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Simulation and Statistical Programming

>

Lectures on Simulation (Prof. J. Berestycki):

Tuesdays 2-3pm Weeks 1-8.

LG.01.

Computer Lab on Statistical Programming (Prof. G. Nicholls):
Tuesday 3-5pm Weeks 1,2,3 Friday 9-11am Weeks 5,6,8.

LG.02.

Departmental problem classes:

Mon. 2-3pm (Berestycki) or Thursday (Caterini). 1.30-2.30 pm -
Weeks 3,5,7, TT1.

LG.77,.

Hand in problem sheet solutions by Thursday 10 am of previous week
for both classes.

Webpage:
http://www.stats.ox.ac.uk/~berestyc/teaching/A12 . html
This course builds upon the notes and slides of Geoff Nicholls, Arnaud
Doucet, Yee Whye Teh and Matti Vihola.
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Monte Carlo Simulation Methods

» Computational tools for the simulation of random variables and the
approximation of integrals/expectations.

P These simulation methods, aka Monte Carlo methods, are used in
many fields including statistical physics, computational chemistry,
statistical inference, genetics, finance etc.

» The Metropolis algorithm was named the top algorithm of the 20th
century by a committee of mathematicians, computer scientists &
physicists.

» With the dramatic increase of computational power, Monte Carlo
methods are increasingly used.
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Objectives of the Course

» Introduce the main tools for the simulation of random variables and
the approximation of multidimensional integrals:

>
>
>
>
>

>

Integration by Monte Carlo,

inversion method,

transformation method,

rejection sampling,

importance sampling,

Markov chain Monte Carlo including Metropolis-Hastings.

» Understand the theoretical foundations and convergence properties of
these methods.

» Learn to derive and implement specific algorithms for given random
variables.
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Computing Expectations
> Let X be either

> a discrete random variable (r.v.) taking values in a countable or finite
set 2, with p.m.f. fx

> or a continuous r.v. taking values in Q = RY, with p.d.f. fx

> Assume you are interested in computing

0 =E (¢(X))

 Ysead(@)fx(x) if X is discrete
B { Jo @(x) fx(x)dz if X is continuous

where ¢ : 0 — R.
> It is impossible to compute 6 exactly in most realistic applications.

» Even if it is possible (for (2 finite) the number of elements may be so
huge that it is practically impossible

> Example: © = RY, X ~ N (1, %) and 6(2) = I (S4_, 23 > o).
» Example: Q =R% X ~ N (1, %) and ¢(z) =1 (21 <0,...,24 < 0).
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Example: Queuing Systems

>

| 2

>

Customers arrive at a shop and queue to be served. Their requests
require varying amount of time.

The manager cares about customer satisfaction and not excessively
exceeding the 9am-5pm working day of his employees.
Mathematically we could set up stochastic models for the arrival
process of customers and for the service time based on past
experience.

Question: If the shop assistants continue to deal with all customers
in the shop at 5pm, what is the probability that they will have served
all the customers by 5.30pm?

If we call X € N the number of customers in the shop at 5.30pm then
the probability of interest is

P(X =0) =E(I(X = 0)).

For realistic models, we typically do not know analytically the
distribution of X.
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Example: Particle in a Random Medium

» A particle (X;);—1,2,.. evolves according to a stochastic model on

Q=R
> At each time step t, it is absorbed with probability 1 — G(X};) where
G:Q—0,1].

» Question: What is the probability that the particle has not yet been
absorbed at time 177

» The probability of interest is

[P (not absorbed at time T') = E [G(X1)G(X2) - -- G(X7)] .

» For realistic models, we cannot compute this probability.
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Example: Ising Model

>

| 2

The Ising model serves to model the behavior of a magnet and is the
best known/most researched model in statistical physics.

The magnetism of a material is modelled by the collective
contribution of dipole moments of many atomic spins.

Consider a simple 2D-Ising model on a finite lattice

G ={1,2,...,m} x {1,2,...,m} where each site o = (7, j) hosts a
particle with a +1 or -1 spin modeled as a r.v. X, .

