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The course requires the following notions:
• Estimator; bias, variance and consistency of an estimator; confidence interval [Part A Statistics; SB1.1/SM1]
• Convergence of random variables [Part A Probability]

This document includes some R examples with datasets from the packages MASS, ISLR, BOOT. The algo-
rithms described are easy to implement and only require a few lines of code. The R package boot implements
more advanced bootstrap methods. Please report typos to caron@stats.ox.ac.uk.
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The Bootstrap belongs to the wider class of resampling methods. When introduced in 1979 by Bradley
Efron, it had a huge impact on statistics, as it offered a principled, simulation-based approach, for assigning
measures of accuracy to statistical estimates, and estimating biases, variances or obtaining approximate confi-
dence intervals. It applies to both parametric (when the distribution of the data is known and parametrized
by a finite-dimensional parameter) and nonparametric settings. Bootstrap ideas of “resampling the data” are
at the heart of subsequent popular statistical methods such as random forests, and still motivate nowadays the
development of novel statistical tools for handling massive datasets.

1 Motivating examples

Confidence interval for the median of a population. Let X1, . . . , Xn be independent identically dis-
tributed (iid) random variables from a cumulative distribution function (cdf) F and consider that we are
interested in the median m = F−1(0.5) of this distribution. We consider the following estimator

M̂n =

{
X((n+1)/2) if n odd
1
2 (X(n/2) +X(n/2+1)) if n even

(1)

where X(r) is the rth order statistic of the random sample (X1, . . . , Xn).

Example 1 (Wages). For example, assume that we are interested in the median wage in the mid-Atlantic states
of the USA in 2005. We consider the following dataset from the R package ISLR, which consists of the wages
of n = 447 workers in that region in 2005.

require('ISLR')

## Loading required package: ISLR

data(Wage)

x.wages = Wage$wage[Wage$year==2005]

head(x.wages, n=10L) # Show the first data

## [1] 75.04315 89.49248 50.40666 277.60142 101.40205 111.72085 73.77574

## [8] 200.54326 152.83880 77.73760

hist(x.wages, breaks=20,col='lightblue2')

Histogram of x.wages
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The median estimate is

mhat.wages = median(x.wages)

mhat.wages

## [1] 104.9215

The median estimate is just a point estimate for the population median m. How do we get a confidence
interval for m? If F is differentiable with continuous probability density function (pdf) f , then the asymptotic
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distribution of M̂n is1

√
n(M̂n −m)

d→ N
(

0,
1

4f2(m)

)
(2)

as n → ∞. However this does not help much as we cannot evaluate the term 1/(4f2(m)), the density f being

typically unknown. If we could evaluate σ2 = V(M̂n), then we could use the normal approximation to obtain
an approximate 1−α confidence interval. The bootstrap allows to obtain an estimate of the variance σ2 of the
estimator.

Alternatively, if we knew the quantiles qα/2 and q1−α/2 of the distribution of M̂n −m where

Pr(M̂n −m ≤ qx) = x

for x ∈ [0, 1], then we could use these quantiles to build a 1 − α confidence interval [M̂n − q1−α/2, M̂n − qα/2]
for m, as

Pr(M̂n − q1−α/2 ≤ m ≤ M̂n − qα/2) = Pr(qα/2 ≤ M̂n −m ≤ q1−α/2) = 1− α.

However, the quantiles are in general impossible to obtain analytically. The bootstrap provides estimates of the
quantiles qα/2 and q1−α/2 and thus approximate confidence intervals.

Bias and Variance of an estimator. LetX1, . . . , Xn be iid random variables from a pdf f(x; θ) parametrized
by θ. Let

θ̂n = t(X1, . . . , Xn) (3)

be some estimator of θ. In order to evaluate the accuracy of the estimator, we may be interested in evaluating
its bias E[θ̂n] − θ or its variance V[θ̂n]. Those quantities may not be analytically available. The bootstrap is
a general strategy to obtain estimates for these quantities. Similarly, we may also be interested in building
confidence intervals. For maximum likelihood estimators, we can use the asymptotic normality of the estimator
and the estimate of the variance to obtain this confidence interval (see Part A statistics). Alternatively, as

described above, if one could obtain estimates of the quantiles of the distribution of θ̂n−θ, then they could
be used to construct confidence intervals for the parameter of interest θ. The bootstrap allows to obtain these
estimates.

