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Simulation and Statistical Programming
I Lectures on Simulation (Prof. J. Berestycki):

Tuesdays 2-3pm Weeks 1-8.
LG.01.

I Computer Lab on Statistical Programming (Prof. G. Nicholls):
Tuesday 3-5pm Weeks 1,2,3 Friday 9-11am Weeks 5,6,8.
LG.02.

I Departmental problem classes:
Mon. 2-3pm (Berestycki) or Thursday (Caterini). 1.30-2.30 pm -
Weeks 3,5,7,TT1.
LG.??,.

I Hand in problem sheet solutions by Thursday 10 am of previous week
for both classes.

I Webpage:
http://www.stats.ox.ac.uk/~berestyc/teaching/A12.html

I This course builds upon the notes and slides of Geoff Nicholls, Arnaud
Doucet, Yee Whye Teh and Matti Vihola.
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Monte Carlo Simulation Methods

I Computational tools for the simulation of random variables and the
approximation of integrals/expectations.

I These simulation methods, aka Monte Carlo methods, are used in
many fields including statistical physics, computational chemistry,
statistical inference, genetics, finance etc.

I The Metropolis algorithm was named the top algorithm of the 20th
century by a committee of mathematicians, computer scientists &
physicists.

I With the dramatic increase of computational power, Monte Carlo
methods are increasingly used.
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Objectives of the Course

I Introduce the main tools for the simulation of random variables and
the approximation of multidimensional integrals:
I Integration by Monte Carlo,
I inversion method,
I transformation method,
I rejection sampling,
I importance sampling,
I Markov chain Monte Carlo including Metropolis-Hastings.

I Understand the theoretical foundations and convergence properties of
these methods.

I Learn to derive and implement specific algorithms for given random
variables.
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Computing Expectations
I Let X be either

I a discrete random variable (r.v.) taking values in a countable or finite
set Ω, with p.m.f. fX

I or a continuous r.v. taking values in Ω = Rd, with p.d.f. fX

I Assume you are interested in computing

θ = E (φ(X))

=

{ ∑
x∈Ω φ(x)fX(x) if X is discrete∫

Ω φ(x)fX(x)dx if X is continuous

where φ : Ω→ R.

I It is impossible to compute θ exactly in most realistic applications.

I Even if it is possible (for Ω finite) the number of elements may be so
huge that it is practically impossible

I Example: Ω = Rd, X ∼ N (µ,Σ) and φ(x) = I
(∑d

k=1 x
2
k ≥ α

)
.

I Example: Ω = Rd, X ∼ N (µ,Σ) and φ(x) = I (x1 < 0, ..., xd < 0) .
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Example: Queuing Systems
I Customers arrive at a shop and queue to be served. Their requests

require varying amount of time.
I The manager cares about customer satisfaction and not excessively

exceeding the 9am-5pm working day of his employees.
I Mathematically we could set up stochastic models for the arrival

process of customers and for the service time based on past
experience.

I Question: If the shop assistants continue to deal with all customers
in the shop at 5pm, what is the probability that they will have served
all the customers by 5.30pm?

I If we call X ∈ N the number of customers in the shop at 5.30pm then
the probability of interest is

P (X = 0) = E (I(X = 0)) .

I For realistic models, we typically do not know analytically the
distribution of X.
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Example: Particle in a Random Medium

I A particle (Xt)t=1,2,... evolves according to a stochastic model on
Ω = Rd.

I At each time step t, it is absorbed with probability 1−G(Xt) where
G : Ω→ [0, 1].

I Question: What is the probability that the particle has not yet been
absorbed at time T?

I The probability of interest is

P (not absorbed at time T ) = E [G(X1)G(X2) · · ·G(XT )] .

I For realistic models, we cannot compute this probability.
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Example: Ising Model
I The Ising model serves to model the behavior of a magnet and is the

best known/most researched model in statistical physics.

I The magnetism of a material is modelled by the collective
contribution of dipole moments of many atomic spins.