The distribution of X = {X,}scg on {—1,1}™ is given by

exp(—pU(z))

() = Z;

where 8 > 0 is the inverse temperature and the potential energy is

U(x)=-J Z o

Physicists are interested in computing E [U(X)] and Zg.
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Example: Ising Model

e

Sample from an Ising model for m = 250.

e
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Bayesian Inference

>

>
4

Suppose (X,Y’) are both continuous r.v. with a joint density
fxy(z,y).
Think of Y as data, and X as unknown parameters of interest
We have

fxy(z,y) = fx () fy)x(lz)
where, in many statistics problems, fx(x) can be thought of as a
prior and fy|x (y|x) as a likelihood function for a given Y = y.
Using Bayes' rule, we have

fx (@

Ixy (zly) =

) YX(y\l")

fr(y)

For most problems of interest, fx |y (|y) does not admit an analytic
expression and we cannot compute

E(p(X)Y = y) = / o(2) xpy (aly)de
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Outline

Monte Carlo integration
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Monte Carlo Integration

Definition (Monte Carlo method)

Let X be either a discrete r.v. taking values in a countable or finite set €2,
with p.m.f. fx, or a continuous r.v. taking values in @ = R¢, with p.d.f.
fx. Consider

_ | Yicad(@) fx(x) if X is discrete
b=E(@X) = { s (b((;c)fx(:v))(d:r if X is continuous

where ¢ : Q@ — R. Let Xq,..., X;, be i.i.d. r.v. with p.d.f. (or p.m.f.) fx.
Then

. 1 <&
=1
is called the Monte Carlo estimator of the expectation 6.

» Monte Carlo methods can be thought of as a stochastic way to
approximate integrals.
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Monte Carlo Integration

Algorithm 1 Monte Carlo Algorithm
» Simulate independent X1, ..., X;, with p.m.f. or p.d.f. fx

» Return én = %Z?zl ¢(Xi>-
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Computing Pi with Monte Carlo Methods

» Consider the 2 x 2 square, say S CR? with inscribed disk D of radius
1.

15r

N

\

\

\
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|

|
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-15 -1 -0.5 0 0.5 1 15

A 2 x 2 square S with inscribed disk D of radius 1.
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Computing Pi with Monte Carlo Methods

» We have
ffD dridxs .

ff8d$1d$2 - 4
» How could you estimate this quantity through simulation?

f fD d.%'ldl'g

W = // IEl,ZL‘Q € D) d[L‘ldl‘Q
S

= E[¢p(X1,X2)] =0
where the expectation is w.r.t. the uniform distribution on S and

(X1, X2) =I((X1,X2) €D).

» To sample uniformly on § = (—1,1) x (—1, 1) then simply use
Xy =2U; —1, Xy =2Us — 1
where Ul, U2 ~ U(O, 1).
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Computing Pi with Monte Carlo Methods

n <- 1000
x <- array(0, c(2,1000))
t <- array(0, c(1,1000))

for (i in 1:1000) {
# generate point in square
x[1,i] <- 2*runif(1)-1
x[2,i] <- 2%runif(1)-1

# compute phi(x); test whether in disk
if (x[1,il#*x[1,i] + x[2,i]*x[2,i] <= 1) {

t[i] <- 1
} else {
t[i] <- 0
}
}
print (sum(t)/n*4)
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Computing Pi with Monte Carlo Methods

A 2 x 2 square S with inscribed disk D of radius 1 and Monte Carlo

samples.
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Computing Pi with Monte Carlo Methods

L L L L L L L L L
100 200 300 400 500 600 700 800 900 1000

A~

0, — 0 as a function of the number of samples n.
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Computing Pi with Monte Carlo Methods

-0.02 &

L L L L L L L L L
100 200 300 400 500 600 700 800 900

6,, — 0 as a function of the number of samples n, 100 independent
realizations.
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Applications

» Toy example: simulate a large number n of independent r.v.
X; ~ N(u,X) and

1 n d
= Z (ZX,?Z > oz) .
=1 k=1

» Queuing: simulate a large number n of days using your stochastic
models for the arrival process of customers and for the service time

and compute
1 n
= — E I(X; =
n “
=1

where X; is the number of customers in the shop at 5.30pm for ith
sample.

