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Course overview
I combines both theoretical and practical approaches
I Goal 1: understand the mathematical, statistical and algorithmic

foundations behind some of the state-of-the-art algorithms for
tasks in machine learning/data mining
I organization and visualization of data clouds
I measures of correlation and dependence
I dimensionality reduction •
I clustering (point clouds and graphs/networks) •
I network analysis •
I ranking •
I regression

I Goal 2: exposure to practical examples drawn from a wide range
of topics including social network analysis•, finance•, image
processing, biology, engineering, etc

Where appropriate, the latest research developments and trends in the
respective areas will be very briefly presented.
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Books & References
•Slides will be made available on my webpage at:
http://www.stats.ox.ac.uk/˜cucuring/MathCDT.htm

• An Introduction to Statistical Learning by James, Witten, Hastie, and
Tibshirani, freely available at

http://faculty.marshall.usc.edu/gareth-james/ISL/

• Ten Lectures and Forty-Two Open Problems in the Mathematics of Data
Science, by Afonso S. Bandeira

https://people.math.ethz.ch/˜abandeira/
TenLecturesFortyTwoProblems.pdf

• Mathematics of Data Science, by A. Bandeira, A. Singer, T. Strohmer
https://people.math.ethz.ch/˜abandeira/
BandeiraSingerStrohmer-MDS-draft.pdf

• Lecture Notes for Mathematics of Machine Learning , by Afonso S.
Bandeira & Nikita Zhivotovskiy ETH Zurich

https://people.math.ethz.ch/˜abandeira/Math_of_ML_
Lecture_Notes2021.pdf

• Popular references in the ML/data mining:
• The Elements of Statistical Learning by Hastie, Tibshirani, and

Friedman. http://www-stat.stanford.edu/ElemStatLearn
• Pattern Recognition and Machine Learning Book, by C. Bishop.

http://www.stats.ox.ac.uk/~cucuring/MathCDT.htm
http://faculty.marshall.usc.edu/gareth-james/ISL/
https://people.math.ethz.ch/~abandeira/TenLecturesFortyTwoProblems.pdf
https://people.math.ethz.ch/~abandeira/TenLecturesFortyTwoProblems.pdf
https://people.math.ethz.ch/~abandeira/BandeiraSingerStrohmer-MDS-draft.pdf
https://people.math.ethz.ch/~abandeira/BandeiraSingerStrohmer-MDS-draft.pdf
https://people.math.ethz.ch/~abandeira/Math_of_ML_Lecture_Notes2021.pdf
https://people.math.ethz.ch/~abandeira/Math_of_ML_Lecture_Notes2021.pdf
http://www-stat.stanford.edu/ElemStatLearn
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Prerequisites
Probability:
I event, random variable, indicator variable
I probability mass function, probability density function, cumulative

distribution function
I joint distribution, marginal distribution
I conditional probability, Bayes’s rule
I independence
I expectation, variance
I uniform, exponential, binomial, Poisson, Gaussian distributions

Statistics:
I sampling from a population; mean, variance, standard deviation,

median, covariance, correlation, and their sample versions;
histogram, scatter-plots, box-plots;

I linear regression, response and predictor variables, coefficients,
residuals.
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Prerequisites

Linear algebra:
I vector and matrix arithmetic; quadratic forms
I eigenvalues and eigenvectors of a matrix
I generalized eigenvalue problems

Programming:
I arithmetic (scalar, vector, and matrix operations)
I writing functions
I reading in data sets from csv files
I using and manipulating data structures (subset a data frame)
I installing, loading, and using packages
I plotting

Wilson et al., Good enough practices in scientific computing, PLoS computational
biology, 2017 Jun 22;13(6)
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A list of tentative topics

1. Introduction & syllabus
2. Statistical learning
3. Measures of correlation and dependency - (i)
4. Measures of correlation and dependency - (ii)
5. Singular Value Decomposition (SVD), rank-k approximation,

Principal Component Analysis (PCA)
6. PCA in high dimensions and random matrix theory

(Marcenko-Pastur); applications to finance

Nonlinear dimensionality reduction methods:
7. Multidimensional scaling, ISOMAP, Locally Linear Embedding