I Consider a simple 2D-Ising model on a finite lattice
G ={1, 2, ...,m} × {1, 2, ...,m} where each site σ = (i, j) hosts a
particle with a +1 or -1 spin modeled as a r.v. Xσ.

I The distribution of X = {Xσ}σ∈G on {−1, 1}m2
is given by

π(x) =
exp(−βU(x))

Zβ

where β > 0 is the inverse temperature and the potential energy is

U(x) = −J
∑
σ∼σ′

xσxσ′

I Physicists are interested in computing E [U(X)] and Zβ.
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Example: Ising Model

Sample from an Ising model for m = 250.
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Bayesian Inference
I Suppose (X,Y ) are both continuous r.v. with a joint density
fX,Y (x, y).

I Think of Y as data, and X as unknown parameters of interest
I We have

fX,Y (x, y) = fX(x) fY |X(y|x)

where, in many statistics problems, fX(x) can be thought of as a
prior and fY |X(y|x) as a likelihood function for a given Y = y.

I Using Bayes’ rule, we have

fX|Y (x|y) =
fX(x) fY |X(y|x)

fY (y)
.

I For most problems of interest,fX|Y (x|y) does not admit an analytic
expression and we cannot compute

E (φ(X)|Y = y) =

∫
φ(x)fX|Y (x|y)dx.
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Monte Carlo Integration

Definition (Monte Carlo method)

Let X be either a discrete r.v. taking values in a countable or finite set Ω,
with p.m.f. fX , or a continuous r.v. taking values in Ω = Rd, with p.d.f.
fX . Consider

θ = E (φ(X)) =

{ ∑
x∈Ω φ(x)fX(x) if X is discrete∫

Ω φ(x)fX(x)dx if X is continuous

where φ : Ω→ R. Let X1, ..., Xn be i.i.d. r.v. with p.d.f. (or p.m.f.) fX .
Then

θ̂n =
1

n

n∑
i=1

φ(Xi),

is called the Monte Carlo estimator of the expectation θ.

I Monte Carlo methods can be thought of as a stochastic way to
approximate integrals.
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Monte Carlo Integration

Algorithm 1 Monte Carlo Algorithm
I Simulate independent X1, ..., Xn with p.m.f. or p.d.f. fX
I Return θ̂n = 1

n

∑n
i=1 φ(Xi).
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Computing Pi with Monte Carlo Methods

I Consider the 2× 2 square, say S ⊆R2 with inscribed disk D of radius
1.
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A 2× 2 square S with inscribed disk D of radius 1.

Part A Simulation. HT 2019. J. Berestycki. 16 / 66



Computing Pi with Monte Carlo Methods
I We have ∫ ∫

D dx1dx2∫ ∫
S dx1dx2

=
π

4
.

I How could you estimate this quantity through simulation?∫ ∫
D dx1dx2∫ ∫
S dx1dx2

=

∫ ∫
S
I ((x1, x2) ∈ D)

1

4
dx1dx2

= E [φ(X1, X2)] = θ

where the expectation is w.r.t. the uniform distribution on S and

φ(X1, X2) = I ((X1, X2) ∈ D) .

I To sample uniformly on S = (−1, 1)× (−1, 1) then simply use

X1 = 2U1 − 1, X2 = 2U2 − 1

where U1, U2 ∼ U(0, 1).
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Computing Pi with Monte Carlo Methods

n <- 1000

x <- array(0, c(2,1000))

t <- array(0, c(1,1000))

for (i in 1:1000) {

# generate point in square

x[1,i] <- 2*runif(1)-1

x[2,i] <- 2*runif(1)-1

# compute phi(x); test whether in disk

if (x[1,i]*x[1,i] + x[2,i]*x[2,i] <= 1) {

t[i] <- 1

} else {

t[i] <- 0

}

}

print(sum(t)/n*4)
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Computing Pi with Monte Carlo Methods

−1.5 −1 −0.5 0 0.5 1 1.5
−1.5

−1

−0.5

0

0.5

1

1.5

A 2× 2 square S with inscribed disk D of radius 1 and Monte Carlo
samples.
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Computing Pi with Monte Carlo Methods
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θ̂n − θ as a function of the number of samples n.
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Computing Pi with Monte Carlo Methods
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θ̂n − θ as a function of the number of samples n, 100 independent
realizations.
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Applications
I Toy example: simulate a large number n of independent r.v.
Xi ∼ N (µ,Σ) and

θ̂n =
1

n

n∑
i=1

I

(
d∑

k=1

X2
k,i ≥ α

)
.