» Particle in Random Medium: simulate a large number n of particle
paths (X1, Xo2;,..., X7;) where i = 1,...,n and compute

_ % Y G(X1)G(Xai) - G(Xrs)
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Monte Carlo Integration: Properties
» Proposition: Assume 0 = E (¢(X)) exists. Then the Monte Carlo
estimator 6,, has the following properties

» Unbiasedness
E (en) —0

P> Strong consistency

0, — 0 almost surely as n — oo

» Proof: We have

Strong consistency is a consequence of the strong law of large
numbers applied to Y; = ¢(X;) which is applicable as = E (¢(X))

is assumed to exist.
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Monte Carlo Integration: Central Limit Theorem
» Proposition: Assume 0 = E (¢(X)) and 02 = V (¢(X)) exist then
2

B (0 =07) =V () = T

f(e —9) 4 N0, 1).

g

and

» Proof. We have E ((9 —0) ) \Y% én) as E (én> =6 and

A 1 & o?
v (0,) = 2 2V (60040 = 7
The CLT applied to Y; = ¢(X;) tells us that
Yi+--+ Y, —nb
1+ + no d % A0, 1)

o\/n
so the result follows as 6,, = % Y1+ +Y,).
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Monte Carlo Integration: Variance Estimation
» Proposition: Assume 02 = V (¢(X)) exists then

o) =~ i 1 En: (¢<Xi) - 9n)2

=1

is an unbiased sample variance estimator of o2.
» Proof. Let Y; = ¢(X;) then we have

E(Six) = nilz:;E((Yi_Y)Q)
- niﬁ(éﬁ _nY2>

n (V(Y)+6%) —n (V(7) +62)

n—1
= V() =V(e(X)).

where Y = ¢(X) and Y = 1 37 | V]
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How Good is The Estimator?
» Chebyshev's inequality yields the bound

(o) <=

co?/n 2’
» Another estimate follows from the CLT for large n

@(énw) i/\/(o,n;sIP(

N (o2
¢9n—6">c—
n

vn

A~

Qn—0‘>ci

vn

g

>z2(1—<1>(c)).

» Hence by choosing ¢ = ¢, s.t. 2(1 — ®(cy)) = «, an approximate
(1 — a@)100%-Cl for 0 is

j o j Sp(x)
htceo— |~ |0, Lco——= ).
(o) = (0nea™22)
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Monte Carlo Integration

» Whatever being Q; e.g. Q2 =R or Q = R'0% the error is still in
o/\/n.

> This is in contrast with deterministic methods. The error in a product
trapezoidal rule in d dimensions is O(n~2/9) for twice continuously
differentiable integrands.

> It is sometimes said erroneously that it beats the curse of

dimensionality but this is generally not true as o2 typically depends of
dim(€2).
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Pseudo-random numbers

>

>

The aim of the game is to be able to generate complicated random
variables and stochastic models.

Henceforth, we will assume that we have access to a sequence of
independent random variables (U;,i > 1) that are uniformly
distributed on (0,1); i.e. U; ~U[0, 1].

In R, the command u«—runif (100) return 100 realizations of uniform
r.v. in (0,1).

Strictly speaking, we only have access to pseudo-random
(deterministic) numbers.

The behaviour of modern random number generators (constructed on
number theory) resembles mathematical random numbers in many
respects: standard statistical tests for uniformity, independence, etc.
do not show significant deviations.
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A MILLIgN

Random Digits

055 0520
52591 00174

97110 31297
39736 62674

24412 29650
40515 18454
9 29233 8137
33407 4a164
20746 6391.