(LLE), Laplacian Eigenmaps
8. Diffusion Maps and Vector Diffusion Maps

9. Basics of spectral graph theory
10. Networks (i) intro, summary statistics, motifs, networks models
11. Networks (ii) network centrality measures, modularity,

core-periphery, further topics on networks
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Topics
12. Random Graphs Properties

Clustering:
13. k-means, Spectral clustering and Cheeger’s inequality
14. Stochastic Block Models: spectral & semidefinite relaxations
15. Constrained clustering, clustering of signed graphs &

correlation clustering, clustering directed graphs (digraphs)

Estimation from pairwise measurements:
16. The Page-Rank algorithm
17. Ranking from pairwise incomplete noisy information
18. Angular/Group synchronization (spectral & semidefinite

programming relaxations)

Regression:
19. OLS & practical considerations
20. Modern regression: Ridge, LASSO, Elastic Net

Misc:
21. Low-rank matrix completion, Procrustess analysis,

Multiplicative Weights Update Algorithm
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Additional Topics (if we had more time)

1. Classification: logistic regression, support vector machines, linear
discriminant analysis.

2. Tree-based methods for classification and regression

3. Bagging, Boosting, Random Forests

4. The Multiplicative Weights Update Method: a Meta Algorithm and
Applications
• Arora, Sanjeev, Elad Hazan, Satyen Kale; Theory of Computing 2012

5. Johnson-Lindenstrauss Lemma; approximate nearest neighbors
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Additional Topics (if we had more time)

Other potential topics
6. electrical networks and random walks

7. graph sparsification and Laplacian linear system solvers (Lx = b)

8. graph embeddings from noisy distances

9. non-negative matrix factorization (NMF)

10. matrix algorithms using sampling; sketch of a large matrix
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What is data science/data mining?
Given (usually very large) data sets, how do you discover structural
properties and make predictions?

Two very broad categories of problems:
I Unsupervised learning: discover structure. E.g., given

measurements X1, . . . ,Xn, learn some underlying group structure
based on the pattern of similarity between pairs of points
(”working in the blind”)

I Supervised learning: make predictions. E.g., given measurements
(X1,Y1), ...(Xn,Yn), learn a model to predict Yi from Xi

I Semi-supervised learning: only for m (with m << n) observations
we have both predictor + response measurements.

I ”the more you fit, the more you overfit”



11
What is data science/data mining?
Given (usually very large) data sets, how do you discover structural
properties and make predictions?

Two very broad categories of problems:
I MOST OF THIS COURSE −−−− >>> Unsupervised learning:

discover structure. E.g., given measurements X1, . . . ,Xn, learn
some underlying group structure based on the pattern of similarity
between pairs of points (”working blind”)

I Supervised learning: make predictions. E.g., given measurements
(X1,Y1), ...(Xn,Yn), learn a model to predict Yi from Xi

I Semi-supervised learning: only for m (with m << n) observations
we have both predictor + response measurements.

I ”the more you fit, the more you overfit”
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This course

I Combines both applied and theoretical perspectives, though for
some of the topics the emphasis will be on the algorithms &
methodology

Aim to understand what is it that we are trying to do
I Often, it’s not enough to load your data in Python/R/Matlab, use

any available packages and expect to get an answer that makes
sense/is reasonable

I Understand your data! Data is often very messy, noisy and
incomplete

I Be able to identify what the end goal is, and based on that (and
the given data) identify what tools are available
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Trade-offs: exact versus approximation

I Many problems are computationally hard to solve exactly

I In order to come up with tractable algorithms (that run in
polynomial time) aim for an approximate solution

I Approximation algorithms can often perform well (sometimes
they even find the exact solution (provably)!) and scale well
computationally when applied to very large problems

I Polynomial time algorithms are often not enough, some
applications demand close to linear-time complexity (sometimes
even sublinear!)
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Bias-variance tradeoff
In supervised learning, when moving beyond the training set:
I If the model is too simple, the solution is biased and does not fit

the data
I If the model is too complex, the solution is very sensitive to small

changes in the data

Problem of simultaneously minimizing two sources of error
I bias: difference btwn truth and what you expect to learn

I high bias leads to missing out on the relevant relations between
features and target outputs (underfitting).