I Queuing: simulate a large number n of days using your stochastic
models for the arrival process of customers and for the service time
and compute

θ̂n =
1

n

n∑
i=1

I (Xi = 0)

where Xi is the number of customers in the shop at 5.30pm for ith
sample.

I Particle in Random Medium: simulate a large number n of particle
paths (X1,i, X2,i, ..., XT,i) where i = 1, ..., n and compute

θ̂n =
1

n

n∑
i=1

G(X1,i)G(X2,i) · · ·G(XT,i)
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Monte Carlo Integration: Properties
I Proposition: Assume θ = E (φ(X)) exists. Then the Monte Carlo

estimator θ̂n has the following properties
I Unbiasedness

E
(
θ̂n

)
= θ

I Strong consistency

θ̂n → θ almost surely as n→∞

I Proof: We have

E
(
θ̂n

)
=

1

n

n∑
i=1

E (φ(Xi)) = θ.

Strong consistency is a consequence of the strong law of large
numbers applied to Yi = φ(Xi) which is applicable as θ = E (φ(X))
is assumed to exist.
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Monte Carlo Integration: Central Limit Theorem
I Proposition: Assume θ = E (φ(X)) and σ2 = V (φ(X)) exist then

E
(

(θ̂n − θ)2
)

= V
(
θ̂n

)
=
σ2

n

and √
n

σ

(
θ̂n − θ

)
d→ N (0, 1).

I Proof. We have E
(

(θ̂n − θ)2
)

= V
(
θ̂n

)
as E

(
θ̂n

)
= θ and

V
(
θ̂n

)
=

1

n2

n∑
i=1

V (φ(Xi)) =
σ2

n
.

The CLT applied to Yi = φ(Xi) tells us that

Y1 + · · ·+ Yn − nθ
σ
√
n

d→ N (0, 1)

so the result follows as θ̂n = 1
n (Y1 + · · ·+ Yn) .
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Monte Carlo Integration: Variance Estimation
I Proposition: Assume σ2 = V (φ(X)) exists then

S2
φ(X) =

1

n− 1

n∑
i=1

(
φ(Xi)− θ̂n

)2

is an unbiased sample variance estimator of σ2.
I Proof. Let Yi = φ(Xi) then we have

E
(
S2
φ(X)

)
=

1

n− 1

n∑
i=1

E
((
Yi − Y

)2)
=

1

n− 1
E

(
n∑
i=1

Y 2
i − nY 2

)

=
n
(
V (Y ) + θ2

)
− n

(
V
(
Y
)

+ θ2
)

n− 1
= V (Y ) = V (φ(X)) .

where Y = φ(X) and Y = 1
n

∑n
i=1 Yi.
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How Good is The Estimator?
I Chebyshev’s inequality yields the bound

P
(∣∣∣θ̂n − θ∣∣∣ > c

σ√
n

)
≤

V
(
θ̂n

)
c2σ2/n

=
1

c2
.

I Another estimate follows from the CLT for large n

√
n

σ

(
θ̂n − θ

)
d
≈ N (0, 1)⇒ P

(∣∣∣θ̂n − θ∣∣∣ > c
σ√
n

)
≈ 2 (1− Φ(c)) .

I Hence by choosing c = cα s.t. 2 (1− Φ(cα)) = α, an approximate
(1− α)100%-CI for θ is(

θ̂n ± cα
σ√
n

)
≈
(
θ̂n ± cα

Sφ(X)√
n

)
.
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Monte Carlo Integration

I Whatever being Ω; e.g. Ω = R or Ω = R1000, the error is still in
σ/
√
n.