Wi

100.000 Normg) Deviate
S

If you like this book, | highly recommend that you read it in the original binary.
As with most translations, conversion from binary to decimal frequently causes
a loss of information and, unfortunately, it’s the most significant digits that are

A MILLION lost in the conversion.
Random Digits

THE SEQUEL

with

Or this somewhat more subtle nerd-joke, by B| from Waltford, England:

For a supposedly serious reference work the omission of an index is a major

impediment. | hope this will be corrected in the next edition.
Perfectly Uniform Distribution

...or from Fuat C. Baran:

A great read. Captivating. | couldn’t put it down. | would have given it five stars,
but sadly there were too many distracting typos. For example: 46453 13987.
_ 3 Hopefully they will correct them in the next edition.
David Dubowski petully they

Or D.C. Froemke's one-star review:
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Generating Random Variables Using Inversion

» A function F': R — [0, 1] is a cumulative distribution function (cdf) if
- Fis increasing; i.e. if x <y then F(x) < F(y)
- F'is right continuous; i.e. F(z +¢) — F(x) ase — 0 (e > 0)
- F(z) »0asz — —oo and F(z) = 1 as z — +o0.

» A random variable X € R has cdf F'if P(X < x) = F(x) for all
z € R.

> If I is differentiable on R, with derivative f, then X is continuously
distributed with probability density function (pdf) f.
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Generating Random Variables Using Inversion

> Proposition. Let F' be a continuous and strictly increasing cdf on R,
with inverse F~1:[0,1] — R. Let U ~U[0,1] then X = F~1(U) has
cdf F.

» Proof. We have

P(X<z) = P(F'(U)<2)

> Proposition. Let F' be a cdf on R and define its generalized inverse
F71:00,1] - R,

F~Yu) = inf {z € R; F(z) > u}.
Let U ~ U[0,1] then X = F~1(U) has cdf F.
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[[lustration of the Inversion Method

0.3 Gaussian 7

01r il

|
|
|
|
L
-10 -8 -6 -4 -2 v0 2 4 6 8 10

Top: pdf of a Gaussian r.v., bottom: associated cdf.
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Examples

» Weibull distribution. Let o, A > 0 then the Weibull cdf is given by

F(z)=1—exp(—Az%), = > 0.

We calculate

u = F(z)<log(l—u)=—-\z®
_( log(1—uw) Lo
o an (i)

> As (1 —U) ~U[0,1] when U ~ U[0, 1] we can use
v (_logU>1/a‘
A
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Examples
» Cauchy distribution. It has pdf and cdf
1 1 arctanz
f(x) +—

:7’F —
m(1+22) () 2 s
We have
1 t
u = F(x)@u:f—i-w
2 T

o oo 1)

» [ogistic distribution. It has pdf and cdf

B exp(—x) 2 = 1
@) = (1+exp(—a:))2’F() 1+ exp(—w)

u
= leog(l )
—u

» Practice: Derive an algorithm to simulate from an Exponential
random variable with rate A > 0.
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Generating Discrete Random Variables Using Inversion

» If X is a discrete N—r.v. with P(X =n) = p(n), we get
F(z) = ijop( j) and F~1(u) is z € N such that

r—1 T
> op() <u < p()
j=0 3=0

with the LHS= 0 if z = 0.
» Note: the mapping at the values F'(n) are irrelevant.

> Note: the same method is applicable to any discrete valued r.v. X,
P(X =an) = p(n).
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[[lustration of the Inversion Method: Discrete case
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Example: Geometric Distribution

» If0<p<1and ¢g=1-—pand we want to simulate X ~ Geom(p)
then
p(x) =pg® L F(z)=1-¢* x=1,23.

» The smallest = € N giving F/(x) > wu is the smallest x > 1 satisfying

x > log(1l —u)/log(q)

and this is given by

-]

where [z] rounds up and we could replace 1 — u with w.
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Transformation Methods

» Suppose we have a random variable Y ~ @, Y € Qg, which we can
simulate (eg, by inversion) and some other variable X ~ P, X € Qp,
which we wish to simulate.

» Suppose we can find a function ¢ : Qg — 2p with the property that
X =o(Y).

» Then we can simulate from X by first simulating Y ~ @), and then
set X = p(Y).