2 Background material

2.1 Some preliminary comments on notations

Let X = (X1, . . . , Xp) ∈ Rp be a continuous or discrete random variable with cumulative distribution function

F (x) = P(X1 ≤ x1, X2 ≤ x2, . . . , Xp ≤ xp)

where x = (x1, . . . , xp) ∈ Rp. If X is continuous, let f be its probability density function. If X is discrete,
let A ⊂ Rp be the finite (or countably infinite) sample space and f be its probability mass function. The
expectation of X is defined as

E(X) =

∫
Rp

xdF (x) =

{ ∑
x∈A xf(x) if x is discrete∫

Rp xf(x)dx if x is continuous

We will use the unifying notation
∫
Rp xdF (x) to define an expectation for both continuous and discrete random

variables. This notation has a special meaning, which some of you have seen in the Part A option on Integration
and measure theory. However, this course does not assume any background in measure theory, and we will just
consider

∫
Rp xdF (x) as a convenient notation.

2.2 Statistical functional

A statistical functional F(F ) is any function of the cdf F . Examples include the mean µ =
∫
R xdF (x), the

variance σ2 =
∫
R x

2dF (x)−
(∫

R xdF (x)
)2

or the median m = F−1(0.5).

1The proof is out of the scope of this course.
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2.3 Empirical distribution function

Definition 2. Let X1, . . . , Xn be independent and identically distributed real-valued random variables with cdf
F . The empirical cumulative distribution function is defined as

Fn(x) =
1

n

n∑
i=1

I(Xi ≤ x) =
|{ i | Xi ≤ x}|

n
(4)

where

I(Xi ≤ x) =

{
1 if Xi ≤ x
0 otherwise

.

Fn is a natural estimator for the cdf F when this one is completely unknown. It has the following attractive
properties.

Proposition 3. The empirical cdf estimator is
(i) Unbiased

E[Fn(x)] = F (x) for all x ∈ R and n ≥ 1

(ii) (Strongly) consistent

Fn(x)
as→ F (x) for all x as n→∞

(iii) Asymptotically normal

√
n(Fn(x)− F (x))

d→ N (0, F (x)(1− F (x))) for all x as n→∞

Proof. For any x ∈ R, the binary random variables I(X1 ≤ x), . . . , I(Xn ≤ x) are independently and identically
Bernoulli distributed with success probability F (x). Hence the discrete random variable nFn(x) is binomially
distributed nFn(x) ∼ Binomial(n, F (x)) and (i) follows. (ii) follows from the strong law of large numbers, and
(iii) from the central limit theorem.

ecdf.wages = ecdf(x.wages)

plot(ecdf.wages, xlab = 'x', ylab = 'Fn(x)', main = 'Empirical cdf', col='lightblue2')
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2.4 Recap: Monte Carlo integration

The Monte Carlo method is a way to approximate potentially high-dimensional integrals via simulation.

Definition 4 (Monte Carlo method). Let Y ∈ Rp be a continuous or discrete random variable with cdf G.
Consider

η = E (φ(Y )) =

∫
Rp

φ(y)dG(y)
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where φ : Rp → R. Let Y (1), ..., Y (B) be iid random variables with cdf G. Then

η̂B =
1

B

B∑
j=1

φ(Y (j))

is called the Monte Carlo estimator of the expectation η.

The Monte Carlo algorithm, which only requires to be able to simulate from G, is as follows.

Algorithm 1 Monte Carlo Algorithm

• Simulate independent Y (1), ..., Y (B) with cdf G
• Return η̂B = 1

B

∑B
j=1 φ(Y (j)).

Here are the properties of the Monte Carlo estimator, which follow from the law of large numbers and the
central limit theorem (see Part A Simulation for detailed proofs).

Proposition 5. The Monte Carlo estimator is
(i) Unbiased

E(η̂B) = η

for any B ≥ 1.
(ii) (Strongly) consistent

η̂B
as→ η as B →∞,

(iii) Asymptotically normal. If σ2 = V(φ(Y )) exists

√
B(η̂B −η)

d→ N (0, σ2) as B →∞.

For example, the Monte Carlo estimators of the mean and variance of Y are

µ̂B =
1

B

B∑
j=1

Y (j) as→ E(Y ),

σ̂2
B =

1

B

B∑
j=1

(Y (j) − µ̂B)2

=
1

B

B∑
j=1

(Y (j))2 −

 1

B

B∑
j=1

Y (j)

2

as→ V(Y ).