I decreases with more complex models
I variance: difference between what you learn from a particular

data set and what you expect to learn. Arises from sensitivity to
small fluctuations in the training set.
I high variance leads to overfitting: modeling the random noise in the

training data, rather than the intended outputs.
I variance decreases with simpler models
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Interpretability versus forecasting power

I trade-off between a model that is interpretable and one that
predicts well under general circumstances

I essay on the distinction between explanatory and predictive
modeling

To Explain or to Predict?
by Galit Shmueli, Statistical Science 2010, Vol. 25, No. 3,
289–310

https://www.stat.berkeley.edu/˜aldous/157/
Papers/shmueli.pdf

https://www.stat.berkeley.edu/~aldous/157/Papers/shmueli.pdf
https://www.stat.berkeley.edu/~aldous/157/Papers/shmueli.pdf
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Occam’s razor

I a problem-solving principle known as the ’law of parsimony’

I when faced with different competing hypotheses that predict
equally well, choose the one with the fewest assumptions

I usually, more complex models may provide better predictions, but
in the absence of differences in predictive power, the fewer
assumptions the better
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Statistics vs. Machine Learning

I Brian D. Ripley: ”machine learning is statistics minus any
checking of models and assumptions”

”Statistical Modeling: The Two Cultures”, Leo Breiman, Statistical
Science, 16 (3), 2001; argued that
I statisticians rely too heavily on data modeling and assumptions
I machine learning techniques are making progress by instead

relying on the predictive accuracy of models
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Statistics vs. Machine Learning

More recently, statisticians focused more on finite-sample properties,
and algorithms for massive data sets (big data).

Some, still ongoing, differences between the two communities:
I Statistics papers are more formal and often comes with proofs,

while Machine Learning papers are more open to new
methodologies even if the theory is lacking (for now)

I The Machine Learning community primarily publishes in
conferences and proceedings, while statisticians use journal
papers (much slower process)

I Some statisticians still focus on areas which are well outside the
scope of ML (survey design, sampling, industrial statistics,
survival analysis, etc)
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Simpson’s paradox - beware!

Phenomenon in statistics when certain trends that appear when a
dataset is separated into groups are reversed when the data are
aggregated.

I can be resolved when confounding variables and causal relations
are appropriately addressed in the statistical modeling

I misleading results that the misuse of statistics can generate
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Final thoughts: No universal data mining recipe book
I hard to say which methods will work best in what situations
I sometimes, it’s crystal clear what method one should follow
I most often, we have little intuition a-priori on what approach or set

of tools should we use. Need to
I understand the data first and the task at hand
I understand the methods and their assumptions
I make an educated guess on how to proceed

I often, customized tools are required to handle problem
particularities (eg., response variable is highly imbalanced, as in
default rate prediction)

I sometimes (if enough resources are available) one often tries
many different methods, and chooses the one which gives best
(out-of-sample) results
I most competitions are won by ensemble methods - techniques

that create multiple models and then combine them to produce
improved results

I stacking: considers heterogeneous weak learners, learns them in
parallel and combines by training a meta-model
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Classification of handwritten digits

Figure: Automatic detection of handwritten postal codes.
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Facebook: friend suggestions & social network analysis

Figure: Left: People you may know. Right: Community detection in a
Facebook ego network.

• based on a number of features including “mutual friends, work and
education information, networks you are part of, contacts you have
imported and other factors”.
https://www.databentobox.com/2019/07/28/facebook-friend-graph/
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Forecasting the stock market

Figure: Price of Google stock.

Source: http:
//businessforecastblog.com/forecasting-googles-stock-price-goog-on-20-trading-day-horizons/

http://businessforecastblog.com/forecasting-googles-stock-price-goog-on-20-trading-day-horizons/
http://businessforecastblog.com/forecasting-googles-stock-price-goog-on-20-trading-day-horizons/
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Netflix: the $ 1,000,000 Prize

Figure: Movies you might enjoy.
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Identifying patterns in migration networks

Figure: Eigenvector colourings for the similarity matrix Wij =
M2

ij
Pi Pj

, where Mij

denotes the number of people who migrated from county i to county j (during
1995-2000; US Census data), and Pi denotes the population of county i .
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Ranking Courses in the (UCLA) Math Curriculum

8 Mihai Cucuringu, Charles Z. Marshak, Dillon Montag, Puck Rombach
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Fig. 1 The P matrix for A students with a Pure Mathematics focus (courses ordered by PageRank).