Inversion is a special case of this idea.

v

> We may generalize this idea to take functions of collections of
variables with different distributions.
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Transformation Methods

» Example: Let Y;, i = 1,2, ..., «, be iid variables with Y; ~ Exp(1) and
X =pB713% Y then X ~ Gamma(a, 3).
Proof: The MGF of the random variable X is

E (eX) = f[IE (eﬂ‘lm) —(1-t/8)"
i=1

which is the MGF of a Gamma(c, 3) variate.
Incidentally, the Gamma(a, ) density is fx(x) = %x‘kle*ﬂx for
x> 0.
P> Practice: A generalized gamma variable Z with parameters
a > 0,b> 0,0 > 0 has density

Fa(2) = o2t e

I'(a/o)

Derive an algorithm to simulate from Z.
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Transformation Methods: Box-Muller Algorithm

» For continuous random variables, a tool is the transformation/change
of variables formula for pdf.

> Proposition. If R* ~ Exp(%) and © ~ U[0, 2] are independent then
X = Rcos©, Y = Rsin© are independent with X ~ N (0, 1),

Y ~ N(0,1).
Proof: We have fg2 o(r?,0) = 3 exp (—r?/2) 5= and
a(r?,0)
fxy(@,y) = free(r®,0 ’det ’
(@) = Frol0.0) |det G20
where
2 -1 Oz fekq cos 6 el
det a(r=,0) —ldet( 27 % _ ldet [ 2 rsin 6 _ 1
d(x,y) ﬁ a% %, rcosf 2
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Transformation Methods: Box-Muller Algorithm

> Let Uy ~ U[0,1] and Uy ~ U[0,1] then

1
R? = —2log(Uy) ~ Exp <2>
O = 21Uy ~U|0,27]
and

X = Rcos®© ~N(0,1)
Y = Rsin® ~N(0,1),

P This still requires evaluating log, cos and sin.
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Simulating Multivariate Normal

> Let consider X € R%, X ~ N(u,X) where y is the mean and X is the
(positive definite) covariance matrix.

Fe(a) = () 42 der 5 2exp (3 (o= )T ).

» Proposition. Let Z = (Z1, ..., Zy) be a collection of d independent
standard normal random variables. Let L be a real d x d matrix

satisfying
LT =%,
and
X =LZ+ p.
Then
X ~N(p,X).
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Simulating Multivariate Normal

> Proof. We have f7(2) = (2m)%/2 exp (—3272).The joint density of
the new variables is

fx(.’L‘) = fz(Z) det gi
where 92 = L= and det(L) = det(L”) so det(L?) = det(X), and

det(L~ ) =1/ det(L) so det(L~1) = det(X)~1/2. Also

Az = (z—p) (L_l)T L™ (2 —p)

T
= @-p'S M @—p).

» If ¥ = VDVT is the eigendecomposition of ¥, we can pick
L=VD'2
» Cholesky factorization ¥ = LLT where L is a lower triangular matrix.

» See numerical analysis.
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Rejection Sampling
> Let X be a continuous r.v. on 2 with pdf fx

» Consider a continuous rv variable U > 0 such that the conditional pdf
of U given X =z is

1 .
fuix (ulz) ={ U< fx(@)

0 otherwise

» The joint pdf of (X,U) is
fxu(@,u) = fx (@) X fyx(ulr)
1
= fx(z) x fX(x)H(O <u < fx(z))
=10 <u < fx(z))

» Uniform distribution on the set A = {(x,u)|0 < u < fx(x),x € Q}
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Rejection Sampling

Theorem (Fundamental Theorem of simulation)

Let X be a rv on Q with pdf or pmf fx. Simulating X is equivalent to
simulating

(X,U) ~ Unif({(z,u)|z € Q,0 <u < fx(x)})

— fx(z)
3
2
1-
0
0 0.2 0.4 0.6 0.8 1
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Rejection Sampling

» Direct sampling of (X, U) uniformly over the set A is in general
challenging

> Let S D A be a bigger set such that simulating uniform rv on S is
easy

P Rejection sampling technique:

1. Simulate (Y, V) ~ Unif(S), with simulated values y and v
2. if (y,v) € A then stop and return X = y,U = v,
3. otherwise go back to 1.