3 Bootstrap

About the name. The term “bootstrap” was introduced by Bradley Efron in “Bootstrap methods: another
look at the jackknife”, Annals of Statistics, 7, (1979) 1-26. In his book “An Introduction to the Bootstrap”
(1993) Efron explained that

“the use of the term bootstrap derives from the phrase to pull oneself up by one’s own bootstrap,
widely thought to be based on one of the eighteenth century ‘Adventures of Baron Munchausen’, by
Rudolph Erich Raspe. (The Baron had fallen to the bottom of a deep lake. Just when it looked like
all was lost, he thought to pick himself up by his own bootstraps.)”

Let X1, . . . , Xn be iid random variables with cdf F . The distribution F of the data is unknown, and we
cannot even simulate from F . Consider the estimator

θ̂n = t(X1, . . . , Xn) (5)

for estimating θ = F(F ) a statistical functional of F . The relation is represented below.

Real World: F ⇒ X1, . . . , Xn ⇒ θ̂n = t(X1, . . . , Xn)

Remark 6. The same notation will be used for random variables and their realizations (similarly for estima-
tors/estimates).
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3.1 Variance estimation

We are first interested in estimating the variance σ2 = VF (θ̂n) of the estimator θ̂n. We write VF to emphasize
the fact that the variance depends on the unknown cdf F .

An idealized variance estimator. Suppose first that we could simulate from the cdf F , that is that we could
reproduce the Real World and generate new datasets. Then we could use the Monte Carlo method described
in section 2.4 to obtain a Monte Carlo estimator for σ2 as follows.

• For j = 1, . . . , B,

– Let X
(j)
1 , . . . , X

(j)
n be iid from F and θ̂

(j)

n = t(X
(j)
1 , . . . , X

(j)
n )

• The Monte Carlo variance estimator is 1
B

∑B
j=1

(
θ̂
(j)

n − 1
B

∑B
j=1 θ̂

(j)

n

)2
.

However, the cdf F is unknown and we cannot simulate from it, so we cannot implement this estimator.

The bootstrap for variance estimation. The idea of the bootstrap is to
1. Replace the unknown cdf F by its (known) empirical cdf Fn defined in Equation (4),
2. Use the Monte Carlo method.
More formally, conditionally on X1, . . . , Xn, let X∗1 , . . . , X

∗
n be iid random variables with cdf Fn, and

θ̂
∗
n = t(X∗1 , . . . , X

∗
n). The bootstrap mimics the Real World by using the empirical cdf Fn

Real World: F ⇒ X1, . . . , Xn ⇒ θ̂n = t(X1, . . . , Xn)

Bootstrap World: Fn ⇒ X∗1 , . . . , X
∗
n ⇒ θ̂

∗
n = t(X∗1 , . . . , X

∗
n)

The bootstrap relies on two approximations

1. Approximate VF (θ̂n) by VFn(θ̂
∗
n) by using Fn and

2. Approximate VFn
(θ̂
∗
n) by Monte Carlo to obtain the bootstrap estimate σ̂2

n,B .
In a nutshell:

VF (θ̂n)
Empirical cdf' VFn

(θ̂
∗
n)

Monte Carlo' σ̂2
n,B (6)

Simulating X∗1 , . . . , X
∗
n from Fn is easy. Fn puts mass 1/n at each value {X1, . . . , Xn}. X∗1 , . . . , X∗n are thus

discrete random variables, and we can simulate from Fn by sampling with replacement from the original dataset
{X1, . . . , Xn}. The algorithm is described below.

Algorithm 2 Bootstrap algorithm for estimating the variance

Let X1, . . . , Xn be some data and θ̂n = t(X1, . . . , Xn).
• For j = 1, . . . , B

– Simulate X
∗(j)
1 , . . . , X

∗(j)
n

iid∼ Fn by sampling with replacement from {X1, . . . , Xn}
– Evaluate θ̂

∗(j)
n = t(X

∗(j)
1 , . . . , X

∗(j)
n )

• Return the bootstrap variance estimate

σ̂2
n,B =

1

B

B∑
j=1

θ̂∗(j)n − 1

B

B∑
j=1

θ̂
∗(j)
n

2

.