I This is in contrast with deterministic methods. The error in a product
trapezoidal rule in d dimensions is O(n−2/d) for twice continuously
differentiable integrands.

I It is sometimes said erroneously that it beats the curse of
dimensionality but this is generally not true as σ2 typically depends of
dim(Ω).

Part A Simulation. HT 2019. J. Berestycki. 27 / 66



Pseudo-random numbers

I The aim of the game is to be able to generate complicated random
variables and stochastic models.

I Henceforth, we will assume that we have access to a sequence of
independent random variables (Ui, i ≥ 1) that are uniformly
distributed on (0, 1); i.e. Ui ∼ U [0, 1].

I In R, the command u←runif(100) return 100 realizations of uniform
r.v. in (0, 1).

I Strictly speaking, we only have access to pseudo-random
(deterministic) numbers.

I The behaviour of modern random number generators (constructed on
number theory) resembles mathematical random numbers in many
respects: standard statistical tests for uniformity, independence, etc.
do not show significant deviations.
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Generating Random Variables Using Inversion

I A function F : R→ [0, 1] is a cumulative distribution function (cdf) if
- F is increasing; i.e. if x ≤ y then F (x) ≤ F (y)
- F is right continuous; i.e. F (x+ ε)→ F (x) as ε→ 0 (ε > 0)
- F (x)→ 0 as x→ −∞ and F (x)→ 1 as x→ +∞.

I A random variable X ∈ R has cdf F if P (X ≤ x) = F (x) for all
x ∈ R.

I If F is differentiable on R, with derivative f , then X is continuously
distributed with probability density function (pdf) f .
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Generating Random Variables Using Inversion

I Proposition. Let F be a continuous and strictly increasing cdf on R,
with inverse F−1 : [0, 1]→ R. Let U ∼ U [0, 1] then X = F−1(U) has
cdf F.

I Proof. We have

P (X ≤ x) = P
(
F−1(U) ≤ x

)
= P (U ≤ F (x))

= F (x).

I Proposition. Let F be a cdf on R and define its generalized inverse
F−1 : [0, 1]→ R,

F−1(u) = inf {x ∈ R;F (x) ≥ u} .

Let U ∼ U [0, 1] then X = F−1(U) has cdf F.

Part A Simulation. HT 2019. J. Berestycki. 33 / 66



Illustration of the Inversion Method
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Top: pdf of a Gaussian r.v., bottom: associated cdf.

Part A Simulation. HT 2019. J. Berestycki. 34 / 66



Examples

I Weibull distribution. Let α, λ > 0 then the Weibull cdf is given by

F (x) = 1− exp (−λxα) , x ≥ 0.

We calculate

u = F (x)⇔ log (1− u) = −λxα

⇔ x =

(
− log (1− u)

λ

)1/α

.

I As (1− U) ∼ U [0, 1] when U ∼ U [0, 1] we can use

X =

(
− logU

λ

)1/α

.
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Examples
I Cauchy distribution. It has pdf and cdf

f(x) =
1

π (1 + x2)
, F (x) =

1

2
+
arc tanx

π

We have

u = F (x)⇔ u =
1

2
+
arc tanx

π

⇔ x = tan

(
π

(
u− 1

2

))
I Logistic distribution. It has pdf and cdf

f(x) =
exp(−x)

(1 + exp(−x))2 , F (x) =
1

1 + exp(−x)

⇔ x = log

(
u

1− u

)
.

I Practice: Derive an algorithm to simulate from an Exponential
random variable with rate λ > 0.
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Generating Discrete Random Variables Using Inversion

I If X is a discrete N−r.v. with P (X = n) = p(n), we get

F (x) =
∑bxc

j=0 p(j) and F−1(u) is x ∈ N such that

x−1∑
j=0

p(j) < u ≤
x∑
j=0

p(j)

with the LHS= 0 if x = 0.