The resulting rv (X, U) is uniformly distributed on A
> X is marginally distributed from fx

v
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Example: Beta density
» Let X ~ Beta(5,5) be a continuous rv with pdf
Lla+B) o B—1

=————z* (1-2)",0<z<1
N T

where o = 5 = 5.
» fx(x) is upper bounded by 3 on [0, 1].

|—/x(@)
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Example: Beta density
> Let S = {(y,v)ly € [0,1],v € [0, 3]}
1. Simulate Y ~ U([0,1]) and V ~ U([0, 3]), with simulated values y and
v

2. Ifv< fx(x), return X =z
3. Otherwise go back to Step 1.

» Only requires simulating uniform random variables and evaluating the
pdf pointwise

[—/x(@)

—fx(x
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Rejection Sampling

» Consider X a random variable on  with a pdf/pmf f(z), a target
distribution

» We want to sample from f using a proposal pdf/pmf g which we can
sample.

» Proposition. Suppose we can find a constant M such that
f(z)/q(x) < M for all x € Q.

» The following ‘Rejection’ algorithm returns X ~ f.

Algorithm 2 Rejection sampling

Step 1 - Simulate Y ~ ¢ and U ~ U[0, 1], with simulated value y and u
respectively.

Step 2 - If u < f(y)/q(y)/M then stop and return X =y,

Step 3 - otherwise go back to Step 1.
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[[lustrations

» f(x) is the pdf of a Beta(5,5) rv
» Proposal density ¢ is the pdf of a uniform rv on [0, 1]

, | | =@ |
4 — Mq(z)
3
2 L
1 L
0

0 1
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[[lustrations

> X € R with multimodal pdf
» Proposal density ¢ is the pdf of a standardized normal

1.5

— @)
— Mq(x)
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Rejection Sampling: Proof for discrete rv

> We have

oo
Pr(X=2) = Z Pr (reject n — 1 times, draw Y = x and accept it)
n=1
oo
= ZPr (reject Y)" ' Pr(draw Y = 2 and accept it)

n=1

> We have

Pr (draw Y = z and accept it)

= Pr(draw Y = z)Pr(accept Y|Y = x)
= ¢(x)Pr JY) =z
= oy (v <180y =)

f@)
M
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» The probability of having a rejection is

Pr (reject Y)

» Hence we have

n=1
)

-3

n=1

(

1— —

Z Pr(draw Y = 2 and reject it)

gqm<w )y 2.
o) (1= ) =1 o

o
Z Pr (reject Y)" ' Pr(draw Y =  and accept it)

1 >“ f](;)

N = ().

» Note the number of accept/reject trials has a geometric distribution
of success probability 1/M, so the mean number of trials is M.
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Rejection Sampling: Proof for continuous scalar rv

P> Here is an alternative proof given for a continuous scalar variable X,
the rejection algorithm still works but f, ¢ are now pdfs.

» We accept the proposal Y whenever (U,Y) ~ fi7y where
foy (u,y) = q(y)Lo,1)(u) satisfies U < f(Y)/(Mq(Y)).
> We have

Pr(X<z) = Pr(Y <z|U<[f(Y)/MqY))
Pr(Y <z, U< f(Y)/Mq(Y))
Pr(U < f(Y)/Mq(Y))
f j‘f(y)/Mq ) fU,Y(u y)dudy

[, Jeaw fw(u y)dudy
ff(y)/Mq (v)

_ f dudy
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Example: Beta Density
» Assume you have for o, 5 > 1
F(a + B) a—1
&)= Nare)”
which is upper bounded on [0, 1].
> We propose to use as a proposal g(z) = I 1)(x) the uniform density
on [0, 1].
» We need to find a bound M s.t. f(x)/Mq(x) = f(x)/M < 1. The
smallest M is M = maxg<,<1 f(x) and we obtain by solving for

e T(a+8) [ a—1 \*'/ p=1
:F(a)F(6)<a+6—2> <a+5—2>

M/

1-2)to<z<1

which gives

fly) oyt —y)P!
Mq(y) M’ ‘
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Dealing with Unknown Normalising Constants

» In most practical scenarios, we only know f(z) and g(x) up to some
normalising constants; i.e.

f(x) = f(2)/Z and q(z) = 4(2)/Z,

where f(z),G(z) are known but Z; = [, f(z)dz, Z; = [, d(x)dx are
unknown /expensive to compute.