R implementation and illustration. Consider the median estimator M̂n introduced in Equation (1). We

will use the bootstrap method and Algorithm 2 to estimate its variance VF (M̂n).
Here is the R function which takes as input a dataset X = (X1, . . . , Xn) and the number B of Monte Carlo

samples, and returns the bootstrap samples M̂
∗(1)
n , . . . , M̂

∗(B)
n and the bootstrap variance estimate σ̂2

n,B .

bootstrap_variance_median <- function(X, B)

{
# Bootstrap variance estimate for the median estimator

# X: Data

# B: Number of Monte Carlo samples

n <- length(X)
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mhat.boot <- numeric(B)

for (j in 1:B){
X.boot <- sample(X,n,replace=TRUE) # Sample bootstrap data from Fn

mhat.boot[j] <- median(X.boot) # Median bootstrap samples

}
var.boot <- var(mhat.boot) # Evaluate the bootstrap variance estimate

return(list(var.boot = var.boot, mhat.boot = mhat.boot))

}

We start with a toy example, with a synthetic normal dataset. Let n = 500. Consider that the data
X1, . . . , Xn are normally distributed with mean 0.4 and variance 1. Of course for real applications, we do not
know the distribution of the data, but this example is used for illustration purposes.

# Generate the data

n <- 500

X <- rnorm(n,mean=0.4)

# Median estimate

mhat.gauss <- median(X)

We now estimate the variance of the median estimator using the bootstrap.

# Compute the bootstrap variance estimate

B <- 10000

results.gauss = bootstrap_variance_median(X,B)

mhat.boot.gauss = results.gauss$mhat.boot

hist(mhat.boot.gauss, xlab='mhat.boot', main='',col='lightblue2', breaks=20)

points(mhat.gauss,0,pch = 22,col='red',bg='red')
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Figure 1: Histogram of the B = 10000 bootstrap samples M̂
∗(1)
n , . . . , M̂

∗(B)
n of the median estimator and (red

square) estimate M̂n for the Gaussian synthetic dataset.

var.boot.gauss = results.gauss$var.boot

var.boot.gauss

## [1] 0.002028543

The B = 10000 bootstrap samples M̂
∗(1)
n , . . . , M̂

∗(B)
n used to obtain the bootstrap variance estimate are

shown in Figure 1. Note we never had to know the distribution of X1, . . . , Xn to obtain the bootstrap estimator:
all we needed is to sample by replacement from the original dataset.

Example 7 (Wages, continued). We consider the wages dataset considered in Section 1, and use the bootstrap
estimator to estimate the variance of the sample median.
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# Compute the bootstrap variance estimate

B <- 10000

results.wages = bootstrap_variance_median(x.wages,B)

mhat.boot.wages = results.wages$mhat.boot

hist(mhat.boot.wages, xlab='mhat.boot', main='',col='lightblue2', breaks=20)

points(mhat.wages,0,pch = 22,col='red',bg='red')
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Figure 2: Histogram of the B = 10000 bootstrap samples M̂
∗(1)
n , . . . , M̂

∗(B)
n of the median estimator and (red

square) estimate M̂n for the wages dataset.

var.boot.wages = results.wages$var.boot

var.boot.wages

## [1] 5.496774

3.2 Confidence intervals

3.2.1 Normal confidence intervals

For α ∈ (0, 1), we recall that zα is defined by Φ(zα) = 1 − α where Φ is the cdf of a N (0, 1) random variable.

If the central limit theorem holds for the estimator θ̂n

θ̂n−θ√
VF (θ̂n)

d−→ N (0, 1) (7)

or more generally if θ̂n−θ√
VF (θ̂n)

d' N (0, 1), then we can use the bootstrap variance estimate σ̂2
n,B ' VF (θ̂n) to

form 1− α confidence intervals as

P(θ̂n−zα/2 σ̂n,B ≤ θ ≤ θ̂n +zα/2 σ̂n,B) = P

(
θ̂n−θ
σ̂n,B

∈ [−zα/2,+zα/2]

)

' P

 θ̂n−θ√
VF (θ̂n)

∈ [−zα/2,+zα/2]

 [Bootstrap]

' 1− α [CLT]

