approximate solution

» Approximation algorithms can often perform well (sometimes
they even find the exact solution (provably)!) and scale well
computationally when applied to very large problems

» Polynomial time algorithms are often not enough, some
applications demand close to linear-time complexity (sometimes
even sublinear!)
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Bias-variance tradeoff
In supervised learning, when moving beyond the training set:

» If the model is too simple, the solution is biased and does not fit
the data

> If the model is too complex, the solution is very sensitive to small
changes in the data

Problem of simultaneously minimizing two sources of error
> bias: difference btwn truth and what you expect to learn

» high bias leads to missing out on the relevant relations between
features and target outputs (underfitting).
» decreases with more complex models
» variance: difference between what you learn from a particular
data set and what you expect to learn. Arises from sensitivity to
small fluctuations in the training set.
> high variance leads to overfitting: modeling the random noise in the
training data, rather than the intended outputs.
» variance decreases with simpler models
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Interpretability versus forecasting power

> trade-off between a model that is interpretable and one that
predicts well under general circumstances

» essay on the distinction between explanatory and predictive
modeling

To Explain or to Predict?

by Galit Shmueli, Statistical Science 2010, Vol. 25, No. 3,
289-310

https://www.stat .berkeley.edu/~aldous/157/
Papers/shmueli.pdf


https://www.stat.berkeley.edu/~aldous/157/Papers/shmueli.pdf
https://www.stat.berkeley.edu/~aldous/157/Papers/shmueli.pdf
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Occam’s razor
» a problem-solving principle known as the ’law of parsimony’

» when faced with different competing hypotheses that predict
equally well, choose the one with the fewest assumptions

> usually, more complex models may provide better predictions, but
in the absence of differences in predictive power, the fewer
assumptions the better
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Statistics vs. Machine Learning

» Brian D. Ripley: "machine learning is statistics minus any
checking of models and assumptions”

"Statistical Modeling: The Two Cultures”, Leo Breiman, Statistical
Science, 16 (3), 2001; argued that

> statisticians rely too heavily on data modeling and assumptions

» machine learning techniques are making progress by instead
relying on the predictive accuracy of models



Statistics vs. Machine Learning

More recently, statisticians focused more on finite-sample properties,
and algorithms for massive data sets (big data).

Some, still ongoing, differences between the two communities:

> Statistics papers are more formal and often comes with proofs,
while Machine Learning papers are more open to new
methodologies even if the theory is lacking (for now)

» The Machine Learning community primarily publishes in
conferences and proceedings, while statisticians use journal
papers (much slower process)

» Some statisticians still focus on areas which are well outside the
scope of ML (survey design, sampling, industrial statistics,
survival analysis, etc)
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Simpson’s paradox - beware!

Phenomenon in statistics when certain trends that appear when a
dataset is separated into groups are reversed when the data are
aggregated.

Korrelation: -0.74 Korrelation: 0.74, 0.82, 0.75, 0.72, 0.69

» can be resolved when confounding variables and causal relations
are appropriately addressed in the statistical modeling

» misleading results that the misuse of statistics can generate



20Final thoughts: No universal data mining recipe book

>

>
>

hard to say which methods will work best in what situations

sometimes, it’s crystal clear what method one should follow
most often, we have little intuition a-priori on what approach or set
of tools should we use. Need to

> understand the data first and the task at hand

» understand the methods and their assumptions

> make an educated guess on how to proceed
often, customized tools are required to handle problem
particularities (eg., response variable is highly imbalanced, as in
default rate prediction)

sometimes (if enough resources are available) one often tries
many different methods, and chooses the one which gives best
(out-of-sample) results
» most competitions are won by ensemble methods - techniques
that create multiple models and then combine them to produce
improved results
> stacking: considers heterogeneous weak learners, learns them in
parallel and combines by training a meta-model
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Classification of handwritten digits
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Figure: Automatic detection of handwritten postal codes.
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Facebook: friend suggestions & social network analysis

Figure: Left: People you may know. Right: Community detection in a
Facebook ego network.

e based on a number of features including “mutual friends, work and
education information, networks you are part of, contacts you have

imported and other factors”.
https://www.databentobox.com/2019/07/28/facebook-friend-graph/
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Forecasting the stock market

Google's Stock Price (GOOG)

$ per share

o
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Figure: Price of Google stock.

Source: http:
//businessforecastblog.com/forecasting-googles-stock-price-goog-on-20-trading-day-horizons/


http://businessforecastblog.com/forecasting-googles-stock-price-goog-on-20-trading-day-horizons/
http://businessforecastblog.com/forecasting-googles-stock-price-goog-on-20-trading-day-horizons/

“Netflix: the $ 1,000,000 Prize

RAYMOND

fome Rules Leaderboard  Register Update  Submit  Downioad

Leaderboard 10.05% osserws o Jiesers.