Table 1 Comparing the A and C students in 3 majors using SyncRank.

Applied Mathematics Applied Sciecnces Pure Mathematics
A (ns = 140) C (ns = 198) A (ns = 75) C (ns = 162) A (ns = 86) C (ns = 95)

Lin. Algebra I Lin. Algebra I Lin. Algebra I Lin. Algebra I Discr. Struct. Lin. Algebra I
Discr. Struct. Discr. Struct. Probability I Discr. Struct. Lin. Algebra I Hist. of Math
Real Analysis I Probability I Discr. Struct. Probability I Real Analysis I Real Analysis I
Probability I Real Analysis I Real Analysis I Real Analysis I Lin. Algebra II Discr. Struct.
Complex Analysis Algebra I Act. Math Nonlin. Syst. Algebra I Algebra I
Nonlin. Syst. Num. Analysis I Num. Analysis I Math Modeling Real Analysis II Ord. Diff. Eqn.’s
Num. Analysis I Graph Theory Probability II Graph Theory Ord. Diff. Eqn.’s Complex Analysis
Math Modeling Real Analysis II Graph Theory Game Theory Complex Analysis Game Theory
Real Analysis II Act. Math Act. Models II Num. Analysis I Probability I Probability I
Algebra I Nonlin. Syst. Act. Models II Optimization Algebra II Graph Theory
Graph Theory Math Modeling Ord. Diff. Eqn.’s Ord. Diff. Eqn.’s Graph Theory Num. Analysis I
Ord. Diff. Eqn.’s Hist. of Math Num. Analysis II Act. Math Real Analysis III Optimization
Game Theory Complex Analysis Optimization Probability II Num. Analysis I Number Theory
Research Seminar Probability II Math Econ. Act. Models II Logic Algebra II
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Network of financial assets
• Mel MacMahon and Diego Garlaschelli. Phys.Rev.X5, 2015. Community Detection
for Correlation Matrices.

Figure: Asset correlation matrix after thresholding. The color of each node
represents the industry sector to which that stock belongs. The force-based layout
clearly indicates the existence of strong connections between stocks of the same
industry sector.
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Financial time series clustering
• Clustering of the empirical correlation matrix of 1500 time series
(stocks contained in the S&P 1500 index) • Compute the bottom
k = 10 eigenvectors of L, and run a standard machine learning
clustering algorithm (k-means++) to recover k clusters.

Figure: Left: the adjacency matrix A with rows/columns sorted in accordance
to cluster membership. Right: Sector decomposition of the recovered clusters
(based on a standard classification of the US economy into sectors). See link
for details: GICS link.
M. Cucuringu, P. Davies, A. Glielmo, H. Tyagi, SPONGE: A generalized eigenproblem for
clustering signed networks, AISTATS 2019 (python code available)

https://en.wikipedia.org/wiki/Global_Industry_Classification_Standard
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High-dimensional Covariance Regularization
To impose structure, the regularization pipeline involves truncating
off-block (outside of GICS sectors) entries of the residual matrix to 0s.
I 9 sector factors proxied by their ETFs: Energy (XLE), Materials (XLB), Industrials

(XLI), Consumer Discretionary (XLY), Consumer Staples (XLP), Health Care
(XLV), Financial (XLF), Information Technology (XLK), Utilities (XLU).

I GICS groups can also be replaced by data driven clusterings.

Is Conditional Sparsity Reasonable?

Non-zero Entries of the Residual Correlation Matrix (2007 - 2009) after taking

out Fama-French factors

�≥ 12 months with |corr| ≥ 0.15�Based on 15 minutes data (n = 572) each month

Jianqing Fan (Princeton University) High-Frequency High-Dimensional Vol

Sorting by GICS

E M I CD CS H F IT U

Non-zero Entries of the Residual Correlation Matrix (2007 - 2009) after taking

out Fama-French factors

�≥ 12 months with |corr| ≥ 0.15�Based on 15 minutes data (n = 572) each month

Jianqing Fan (Princeton University) High-Frequency High-Dimensional Vol

Figure: Non-zero Entries of the Residual Correlation Matrix (2007 - 2009)
after taking out Fama-French factors. Based on 15 minutes data (n = 572).