Example 8 (Wages (continued)). We use the normal approximation to obtain a 95% confidence interval for
the population median m in the mid-Atlantic states of the USA in 2005.
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alpha = 0.05

ci.bootnormal.wages = c(mhat.wages - sqrt(var.boot.wages)* qnorm(1-alpha/2),

mhat.wages + sqrt(var.boot.wages)* qnorm(1-alpha/2))

ci.bootnormal.wages

## [1] 100.3263 109.5167

3.2.2 Pivotal confidence intervals

Consider the random variable Rn = θ̂n−θ, called the pivot. Let Hn(r) = P(Rn ≤ r) be the (unknown) cdf of
Rn, H−1n the associated quantile function

H−1n (q) = inf{x : H(x) > q} (8)

and let qα = H−1n (α) be the α quantile of Hn. If we knew qα/2 and q1−α/2, we could trivially use those to
construct a 1− α confidence intervals as

P(θ̂n−q1−α/2 ≤ θ ≤ θ̂n−qα/2) = P(Rn ∈ [qα/2, q1−α/2]) = 1− α

However qα/2 and q1−α/2 are unknown. We can use the bootstrap to obtain an approximation of these quantiles.
The idea is to use the distribution

H∗n(r) = PFn
(R∗n ≤ r)

of R∗n = θ̂
∗
n− θ̂n conditional on (X1, . . . , Xn) as an approximation to the distribution Hn of Rn = θ̂n−θ. H∗n

can be approximated by Monte Carlo methods to obtain the bootstrap estimate Ĥ∗n,B of the cdf. In a nutshell:

Hn
Empirical cdf' H∗n

Monte Carlo' Ĥ∗n,B

Let θ̂
∗(1)
n , . . . , θ̂

∗(B)

n be the bootstrap samples. The bootstrap estimator of Hn is defined as

Ĥ∗n,B(r) =
1

B

B∑
j=1

I(R∗(j)n ≤ r) (9)

where R
∗(j)
n = θ̂

∗(j)
n − θ̂n. From Ĥ∗n,B we can obtain estimators of statistical functionals of Hn, such as the

quantiles
q̂∗α = Ĥ∗ −1n,B (α)

and build the bootstrap pivotal 1− α confidence interval

C∗n = [θ̂n−q̂∗1−α/2, θ̂n−q̂
∗
α/2].

Note that we can rearrange this expression as a function of the quantiles of the bootstrap samples (θ̂
∗(1)
n , . . . , θ̂

∗(B)

n ).

As R
∗(j)
n = θ̂

∗(j)
n − θ̂n, we have

q̂∗α = q̂θ∗α − θ̂n,

where q̂θ∗α is the α quantile of the bootstrap samples (θ̂
∗(1)
n , . . . , θ̂

∗(B)

n ). As a conclusion,

Definition 9. The 1− α bootstrap pivotal confidence interval is given by

C∗n = [2 θ̂n−q̂θ∗1−α/2, 2 θ̂n−q̂
θ∗
α/2]. (10)

where q̂θ∗α/2 and q̂θ∗1−α/2 are the α/2 and 1− α/2 quantiles of the bootstrap samples θ̂
∗(1)
n , . . . , θ̂

∗(B)

n .

Example 10 (Wages (continued)). We will use the bootstrap pivotal approximation to obtain a 95% confidence
interval for the median m.

ci.bootpivot.wages = c(2*mhat.wages-quantile(mhat.boot.wages, 1-alpha/2,names=FALSE) ,

2*mhat.wages-quantile(mhat.boot.wages,alpha/2,names=FALSE))

print(ci.bootpivot.wages)

## [1] 100.0090 109.0787
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Example 11 (Confidence intervals for correlation). Consider the following dataset that gives the average brain
and body weights for 28 species of land animals.

library('MASS')

data(Animals)

head(Animals)

## body brain

## Mountain beaver 1.35 8.1

## Cow 465.00 423.0

## Grey wolf 36.33 119.5

## Goat 27.66 115.0

## Guinea pig 1.04 5.5

## Dipliodocus 11700.00 50.0

body <- log(Animals[,"body"])

brain <- log(Animals[,"brain"])

plot(body, brain, xlab='log(body)', ylab='log(brain)',pch=21,col='lightblue2', bg='lightblue2')
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We are interested in the correlation between the log-average brain weight and the log-average body weight,
and want to obtain a 95% confidence interval for the correlation using the pivotal bootstrap.