> Rejection can still be used: Indeed f(x)/q(x) < M for all z € Q iff

f(x)/G(z) < M, with M = Z;M/Z,,.

> Practically, this means we can ignore the normalising constants from
the start: if we can find M to bound f(x)/q(z) then it is correct to
accept with probability f(z)/Mq(z) in the rejection algorithm. In
this case the mean number NV of accept/reject trials will equal
ZyM /Z; (that is, M again).
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Simulating Gamma Random Variables

» We want to simulate a random variable X ~Gamma(«, ) which
works for any o > 1 (not just integers);

2% L exp(—pBz)

f(z) = Z; forx >0, Zy=I(a)/p"

so f(z) = 2 T exp(—Bx) will do as our unnormalised target.

» When a = a is a positive integer we can simulate X ~ Gamma(a, 3)
by adding a independent Exp(f3) variables, Y; ~ Exp(f),
X=XiY.

» Hence we can sample densities 'close’ in shape to Gamma(«, 3) since
we can sample Gamma(|«/, 3). Perhaps this, or something like it,
would make an envelope/proposal density?
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» Let a = |« and let’s try to use Gamma(a, b) as the envelope, so Y ~
Gamma(a, b) for integer a > 1 and some b > 0. The density of Y is

a

g@) = O (o0, 2, = T(a) b
Zy
so G(z) = 2% exp(—bx) will do as our unnormalised envelope
function.
» We have to check whether the ratio f(z)/G(z) is bounded over R,

where

f(@)/d(x) = 22~ exp(— (8 — b)),

» Consider (a) z — 0 and (b) z — oo. For (a) we need a < « so
a = |« is indeed fine. For (b) we need b < 3 (not b = f3 since we
need the exponential to kill off the growth of z®~%).
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Given that we have chosen a = |« and b < 3 for the ratio to be
bounded, we now compute the bound.

%(f'(a:)/cj(a:)) =0atz = (a—a)/(B —0b) (and this must be a
maximum at z > 0 under our conditions on a and b), so
f(z)/q(x) < M for all z > 0 if

M= <Z_Z)aaexp(—(a —a)).

Accept Y at step 2 of Rejection Sampler if U < f(Y)/Mg(Y) where
fY)/Mq(Y) =Y “exp(—=(8—b)Y)/M.
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Simulating Gamma Random Variables: Best choice of b

> Any 0 < b < g will do, but is there a best choice of b7

» ldea: choose b to minimize the expected number of simulations of Y
per sample X output.

» Since the number IV of trials is Geometric, with success probability
Zy/(MZ,), the expected number of trials is E(N) = Z,M /Z;. Now
Zr =T'(a)B™ where I' is the Gamma function related to the
factorial.

» Practice: Show that the optimal b solves %(b*a(ﬁ — b)) =0 so
deduce that b = 5(a/«) is the optimal choice.
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Simulating Normal Random Variables

> Let f(z) = (2r) "7 exp(—3a2) and g(x) = 1/7/(1 + 22). We have
f(x)
q(x)

which is attained at £1.

— (1+2%) exp (-iﬁ) <2/Ve=M

» Hence the probability of acceptance is

P<U< /) ): Zs :\éﬂ:\/?%().%
Mq(Y) Mz, 7T 27

and the mean number of trials to success is approximately
1/0.66 ~ 1.52.
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Rejection Sampling in High Dimension

» Consider
- 1 d
f(wla "'7:Ed) = €exp <_2 in>
k=1

and
1 d
(j($17 ...,l’d) = €Xp <_W sz>
k=1
» For o > 1, we have

- d
M:exp <—; (1—0_2)Z$i> SlZM

q(x1; ..., Ta) pt

» The acceptance probability of a proposal for o > 1 is

P(U< f{Xl’“"Xd) S S
Mi(X1,... X)) M2,

» The acceptance probability goes exponentially fast to zero with d.
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