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INTRODUCTION

Two popular models of mutation in population-genetics are the infinite-
sites and finite-sites models; outlined below. We here present a model
of mutation which admits computations of likelihoods in a manner sim-
ilar to the former model, while retaining the flexibility of the latter.
Finite Sites Model (FSM)
Mutations affect sites distributed uniformly on {1, . . . , T}. State of pop-
ulation of size n encoded by S ∈ {A, G, C, T}n×T .

+ Can encode any set of sequences; easy to communicate.

- Computing likelihoods scales abysmally; even for “simple"
datasets.

Infinite Sites Model (ISM)
Mutations affect sites distributed uniformly on [0, 1]. For a countable
number of mutations, we only need to track if a site is segregating or
not. State of population encoded by S ∈ {0, 1}n×L, where L ≤ T
denotes the number of segregating sites

+ Compact representation of data when L� T .

+ Each step will almost surely lead to a lower-rank-state.a

+ Small state-space ⇒ traversing state-space easier ⇒ recursive
computation of likelihoods more feasible.

- Restrictive modeling assumptions (violated in practice).

- Unable to account for sites with >2 observed nucleotides.

Our Almost Infinite Sites Model bridges the gap between these two
models of mutation, by applying FSM-analogues of the simplifying as-
sumptions of the ISM–notably the indistinguishability of sites.By im-
posing an upper bound, b ≥ L, on the total number of mutations in
a genealogical history, the number of possible ancestral histories of a
population may be kept finite, and likelihoods may be recursively com-
puted.

arank(S) is the sum of the number of distinct haplotypes in S and the number of
segregating sites in S.

ENCODING SEQUENCES

Since populations and mutations are presumed to be exchangeable,
it is worth noting that S1 and S2 encode the same state (denoted
S1 ∼ S2) if and only if permutation-matrices Pr, Pc exist satisfying
S1 = PrS2Pc. Hence we distinguish between encodings of states S
(not unique), and states ψ = [S]∼ (unique).G A A A A A
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A sequence of states is referred to as admissible if it can be con-
structed from a coalescent process undergoing mutation by removing
events “from the bottom up".
An admissible sequence starting from ψ and terminating in a single
sequence is referred to as a genealogical history of ψ.

Two distinct genealogical histories of the same state (along with coa-
lescents demonstrating admissibility). Note that the right genealogical
history is not admissible under the ISM.

RECURSION – COMPUTING LIKELIHOODS

By summing the probabilities of all genealogical histories of a dataset,
we obtain its associated likelihood. Using the Markovian structure of
the coalescent, we may express the likelihood recursively.

P
( )

=
∑

Ψ potential
history of

P(Ψ) , P(ψ) =
∑

ψ′:P(ψ′→ψ)>0

P(ψ′)P(ψ′ → ψ)

We aim to determine P(ψ,B ≤ b); the joint probability of observing
sample configuration ψ = [S]∼ = (A,nr,nc) and the number of muta-
tions in the genealogical history of ψ (denoted by B) being bounded
from above by b > 0. To this end we make the following assumptions:

• Mergers in the genealogical history of ψ are governed by an un-
derlying Kingman-coalescent process.
• Mutation-events occur at rate θ

2 , and affect a site uniformly cho-
sen from {1 . . . T}

Taking a “forward-backward" approach similar to Griffiths (1989), we
obtain the following recurrence:
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Ancestral Configurations with upper bounds b = 2, 3, 4 (purple, black
and red respectively) for a simple dataset.

ALGORITHM – SOLVING THE RECURSION (1)

Although the recursion (1) can be used directly for computing P(ψ,B ≤
b) via naïve tail-recursion, this is highly inefficient. We explore the
following approach based on storing all values already computed.

Input S, b, and model-specific constants for (1)
Output P([S]∼ ,B ≤ b)

Initialise empty hash table H

if S = [0] (No segregating sites; 1 active lineage)
Return 1

Else If ∃S′ ∼ S : (S′,b) ∈ Keys(H) a

Look up P([S]∼ ,B ≤ b) = H(S′,b).
Return P([S]∼ ,B ≤ b)

Else if b ≥ bmin([S]∼)

Compute P([S]∼ ,B ≤ b) using recursion in formula (1)
Add key-value pair ((S,b) ,P([S]∼ ,B ≤ b)) to H

Else
Return 0

End

The algorithm has been implemented in Python; source, code is
available at: https://github.com/Cronjaeger/almost-infinite-
sites-recursions

aChecking this condition quickly is non-trivial. In our implementation it is done by ap-
plying a ∼-invariant hash-function and resolving collisions by checking if suitable Pr, Pc

can be constructed using a backtracking algorithm.

RESULTS & BENCHMARKING

We may estimate θ̂ML numerically using recursion (1).
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Likelihoods for a very simple dataset S = [ 0 0
1 0 ] and accompanying

MLE-estimates for varying b.
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The number of non-segregating sites impacts the mass gap
significantly: on the left 50% of sites are segregating; on the right 1%.

Some benchmarking-results for simulated data:
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SIMULATION – HOW IS THE INFINITE SITES ASSUMPTION VIOLATED?

We 1000 times simulate a Kingman-coalescent, and add mutations
under the finite sites hypothesis, until one of the following events have
occurred twice:

1. A site with > 2 nucleotides occurs.
2. A site with 2 nucleotides has been affected by > 2 mutations.
3. An incompatibility has ocurred, eg. S = [ A T T A

A T A T ]
T

4. Two mutations “cancel out"

3 types 2 types
2 mutations

3 gammete test passes

2 types
3 gammete test fails

1 type
2 mutations

0

100

200

300

400

500

600

fr
e
q
u
e
n
cy

Result of 1000 simulations stopped after 1 events
sequences = 8    sequence-length = 8
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Code for simulation and plot-generation code available at:
https://github.com/Cronjaeger/coalescent-simulations.

FUTURE WORK AND INTERESTING OPEN QUESTIONS

• This work was mainly motivated by wanting to analyse vi-
ral sequence-data for sampled regions with sufficiently high
mutation-rates that the ISA might be violated at a significant num-
ber of sites. This still remains to be done.

• Upper bounds the on run-time of the suggested algorithm remain
unknown. Even for the case when b is equal to the number of
segregating sites (recursion reduces to that of Griffiths ’89), no
literature could be found. The main factor of interest is the total
number of states considered, given an initial input ψ.

• Being able to give bounds on P (B ≤ b|ψ) would allow a more
informed way of picking b when applying our algorithm.

• Verifying if
∃S′ ∼ S : (S′,b) ∈ Keys(H)

holds is currently slow.

• A range of combinatorial and asymptotic questions regarding the
set of all configurations remain open; solving them might bring
us closer to understanding the nature and limitations of the algo-
rithm.

1. Given ψ, how many distinct genealogical histories of ψ with
up to b mutation-events exist?

2. Given ψ, how many distinct states ψ′ exist, which occur in at
least one such genealogical history?

3. What are the maxima and/or maximizers of the above
counts taken over the set of all ψ with rank(ψ) < R?

4. Can asymptotic bounds on the above quantities be ob-
tained?

It is worth noting that answering questions 1. and 2. cosresponds
to counting paths and nodes respectively in a graph such as the
one depicted on this poster.
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