Source: Incorporating GISC and High Frequency Data into Portfolio Allocation and Risk Estimation, Jianqing Fan, Alex Furger,
Dacheng Xiu
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Anomaly detection - Transactions in a financial network (i)
Tracking the flow of money (eg, for the purpose of anomaly detection)
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Anomaly detection - Transactions in a financial network (ii)
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Anomaly detection - Transactions in a financial network (iii)
Example of a planted signal, in a (typically much larger) ambient graph.
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The Group Synchronization Problem (Euc(d))
Recover group elements from a sparse noisy set of pairwise ratios.
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Figure: Schematic overview of the main steps of the local2global algorithm. (a)
Synchronization over scales. (b) Synchronization over orthogonal transformations. (c)
Synchronization over translations. (d) Global node embedding as centroid of aligned
patch embeddings. (b-c-d) is synchronization over Euc(d) ∼= Z2 × SO(d)× Rd .
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Large scale graph embedding (MAG240m) - divide & conquer
https://ogb.stanford.edu/kddcup2021/mag240m/

Figure: UMAP projection of 128-dim VGAE-local2global embedding; heterogeneous
academic graph extracted from the Microsoft Academic Graph; nodes are coloured by
class label/topics. Visualisation based on a sample of 500,000 labeled papers.

https://ogb.stanford.edu/kddcup2021/mag240m/
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Lead-lag detection in multivariate time series
Given a basket of stocks, identify a subset X of stocks that lead
another subset Y .
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Figure: Left: Trading strategy where we expect the average price return of
laggers tomorrow to move in the same direction as the average return of the
leaders today. Right: strategy where we expect leaders to exhibit momentum.
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Lead-lag detection in multivariate time series
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Figure: Top: each measurement is a noisy shifted version of one of the
unknown three signals (x ,y or z, but the mapping is not known). Bottom:
extraction of sub-time series.
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Trade co-occurrence analysis (fast search for nearest neighbors)
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Figure: Trade co-occurrence: for a user-defined neighbourhood size δ, trade
xj arrives within the δ-neighbourhood of trade xi , and thus they co-occur. In
contrast, trade xk locates outside xi ’s neighbourhood, and thus the two trades
do not co-occur. Both trades xj and xh co-occur with trade xi , but they do not
co-occur with each other.
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Figure: Illustration of trade types, conditioning on co-occurrenc (distinct
categorical labels of trade xi ). Color indicates the stock corresponding to a
trade. Thus, xj is for the same stock as xi , while xk is for a different stock.
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Line-graphs for forecasting realized covariance matrices.

(a) Graph G for volatility (b) Labeled edges in G (c) Line graph L(G) for corre-
lation

Figure: Diagram of the process of building the line graph L(G) for N = 5
assets.

I An edge in G constitutes a node in the line graph L(G).
I The edges in the line graph capture the interdependence between

two correlation pairs that have a asset in common.
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Change-point detection in network time series

Figure: Heatmaps of the adjacency matrices of the expected graph in two
stochastic block models G1 (first row) and G2 (second row), with n = 400
nodes, in three different scenarios of single change-point synthetic
experiments:“Merge” (a), “Birth” (b) and “Swaps” (c). G1 and G2 correspond to
the generative distributions of the snapshots before and after the
change-point.
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Summary
Many of the methods we will study are of spectral nature, which
brings along a number of benefits:
I computational scalability
I robust to high level of noise in the data (low-SNR regime)
I theoretical signal recovery guarantees under suitably defined

stochastic (block) models

Clustering, Ranking, Dimensionality Reduction:
I provide insights into the structure of various data sets
I more importantly, cluster/ranking information could be leveraged

for some downstream task of interest (eg., prediction)
I unsupervised learning algorithms can be construed as a “means

to an end”; in most pipelines, the ultimate task boils down to
prediction or classification

I prediction & classification provide an opportunity to compare
performance/utility of unsupervised learning algorithms on data
sets for which no ground truth exists.

Yogi Berra: It’s tough to make predictions, especially about the future