I Note: the mapping at the values F (n) are irrelevant.

I Note: the same method is applicable to any discrete valued r.v. X,
P (X = xn) = p(n).
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Illustration of the Inversion Method: Discrete case
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Example: Geometric Distribution

I If 0 < p < 1 and q = 1− p and we want to simulate X ∼ Geom(p)
then

p(x) = pqx−1, F (x) = 1− qx x = 1, 2, 3...

I The smallest x ∈ N giving F (x) ≥ u is the smallest x ≥ 1 satisfying

x ≥ log(1− u)/ log(q)

and this is given by

x = F−1(u) =

⌈
log(1− u)

log(q)

⌉
where dxe rounds up and we could replace 1− u with u.
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Transformation Methods

I Suppose we have a random variable Y ∼ Q, Y ∈ ΩQ, which we can
simulate (eg, by inversion) and some other variable X ∼ P , X ∈ ΩP ,
which we wish to simulate.

I Suppose we can find a function ϕ : ΩQ → ΩP with the property that
X = ϕ(Y ).

I Then we can simulate from X by first simulating Y ∼ Q, and then
set X = ϕ(Y ).

I Inversion is a special case of this idea.

I We may generalize this idea to take functions of collections of
variables with different distributions.
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Transformation Methods

I Example: Let Yi, i = 1, 2, ..., α, be iid variables with Yi ∼ Exp(1) and
X = β−1

∑α
i=1 Yi then X ∼ Gamma(α, β).

Proof: The MGF of the random variable X is

E
(
etX
)

=

α∏
i=1

E
(
eβ
−1tYi

)
= (1− t/β)−α

which is the MGF of a Gamma(α, β) variate.
Incidentally, the Gamma(α, β) density is fX(x) = βα

Γ(α)x
α−1e−βx for

x > 0.

I Practice: A generalized gamma variable Z with parameters
a > 0, b > 0, σ > 0 has density

fZ(z) =
σba

Γ(a/σ)
za−1e−(bz)σ .

Derive an algorithm to simulate from Z.
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Transformation Methods: Box-Muller Algorithm

I For continuous random variables, a tool is the transformation/change
of variables formula for pdf.

I Proposition. If R2 ∼ Exp(1
2) and Θ ∼ U [0, 2π] are independent then

X = R cos Θ, Y = R sin Θ are independent with X ∼ N (0, 1),
Y ∼ N (0, 1).
Proof: We have fR2,Θ(r2, θ) = 1

2 exp
(
−r2/2

)
1

2π and

fX,Y (x, y) = fR2,Θ(r2, θ)

∣∣∣∣det
∂(r2, θ)

∂(x, y)

∣∣∣∣
where∣∣∣∣det
∂(r2, θ)

∂(x, y)

∣∣∣∣−1

=

∣∣∣∣det

( ∂x
∂r2

∂x
∂θ

∂y
∂r2

∂y
∂θ

)∣∣∣∣ =

∣∣∣∣det

(
cos θ
2r −r sin θ

sin θ
2r r cos θ

)∣∣∣∣ =
1

2
.
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Transformation Methods: Box-Muller Algorithm

I Let U1 ∼ U [0, 1] and U2 ∼ U [0, 1] then

R2 = −2 log(U1) ∼ Exp

(
1

2

)
Θ = 2πU2 ∼ U [0, 2π]

and

X = R cos Θ ∼ N (0, 1)

Y = R sin Θ ∼ N (0, 1),

I This still requires evaluating log, cos and sin.
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Simulating Multivariate Normal

I Let consider X ∈ Rd, X ∼ N(µ,Σ) where µ is the mean and Σ is the
(positive definite) covariance matrix.

fX(x) = (2π)−d/2|det Σ|−1/2 exp

(
−1

2
(x− µ)T Σ−1 (x− µ)

)
.

I Proposition. Let Z = (Z1, ..., Zd) be a collection of d independent
standard normal random variables. Let L be a real d× d matrix
satisfying

LLT = Σ,

and
X = LZ + µ.