corhat = cor(body, brain)

corhat

## [1] 0.7794935

B <- 20000

n <- length(body)

corhat.boot <- numeric(B)

for (j in 1:B){
ind <- sample(1:n,n,replace=TRUE)

corhat.boot[j] <- cor(body[ind],brain[ind])

}
hist(corhat.boot, col='lightblue2')
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Histogram of corhat.boot
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ci.bootpivot.cor <- c(2*corhat - quantile(corhat.boot, probs=1-alpha/2, names=FALSE),

2*corhat - quantile(corhat.boot, probs=alpha/2, names=FALSE))

ci.bootpivot.cor

## [1] 0.6019583 1.0074239

3.3 Bias estimation

One is often also interested in bias estimation, where the bias of an estimator θ̂n is

b := EF (θ̂n)− θ

Bias estimation is often difficult but can be achieved with the bootstrap with

b̂n = EFn
(θ̂
∗
n)− θ̂n

and using bootstrap samples θ̂
∗(j)
n for j = 1, . . . , B to approximate EFn(θ̂

∗
n), just as in bootstrap variance

estimation. The bootstrap bias estimator is therefore

b̂n,B =

 1

B

B∑
j=1

θ̂
∗(j)
n

− θ̂n . (11)

Example 12 (Census data). The population for 49 major cities in the US, sampled randomly from the 196
largest cities in 1920, is known for the years 1920 and 1930. The ratio of the average population should serve as a
scaling information to adjust census information from 1920 for 1930 in the country. Let ((X11, X12), . . . , (Xn1, Xn2))
where Xi1 is the population of city i in 1920 and Xi2 is the population of the city i in 1930. (X11, . . . , Xn1) are
assumed iid from some cdf F with unknown mean µ1. Similarly, (X12, . . . , Xn2) are assumed iid from some cdf
G with unknown mean µ2. We are interested in estimating the ratio of the average population ξ = µ2

µ1
and use

as an estimator the ratio of the empirical means

ξ̂n =

∑n
i=1Xi2∑n
i=1Xi1

.

require(boot) # for the data only

## Loading required package: boot

head(bigcity)
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## u x

## 1 138 143

## 2 93 104

## 3 61 69

## 4 179 260

## 5 48 75

## 6 37 63

# Plot the data

barplot(t(bigcity),beside=TRUE,ylab='Population (thousands)',xlab='Cities',

legend.text=c('1920','1930'),axisnames=FALSE,col=c('lightblue2','dodgerblue3'),

border=NA,args.legend=list(bty='n',border=NA))
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pop1920 = bigcity$u

pop1930 = bigcity$x

ratiohat <- mean(pop1930)/mean(pop1920)

ratiohat

## [1] 1.239019

# Bootstrap bias estimate

n <- nrow(bigcity)

B <- 10000

ratiohat.boot <- rep(0, B)

for (j in 1:B) {
ind <- sample(n, replace=TRUE)

pop1920mean.boot <- mean(pop1920[ind])

pop1930mean.boot <- mean(pop1930[ind])

ratiohat.boot[j] <- pop1930mean.boot / pop1920mean.boot

}
bias.boot <- mean(ratiohat.boot) - ratiohat

bias.boot

## [1] 0.00175139

4 Properties of the Bootstrap

The bootstrap introduces two approximations: the empirical cdf approximation and the Monte Carlo approxi-
mation. The Monte Carlo estimator is consistent, and the Monte Carlo error can be made arbitrarily small by
taking a sufficiently large number of Monte Carlo samples B. In analysing the properties of the bootstrap, the
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Monte Carlo error is therefore usually ignored, and we focus on the error introduced by the use of the empirical
cdf Fn instead of the true cdf F . Consistency is studied as the number n of data goes to infinity.

The bootstrap uses the distribution of R∗n = θ̂
∗
n− θ̂n as an approximation to the (unknown) distribution of

Rn = θ̂n−θ. To study consistency, we need to appropriately scale these random variables. Let

H̃n(x) := PF (anRn ≤ x)

H̃∗Fn
(x) := PFn(anR

∗
n ≤ x)

where an is some appropriate scaling; in classical situations an =
√
n. H̃n is the fixed cdf of interest. The

bootstrap cdf H̃∗Fn
is a random cdf, as it depends on the original sample (X1, . . . , Xn) through Fn.