Rank Team Name Best Score % Improvement  Last Submit Time
1 Belior's Pragmatic Chacs 08556 10,05 2008-06-26 18:42:57

Grand Prize - RMSE <= 0.8563
2 PragmaticTheon 08582 9.80 2009-06-25 22:15:51
3 BeliKor in BigChacs 08530 a7 2008-05-13 08:14:09
4 Grand Priza Team 08593 068 2000-06-12 08:20:24
5 Dace 08604 956 2009-04-22 05:57:03
6 BigChacs 08613 0.47 2000-06-23 23:06:52

Figure: Movies you might enjoy.
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Identifying patterns in migration networks

. . . T . M2
Figure: Eigenvector colourings for the similarity matrix Wj; = WUD,-’ where M;

denotes the number of people who migrated from county / to county j (during
1995-2000; US Census data), and P; denotes the population of county /.
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Ranking Courses in the (UCLA) Math Curriculum

Table 1 Comparing the A and C students in 3 majors using SyncRank.

Applied Mathematics Pure Mathematics
A (n; = 140) C (ny =198) A (n; = 86) C (ny =95)
Lin. Algebra I Lin. Algebra I Discr. Struct. Lin. Algebra I
Discr. Struct. Discr. Struct. Lin. Algebra I Hist. of Math
Real Analysis I Probability I Real Analysis I~ Real Analysis I
Probability I Real Analysis I Lin. AlgebraIl  Discr. Struct.
Complex Analysis Algebra I Algebra I Algebra I
Nonlin. Syst. Num. Analysis I Real Analysis I~ Ord. Diff. Eqn.’s
Num. Analysis I ~ Graph Theory Ord. Diff. Eqn.’s  Complex Analysis
Math Modeling ~ Real Analysis II Complex Analysis Game Theory
Real Analysis II ~ Act. Math Probability T Probability T
Algebra I Nonlin. Syst. Algebra IT Graph Theory
Graph Theory Math Modeling Graph Theory Num. Analysis I
Ord. Diff. Eqn.’s  Hist. of Math Real Analysis III - Optimization
Game Theory Complex Analysis Num. Analysis I Number Theory
. ThcI'mulnxmr/n\udcnhwuh::;:r‘vl ;Hh_ . oy PageRan) Research Seminar Probability II Logic Algebra IT
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Network of financial assets
e Mel MacMahon and Diego Garlaschelli. Phys.Rev.X5, 2015. Community Detection
for Correlation Matrices.

Figure: Asset correlation matrix after thresholding. The color of each node
represents the industry sector to which that stock belongs. The force-based layout
clearly indicates the existence of strong connections between stocks of the same
industry sector.
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Financial time series clustering

e Clustering of the empirical correlation matrix of 1500 time series
(stocks contained in the S&P 1500 index) ¢ Compute the bottom
k = 10 eigenvectors of L, and run a standard machine learning
clustering algorithm (k-means++) to recover k clusters.

\\ Energy
N Utilities - Hl“ |
it Materials
N Industrials q
5 Discretionary 1 | LN

T Financials - ” | ‘ ” ‘I” IH”””

\gi. Telecoms - | | | | | | |

Staples | "l | "" ” | I" |I

i LI II--III

i Heaithcare | [T 1T

Figure: Left: the adjacency matrix A with rows/columns sorted in accordance
to cluster membership. Right: Sector decomposition of the recovered clusters
(based on a standard classification of the US economy into sectors). See link
for details: GICS link.

M. Cucuringu, P. Davies, A. Glielmo, H. Tyagi, SPONGE: A generalized eigenproblem for
clustering signed networks, AISTATS 2019 (python code available)


https://en.wikipedia.org/wiki/Global_Industry_Classification_Standard
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High-dimensional Covariance Regularization
To impose structure, the regularization pipeline involves truncating

off-block (outside of GICS sectors) entries of the residual matrix to Os.
P 9 sector factors proxied by their ETFs: Energy (XLE), Materials (XLB), Industrials
(XLI), Consumer Discretionary (XLY), Consumer Staples (XLP), Health Care
(XLV), Financial (XLF), Information Technology (XLK), Utilities (XLU).
» GICS groups can also be replaced by data driven clusterings.
. , .

Figure: Non-zero Entries of the Residual Correlation Matrix (2007 - 2009)
after taking out Fama-French factors. Based on 15 minutes data (n = 572).

