A simple linear regression application to financial data

This uses the (Yahoo) financial data set from the previous exercise. Consider the following set of n = 8
stocks

{’SPY’"VIX’, ""TNX’, "OIL’GLD’,’GOLD’,”"N225" " FTSE’}

As in the previous homework, let P denote the prices matrix, of size T'x n, where T is the number of days
in history, and s is the number of instruments. For each time series of a given instrument, we compute
the so called log-returns

R;i(t) = log(Ri(t)/Ri(t — 1))

You can do so, for all instruments at once, in R via the command
R=1log(P[2: T,]/PL: (T —1),])

as in the previous homework. Denote by n the resulting number of samples (day) in your history
(n =T —1). For the current data set there should be n ~ 1262 days (after removing the rows that
contain NAs).

(a) We will use a linear model to explain the return of a stock on day ¢ as a function of the return of
all s = 8 stocks on day ¢t — 1. In other words, we fit the following model

s=8

Tep1i ~ Bo + Z BiT
i=1

where 7, denotes the return of stock ¢ on day ¢. Note the number of samples in your regression will be
n — 1, and you will have to separately fit a total of s = 8 models, once for each stock. For now, let us fix
i = SPY, in other words we are trying to forecast the price of SPY for tomorrow, based on the state of
the world available today.

(i) Compute and record the ’s from your fit, and compute the estimated 7,11 gpy value after the fit,
fort=1,...,n

(b) To measure the success of our forecast 711 gpy made on day t for tomorrow’s return ri41 spy, we
will use the popular Sharpe Ratio of the PNL time series, defined as follows. The PN L; (Profit & Loss)

of our forecast for day ¢t + 1 is

|Te41.5py |, if (Pip1,6py > 0 and 741 spy > 0) or (fe41.9py < 0 and 741 spy < 0)

PNL;y; = .
— |res1.5py |, otherwise
Note that, in more compact notation, the PNL can be simply computed as

PNL; 41 = sign(7i41,5pv) X Ti41,9Py (1)

In other words, on any given day, if we forecast that 7,1 gpy is positive, we will buy $1 of SPY, and
hold our position for 1 day. If our forecast is indeed correct and ;41 gpy is positive, our profit will be

1

rev1,5py X $1. (You can think on your own about the other 3 scenarios, and convince yourself that the
PNL is indeed give by (1)).

(i) Plot the cumulative PNL of your above investment strategy, across time. In other words, if
PNL;,t = 1,...,n denotes the time series of daily PNL, the cumulative PNL on day t is given by
S PNL; (in other words, the profit or loss accumulated thus far).

(ii) Compute the Sharpe Ratio of your time series of daily PNL;, ¢ = 1,...,n, defined as the following

normalized z-score
Sharpe = HPNE o V252,
OPNL

where pupyng denotes the average of the daily PNL times series, and opyy the standard deviation of the
daily PNL time series. The normalization comes from there being 252 trading days per year.

(iii) Compute the average annualized return of your investment strategy as

Retann = upnr X 252

(iv) Compute the total return of your investment strategy as

Retoras = » PNL

t=2

(c) Repeat part (b), for every stock 4 in your list, and record your results in a table, such as

Stock name | Sharpe | upny Retann | Retiorar
1. SPY 0.98 6.2 x 107* | 0.156 0.779
2. VIX

8. FTSE

Table 1: Table with in-sample performance statistics

For ease of visualization, it is customary to show the above ppyy, as 6.2 x 107* as opposed to 0.00062.
The quantity 107* is often referred to as 1 basis point (denotes as bpts), i.e., 1% = 100 bpts.

(d) Repeat part (b), but this time we will be using a sliding window approach, to avoid using future
information. In other words, on any given day ¢, we will be building our training set from the past m
days of data. For simplicity, we fix the parameter m = 100.

(i) for each and every day d = 101,...,n — 1, repeat part (b), where the regression will be performed
on a training set with the previous 100 days of data, and their corresponding response given by the return
next day. In other words you, for a given day, say d = 533, the training data will be given by

= (re1, T2, ..., eg) With response y = ri1/5pyr, t€ {433,435,...532}

After doing the multiple linear regression and obtaining the coefficients (’s, apply them to today’s
information © = (rss33.1, 75332, - - -, 's33.8) and compute the estimate for tomorrow return of SPY

T534,5Py = o + B175331 + Parssso + ... + Bsrssss

Compute the various performance statistics defined above: Sharpe, upnr, Retonn, Retiotar-

(e) Repeat part (d) for each of the remaining stocks in your list, and gather in a single plot the s = 8
cumulative PNL graphs of your investment strategy (each one with a different color; you may use the
provided function for this). Gather your results in a table of performance statistics, similar to Table 1.
What can you conclude from looking at the results in Table 1 and Table 27

Stock name | Sharpe | pupny Retgnn | Retiora
1. SPY 0.26 1.6 x 107 | 0.04 0.186
2. VIX 0.11 52 x107% 1] 0.13 0.60

8. FTSE

Table 2: Table with out-of-sample performance statistics

Additional clarifications:

Note 1: T provided for you the function compute_linear_regression(), which takes as INPUT:
- Training X matrix: X4, of size n by p
- Training y vector: Ys.qin of size n by 1
- Test X matrix: X, of size k by p
and performs multiple linear regression (without an intercept) on the training data, thus fitting

Ytrain ™ Xtrain y

and applies the obtained coefficients f,..., 5, to a test matrix X;s. The output is the forecast Jcs
based on X,.i;. This function will come in hand many times throughout the course, and especially in
your projects.

Note 2: I provided for you the function plot_cumsum(), which takes as input a matrix X of size T' x n
and plots the time series of the n different columns, on the same plot. Note that you can use this function
to plot the cumulative PNL from part (b)(i), if the argument is X - a matrix where entry X ; is the
cumulative PNL on stock ¢ on day d.

Note 3: T provided for you the function compute_Sharpe_Ratio(), which takes as input the time series
of PNL, and computes the Sharpe ratio.
Note 4: The function main_linear_regression() should get you started.

Note 5: The apply function comes in hand very often. For example, if A is a matrix of size days n x 8,
where A;; is the PNL of stock j on day ¢, to compute the column averages, you could do

apply(A, 2, mean, na.rm = TRUE)

3

where the second argument (2) refers to columns (use 1 for rows). It leads to applying the function mean
to each and every column of A, and the output would be a vector. Note you could also use the cumsum
function (instead of mean), and end result if a matrix with the cumulative pnl across time, for each
instrument. You could also pass, as a third argument, any function you want, including one which you
wrote.

Furthermore, if A is a multidimensional array, you could apply your function for various slices of the
array. For example, if A is 4-dimensional array

apply(A, ¢(1,2,4), mean)

would compute the mean across the 3rd dimension, and the output would be a 3-dimensional array.