Then
X ∼ N (µ,Σ).
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Simulating Multivariate Normal
I Proof. We have fZ(z) = (2π)d/2 exp

(
−1

2z
T z
)
.The joint density of

the new variables is

fX(x) = fZ(z)

∣∣∣∣det
∂z

∂x

∣∣∣∣
where ∂z

∂x = L−1 and det(L) = det(LT ) so det(L2) = det(Σ), and

det(L−1) = 1/det(L) so det(L−1) = det(Σ)−1/2. Also

zT z = (x− µ)T
(
L−1

)T
L−1 (x− µ)

= (x− µ)T Σ−1 (x− µ) .

I If Σ = V DV T is the eigendecomposition of Σ, we can pick
L = V D1/2.

I Cholesky factorization Σ = LLT where L is a lower triangular matrix.

I See numerical analysis.
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Rejection Sampling
I Let X be a continuous r.v. on Ω with pdf fX
I Consider a continuous rv variable U > 0 such that the conditional pdf

of U given X = x is

fU |X(u|x) =

{ 1
fX(x) if u < fX(x)

0 otherwise

I The joint pdf of (X,U) is

fX,U (x, u) = fX(x)× fU |X(u|x)

= fX(x)× 1

fX(x)
I(0 < u < fX(x))

= I(0 < u < fX(x))

I Uniform distribution on the set A = {(x, u)|0 < u < fX(x), x ∈ Ω}
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Rejection Sampling

Theorem (Fundamental Theorem of simulation)

Let X be a rv on Ω with pdf or pmf fX . Simulating X is equivalent to
simulating

(X,U) ∼ Unif({(x, u)|x ∈ Ω, 0 < u < fX(x)})
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Rejection Sampling

I Direct sampling of (X,U) uniformly over the set A is in general
challenging

I Let S ⊇ A be a bigger set such that simulating uniform rv on S is
easy

I Rejection sampling technique:

1. Simulate (Y, V ) ∼ Unif(S), with simulated values y and v
2. if (y, v) ∈ A then stop and return X = y,U = v,
3. otherwise go back to 1.

I The resulting rv (X,U) is uniformly distributed on A
I X is marginally distributed from fX
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Example: Beta density
I Let X ∼ Beta(5, 5) be a continuous rv with pdf

fX(x) =
Γ(α+ β)

Γ(α)Γ(β)
xα−1(1− x)β−1, 0 < x < 1

where α = β = 5.

I fX(x) is upper bounded by 3 on [0, 1].
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Example: Beta density
I Let S = {(y, v)|y ∈ [0, 1], v ∈ [0, 3]}

1. Simulate Y ∼ U([0, 1]) and V ∼ U([0, 3]), with simulated values y and
v

2. If v < fX(x), return X = x
3. Otherwise go back to Step 1.

I Only requires simulating uniform random variables and evaluating the
pdf pointwise
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Rejection Sampling

I Consider X a random variable on Ω with a pdf/pmf f(x), a target
distribution

I We want to sample from f using a proposal pdf/pmf q which we can
sample.

I Proposition. Suppose we can find a constant M such that
f(x)/q(x) ≤M for all x ∈ Ω.

I The following ‘Rejection’ algorithm returns X ∼ f .

Algorithm 2 Rejection sampling

Step 1 - Simulate Y ∼ q and U ∼ U [0, 1], with simulated value y and u
respectively.
Step 2 - If u ≤ f(y)/q(y)/M then stop and return X = y,
Step 3 - otherwise go back to Step 1.
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Illustrations

I f(x) is the pdf of a Beta(5, 5) rv

I Proposal density q is the pdf of a uniform rv on [0, 1]
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Illustrations

I X ∈ R with multimodal pdf

I Proposal density q is the pdf of a standardized normal
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Rejection Sampling: Proof for discrete rv
I We have

Pr (X = x) =

∞∑
n=1

Pr (reject n− 1 times, draw Y = x and accept it)

=

∞∑
n=1

Pr (reject Y )n−1 Pr (draw Y = x and accept it)

