
SM2 Computational Statistics
Hilary Term 2019

Week 6 Practical

The data that we will consider are daily log-returns from the Financial Times Stock Exchange 100
Index (FTSE 100) from January 1984 until February 2019. The FTSE 100 is a share index of the 100
largest companies listed on the London Stock exchange. The data are downloaded using the package
quantmod, which needs to be first installed.

#install.packages("quantmod") # if needed

library("quantmod")

ftse100 <- new.env()

getSymbols("^FTSE", env = ftse100, src = "yahoo",

from = as.Date("1984-03-01"), to = as.Date("2019-02-04"))

## [1] "FTSE"

FTSE <- ftse100$FTSE

head(FTSE)

## FTSE.Open FTSE.High FTSE.Low FTSE.Close FTSE.Volume

## 1984-03-01 1042.1 1047.1 1042.1 1046.1 0

## 1984-03-02 1048.8 1060.7 1048.8 1060.7 0

## 1984-03-05 1053.7 1053.7 1053.7 1053.7 0

## 1984-03-06 1053.7 1064.8 1050.9 1064.5 0

## 1984-03-07 1063.1 1063.1 1055.6 1055.6 0

## 1984-03-08 1055.6 1056.0 1050.9 1055.8 0

## FTSE.Adjusted

## 1984-03-01 1046.1

## 1984-03-02 1060.7

## 1984-03-05 1053.7

## 1984-03-06 1064.5

## 1984-03-07 1055.6

## 1984-03-08 1055.8

We are interested in the daily log-returns yt of the closing index, defined as

yt = log ct − log ct−1

where ct is the closing index at time t.

returns = diff(log(na.omit(FTSE$FTSE.Close)))

returns = returns[2:length(returns)]

names(returns)=c("FTSE logReturn")

head(returns)

## FTSE logReturn

## 1984-03-02 0.0138600809

## 1984-03-05 -0.0066212882

## 1984-03-06 0.0101974722

## 1984-03-07 -0.0083959024

## 1984-03-08 0.0001895169

## 1984-03-09 0.0040644008



Note that returns is not a standard R data frame. It is an object of the class xts, specifically created
to store and manage time-series data. Information on the xts class can be found at this url. An
important difference in the behaviour of xts objects is in the use of the “[ ]” operator. We can for
example access the data by entering the date directly, or a range of dates. Plotting xts objects also
automatically adds the dates as an x label.

class(returns)

## [1] "xts" "zoo"

print(returns["2000-01-04"])

## FTSE logReturn

## 2000-01-04 -0.03888374

print(returns["2016-06-22/2016-06-30"])

## FTSE logReturn

## 2016-06-22 0.005541438

## 2016-06-23 0.012207163

## 2016-06-24 -0.031966029

## 2016-06-27 -0.025824599

## 2016-06-28 0.026101445

## 2016-06-29 0.035154245

## 2016-06-30 0.022419351

print(returns["2019-01-25/"])

## FTSE logReturn

## 2019-01-25 -0.001438166

## 2019-01-28 -0.009161870

## 2019-01-29 0.012782709

## 2019-01-30 0.015636803

## 2019-01-31 0.003925069

## 2019-02-01 0.007334356

plot(returns["2000/2004"])
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If you want to convert the data into a matrix and extract the dates, you can use the following functions.

returns.mat = coredata(returns)

dates = index(returns)

class(returns.mat)

https://cran.r-project.org/web/packages/xts/vignettes/xts.pdf


## [1] "matrix"

class(dates)

## [1] "Date"

1 Question 1

1. Exploratory analysis

• Plot the whole dataset over time

• Plot the data over the year 1987

• Plot the data over 2008 and 2009

• Plot an histogram of the whole dataset

• Plot a normal qqplot of the whole dataset

• Compute some summary statistics of the data

2. Consider first that we ignore the temporal structure, and assume that the log-returns Y1, . . . , Yn
are iid from some unknown distribution F . Let F−1 be the associated quantile function. For a
given quantile θ(q) = F−1(q) with q ∈ (0, 1), we consider the plug-in estimator

θ̂n(q) = F−1
n (q)

where Fn is the empirical cdf.

• Calculate the estimates θ̂n(q) for q = 0.01, 0.25, 0.5, 0.75, 0.99.

• Using the nonparametric bootstrap, provide 99% confidence intervals for θ(q) and exp(θ(q))
for q = 0.01, 0.25, 0.5, 0.75, 0.99.

3. We now want to estimate the probability that the FTSE100 closing index increases by more
than 1% in a day that is

η = P(Yt ≥ log(1.01))

• Propose an unbiased and consistent estimator for η, and calculate the estimate.

• Using the nonparametric bootstrap, provide a 99% confidence interval for η

• Repeat the above steps to estimate the probability that the index increases by 5% in a day
and provide a 99% confidence interval

2 Question 2

We now want to identify periods of high volatility in the data. To do so, we consider a two-state
homogeneous hidden Markov model (X1, Y1, . . . , Xn, Yn) with state-space X = {1, 2} where 1 corre-
sponds to a normal volatility, and 2 to high volatility and observation space Y = R. The emission
density is given as

g1(y) = N (y; 0, σ21)

g2(y) = N (y; 0, σ22)

where σ1 = 0.01 and σ2 = 0.05. We define the state transition probabilities as A1,1 := P(Xt =
1|Xt−1 = 1) = P(Xt = 2|Xt−1 = 2) := A2,2 = 0.99, and uniform initial probability mass function.



• Derive a Viterbi algorithm to find the MAP estimate of the hidden states. You can adapt the
code from the lectures, but some modifications may be necessary to ensure numerical stability.
Explain why.

• Create a copy of the xts object returns, named returns.hv, and add a column “HighVolatility” to
this object, with value 1 if x̂t = 2, 0 otherwise

• Plot the log-returns and the estimated periods of high volatility on the same figure.

• Look at some of these periods and try to explain the high volatility.

• Plot a normal qqplot of the data in state 1 and another one for data in state 2. Comment on
ways to improve the goodness-of-fit of the hidden Markov model.

• Change the parameters A1,1, A2,2, σ1, σ2 of the HMM, and study the sensitivity of the MAP
estimates to the setting of the parameters.
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