Source: Incorporating GISC and High Frequency Data into Portfolio Allocation and Risk Estimation, Jianging Fan, Alex Furger,
Dacheng Xiu
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Anomaly detection - Transactions in a financial network (i)
Tracking the flow of money (eg, for the purpose of anomaly detection)
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Anomaly detection - Transactions in a financial network (ii)
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Anomaly detection - Transactions in a financial network (iii)

Example of a planted signal, in a (typically much larger) ambient graph.
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The Group Synchronization Problem (Euc(d))

Recover group elements from a sparse noisy set of pairwise ratios.

Figure: Schematic overview of the main steps of the local2global algorithm. (a)
Synchronization over scales. (b) Synchronization over orthogonal transformations. (c)
Synchronization over translations. (d) Global node embedding as centroid of aligned
patch embeddings. (b-c-d) is synchronization over Euc(d) = Z2 x SO(d) x R?.
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X

Large scale graph embedding (MAG240m) - divide & conquer
https://ogb.stanford. edu/kddcupZOZl_/mgq? 4‘Om/

oA

Figure: UMAP projection of 1

28—di.'r-n VG”AE‘-Iéc‘a'I'ZQIbba.I‘émbedding; heterogeneous
academic graph extracted from the Microsoft Academic Graph; nodes are coloured by
class label/topics. Visualisation based on a sample of 500,000 labeled

[m]

papers.
- -



https://ogb.stanford.edu/kddcup2021/mag240m/
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Lead-lag detection in multivariate time series

Given a basket of stocks, identify a subset X of stocks that lead
another subset Y.

Highest rank Highest rank
“most leading” “most leading”
1 1
2 2
Leaders Da Leaders Da
Laggers Gs Laggers Gs
n n
v L v L
Lowest rank t t+8 Lowest rank t t+0
“most lagging” “most lagging”

—_—p time —> time

Figure: Left: Trading strategy where we expect the average price return of
laggers tomorrow to move in the same direction as the average return of the
leaders today. Right: strategy where we expect leaders to exhibit momentum.
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Lead-lag detection in multivariate time series
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Figure: Top: each measurement is a noisy shifted version of one of the
unknown three signals (x,y or z, but the mapping is not known). Bottom:
extraction of sub-time series.
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Trade co-occurrence ansalysis (fast search for nearest neighbors)

Figure: Trade co-occurrence: for a user-defined neighbourhood size 4§, trade
Xx; arrives within the é-neighbourhood of trade x;, and thus they co-occur. In
contrast, trade xi locates outside x;’s neighbourhood, and thus the two trades
do not co-occur. Both trades x; and xj co-occur with trade x;, but they do not

co-occur with each other.
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Figure: lllustration of trade types, conditioning on co-occurrenc (distinct
categorical labels of trade x;). Color indicates the stock corresponding to a
trade. Thus, x; is for the same stock as x;, while x is-for a.different stock.
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Line-graphs for forecasting realized covariance matrices.

IBM
IBM-JPM

JPM-CVX

GS JPM IBM-GS

GS-JPM
JPM-BA

BA

(a) Graph G for volatility (b) Labeled edgesin G (c) Line graph L(G) for corre-
lation

Figure: Diagram of the process of building the line graph L(G) for N =5
assets.

» An edge in G constitutes a node in the line graph L(G).

» The edges in the line graph capture the interdependence between
two correlation pairs that have a asset in common.
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Change-point detection in network time series
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(a) “Merge” scenario. (b) “Birth” scenarios. (c) “Swap” scenario.

Figure: Heatmaps of the adjacency matrices of the expected graph in two
stochastic block models Gy (first row) and G, (second row), with n = 400
nodes, in three different scenarios of single change-point synthetic
experiments:“Merge” (a), “Birth” (b) and “Swaps” (c). G; and G» correspond to
the generative distributions of the snapshots before and after the
change-point.
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Summary

Many of the methods we will study are of spectral nature, which
brings along a number of benefits:
» computational scalability
» robust to high level of noise in the data (low-SNR regime)
> theoretical signal recovery guarantees under suitably defined
stochastic (block) models

Clustering, Ranking, Dimensionality Reduction:

» provide insights into the structure of various data sets

» more importantly, cluster/ranking information could be leveraged
for some downstream task of interest (eg., prediction)

» unsupervised learning algorithms can be construed as a “means
to an end”; in most pipelines, the ultimate task boils down to
prediction or classification

» prediction & classification provide an opportunity to compare
performance/utility of unsupervised learning algorithms on data
sets for which no ground truth exists.

Yogi Berra: It’s tough to make predictions, especially about the future