I We have

Pr (draw Y = x and accept it)

= Pr (draw Y = x) Pr (accept Y |Y = x)

= q(x) Pr

(
U ≤ f(Y )

q(Y )
/M

∣∣∣∣Y = x

)
=

f(x)

M
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I The probability of having a rejection is

Pr (reject Y ) =
∑
x∈Ω

Pr (draw Y = x and reject it)

=
∑
x∈Ω

q(x) Pr

(
U ≥ f(Y )

q(Y )
/M

∣∣∣∣Y = x

)
=

∑
x∈Ω

q(x)

(
1− f(x)

q(x)M

)
= 1− 1

M

I Hence we have

Pr (X = x) =

∞∑
n=1

Pr (reject Y )n−1 Pr (draw Y = x and accept it)

=

∞∑
n=1

(
1− 1

M

)n−1 f(x)

M
= f(x).

I Note the number of accept/reject trials has a geometric distribution
of success probability 1/M , so the mean number of trials is M .
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Rejection Sampling: Proof for continuous scalar rv

I Here is an alternative proof given for a continuous scalar variable X,
the rejection algorithm still works but f, q are now pdfs.

I We accept the proposal Y whenever (U, Y ) ∼ fU,Y where
fU,Y (u, y) = q(y)I(0,1)(u) satisfies U ≤ f(Y )/(Mq(Y )).

I We have

Pr (X ≤ x) = Pr (Y ≤ x|U ≤ f(Y )/Mq(Y ))

=
Pr (Y ≤ x, U ≤ f(Y )/Mq(Y ))

Pr (U ≤ f(Y )/Mq(Y ))

=

∫ x
−∞

∫ f(y)/Mq(y)
0 fU,Y (u, y)dudy∫∞

−∞
∫ f(y)/Mq(y)

0 fU,Y (u, y)dudy

=

∫ x
−∞

∫ f(y)/Mq(y)
0 q(y)dudy∫∞

−∞
∫ f(y)/Mq(y)

0 q(y)dudy
=

∫ x

−∞
f(y)dy.
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Example: Beta Density
I Assume you have for α, β ≥ 1

f(x) =
Γ(α+ β)

Γ(α)Γ(β)
xα−1(1− x)β−1, 0 < x < 1

which is upper bounded on [0, 1].
I We propose to use as a proposal q(x) = I(0,1)(x) the uniform density

on [0, 1].
I We need to find a bound M s.t. f(x)/Mq(x) = f(x)/M ≤ 1. The

smallest M is M = max0<x<1 f(x) and we obtain by solving for
f ′(x) = 0

M =
Γ (α+ β)

Γ (α) Γ (β)

(
α− 1

α+ β − 2

)α−1( β − 1

α+ β − 2

)β−1

︸ ︷︷ ︸
M ′

which gives
f(y)

Mq(y)
=
yα−1(1− y)β−1

M ′
.
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Dealing with Unknown Normalising Constants

I In most practical scenarios, we only know f(x) and q(x) up to some
normalising constants; i.e.

f(x) = f̃(x)/Zf and q(x) = q̃(x)/Zq

where f̃(x), q̃(x) are known but Zf =
∫

Ω f̃(x)dx, Zq =
∫

Ω q̃(x)dx are
unknown/expensive to compute.

I Rejection can still be used: Indeed f(x)/q(x) ≤M for all x ∈ Ω iff
f̃(x)/q̃(x) ≤ M̃ , with M̃ = ZfM/Zq.

I Practically, this means we can ignore the normalising constants from
the start: if we can find M̃ to bound f̃(x)/q̃(x) then it is correct to
accept with probability f̃(x)/M̃ q̃(x) in the rejection algorithm. In
this case the mean number N of accept/reject trials will equal
ZqM̃/Zf (that is, M again).
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Simulating Gamma Random Variables

I We want to simulate a random variable X ∼Gamma(α, β) which
works for any α ≥ 1 (not just integers);

f(x) =
xα−1 exp(−βx)

Zf
for x > 0, Zf = Γ(α)/βα

so f̃(x) = xα−1 exp(−βx) will do as our unnormalised target.