Definition 13. Let ρ be some metric on the space of cdfs. The bootstrap is called to be (weakly) consistent for

θ̂n under the metric ρ if

ρ(H̃n, H̃
∗
Fn

)
p−→ 0 n→∞

and strongly consistent if the result holds almost surely.

As an example, the following result, proved by Singh in 1981, holds for sample mean estimators.

Theorem 14 (Boostrap consistency for sample mean). Let X1, . . . , Xn be iid real-valued random variables from

a cdf F with EF (X2
i ) <∞ and θ̂n = 1

n

∑n
i=1Xi. Let K be the Kolmogorov metric

K(F,G) = sup
x∈R
|F (x)−G(x)|.

The bootstrap is (strongly) consistent under the Kolmogorov metric K

K(H̃n, H̃
∗
Fn

)
as−→ 0 n→∞.

Consistency of the bootstrap usually implies that the variance can be consistently estimated,

VFn
(θ̂
∗
n)

VF (θ̂n)

p→ 1 n→∞.

The same holds for the bias,

EFn
(θ̂
∗
n)− θ̂n

EF (θ̂n)− θ
p→ 1 n→∞.

Note that the bootstrap is not always consistent, despite its attractiveness.

5 Bootstrap for regression

Let (X1, Y1), . . . , (Xn, Yn) be paired iid random variables assumed to be drawn from

Yi = g(Xi, θ) + εi

where ε1, . . . , εn are iid from some unknown cdf F and θ ∈ Rp. g is some known function, for example
g(Xi, θ) = Xiθ. Let θ̂n = t((X1, Y1), . . . , (Xn, Yn)) be some estimator of θ, for example the least square
estimator. For i = 1, . . . , n, let

ε̂i = Yi − g(Xi, θ̂n).

be the fitted residuals. Two bootstrap strategies are possible here:
1. Resample the data ((X1, Y1), . . . , (Xn, Yn))
2. Resample the residuals (ε̂1, . . . , ε̂n)

The first approach is the standard nonparametric bootstrap approach. The second approach makes use of
the parametric part g(Xi, θ) of the data generating mechanism and is called semiparametric bootstrap.

Nonparametric paired bootstrap.
• For j = 1, . . . , B

– Simulate ((X
∗(j)
1 , Y

∗(j)
1 ), . . . , (X

∗(j)
n , Y

∗(j)
n )) by sampling with replacement from {(X1, Y1), . . . , (Xn, Yn)}

– Evaluate θ̂
∗(j)
n = t((X

∗(j)
1 , Y

∗(j)
1 ), . . . , (X

∗(j)
n , Y

∗(j)
n ))

• Return the bootstrap estimate. For example, for θ ∈ R, the variance estimate is

σ̂2
n,B =

1

B

B∑
j=1

θ̂∗(j)n − 1

B

B∑
j=1

θ̂
∗(j)
n

2

.
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Semiparametric residual bootstrap
• For j = 1, . . . , B

– Simulate (ε̂
∗(j)
1 , . . . , ε̂

∗(j)
n ) by sampling with replacement from (ε̂1, . . . , ε̂n)

– For i = 1, . . . , n, Set Y
∗(j)
i = g(Xi, θ̂n) + ε̂

∗(j)
i

– Evaluate θ̂
∗(j)
n = t((X1, Y

∗(j)
1 ), . . . , (Xn, Y

∗(j)
n ))

• Return the bootstrap estimate. For example, for θ ∈ R, the variance estimate is

σ̂2
n,B =

1

B

B∑
j=1

θ̂∗(j)n − 1

B

B∑
j=1

θ̂
∗(j)
n

2

.

6 Parametric bootstrap

The methods seen so far are nonparametric, in the sense that no assumption has been made on the cdf F . In
the parametric setting, we assume that X1, . . . , Xn are iid random variables with cdf Fθ where θ is an unknown
parameter of the model we wish to estimate. θ̂n = t(X1, . . . , Xn) is some estimator of θ, for example a maximum
likelihood estimator. The parametric bootstrap proceeds similarly to the nonparametric bootstrap described
above, except that it uses the fitted cdf Fθ̂n instead of the empirical cdf to obtain the bootstrap samples. If the
parametric model is correctly specified, this will lead to superior performances compared to the nonparametric
bootstrap.
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