I When α = a is a positive integer we can simulate X ∼ Gamma(a, β)
by adding a independent Exp(β) variables, Yi ∼ Exp(β),
X =

∑a
i=1 Yi.

I Hence we can sample densities ’close’ in shape to Gamma(α, β) since
we can sample Gamma(bαc, β). Perhaps this, or something like it,
would make an envelope/proposal density?
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I Let a = bαc and let’s try to use Gamma(a, b) as the envelope, so Y ∼
Gamma(a, b) for integer a ≥ 1 and some b > 0. The density of Y is

q(x) =
xa−1 exp(−bx)

Zq
for x > 0, Zq = Γ(a)/ba

so q̃(x) = xa−1 exp(−bx) will do as our unnormalised envelope
function.

I We have to check whether the ratio f̃(x)/q̃(x) is bounded over R+

where
f̃(x)/q̃(x) = xα−a exp(−(β − b)x).

I Consider (a) x→ 0 and (b) x→∞. For (a) we need a ≤ α so
a = bαc is indeed fine. For (b) we need b < β (not b = β since we
need the exponential to kill off the growth of xα−a).
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I Given that we have chosen a = bαc and b < β for the ratio to be
bounded, we now compute the bound.

I d
dx(f̃(x)/q̃(x)) = 0 at x = (α− a)/(β − b) (and this must be a
maximum at x ≥ 0 under our conditions on a and b), so
f̃(x)/q̃(x) ≤ M̃ for all x ≥ 0 if

M̃ =

(
α− a
β − b

)α−a
exp(−(α− a)).

I Accept Y at step 2 of Rejection Sampler if U ≤ f̃(Y )/M̃ q̃(Y ) where
f̃(Y )/M̃ q̃(Y ) = Y α−a exp(−(β − b)Y )/M̃ .

Part A Simulation. HT 2019. J. Berestycki. 63 / 66



Simulating Gamma Random Variables: Best choice of b

I Any 0 < b < β will do, but is there a best choice of b?

I Idea: choose b to minimize the expected number of simulations of Y
per sample X output.

I Since the number N of trials is Geometric, with success probability
Zf/(M̃Zq), the expected number of trials is E(N) = ZqM̃/Zf . Now
Zf = Γ(α)β−α where Γ is the Gamma function related to the
factorial.

I Practice: Show that the optimal b solves d
db(b

−a(β − b)−α+a) = 0 so
deduce that b = β(a/α) is the optimal choice.
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Simulating Normal Random Variables

I Let f(x) = (2π)−
1
2 exp(−1

2x
2) and q(x) = 1/π/(1 + x2). We have

f̃(x)

q̃(x)
= (1 + x2) exp

(
−1

2
x2

)
≤ 2/

√
e = M̃

which is attained at ±1.

I Hence the probability of acceptance is

P

(
U ≤ f̃(Y )

M̃ q̃(Y )

)
=

Zf

M̃Zq
=

√
2π

2√
e
π

=

√
e

2π
≈ 0.66

and the mean number of trials to success is approximately
1/0.66 ≈ 1.52.
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Rejection Sampling in High Dimension
I Consider

f̃(x1, ..., xd) = exp

(
−1

2

d∑
k=1

x2
k

)
and

q̃(x1, ..., xd) = exp

(
− 1

2σ2

d∑
k=1

x2
k

)
I For σ > 1, we have

f̃(x1, ..., xd)

q̃(x1, ..., xd)
= exp

(
−1

2

(
1− σ−2

) d∑
k=1

x2
k

)
≤ 1 = M̃.

I The acceptance probability of a proposal for σ > 1 is

P

(
U ≤ f̃(X1, ..., Xd)

M̃ q̃(X1, ..., Xd)

)
=

Zf

M̃Zq
= σ−d.

I The acceptance probability goes exponentially fast to zero with d.
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