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‘Functional’ Imaging

Functional PET and MRI are used for studies of brain function: give a
subject a task and see which area(s) of the brain ‘light up’.

Functional studies were done with PET in the late 1980s and early 1990s,
now fMRI is becoming possible (needs powerful magnets—that in Oxford
is 3 Tesla).

PET has lower resolution, say3 × 3 × 7 mm voxels at best. So although
128 × 128 × 80 (say) grids might be used, this is done by subsampling.
Comparisons are made between PET images in two states (e.g. ‘rest’ and
‘stimulus’) and analysis is made on the difference image. PET images are
very noisy, and results are averaged across several subjects.

fMRI has a higher spatial resolution, and temporal resolution of around one
second. So stimuli are applied for a period of about 30 secs, images taken
around every 3 secs, with several repeats of the stimulus being available for
one subject.



The commonly addressed statistical issue is ‘has the brain state changed’,
and if so where?



Neurological Change

A longer-term view of function is in the change of tissue state and neurolog-
ical function after traumatic events such as a stroke or tumour growth and
removal. The aim here is to identify tissue as normal, impaired or dead, and
to compare images from a patient taken over a period of several months.

In MRI can trade temporal, spatial and spectral resolution. In MR spec-
troscopy the aim is a more detailed chemical analysis at a fairly low spatial
resolution. In principle chemical shift imaging provides a spectroscopic
view at each of a limited number of voxels: in practice certain aspects of
the chemical composition are concentrated on.



Pilot Study

Our initial work has been exploring ‘T1’ and ‘T2’ images (the conventional
MRI measurements) to classify brain tissue automatically, with the aim
of developing ideas to be applied to spectroscopic measurements at lower
resolutions.

Consider image to be made up of ‘white matter’, ‘grey matter’, ‘CSF’
(cerebro–spinal fluid) and ‘skull’.

Initial aim is reliable automatic segmentation.



Some Data

T1 (left) and T2 (right) MRI sections of a ‘normal’ human brain.

This slice is of172 × 208 pixels.



Data from the same image in T1–T2 space.



Imaging Imperfections

The clusters in the T1–T2 plot were surprising diffuse. Known imperfec-
tions were:

(a) ‘Mixed voxel’ / ‘partial volume’ effects. The tissue within a voxel may
not be all of one class.

(b) A ‘bias field’ in which the mean intensity from a tissue type varies across
the image. This effect is thought to vary approximately multiplicatively
and to consist of a radial component plus a linear component, the latter
varying from day to day.

(c) The ‘point spread function’. Because of bandwidth limitations in the
Fourier domain in which the image is acquired, the true observed image
is convolved with a spatial point spread function of ‘sinc’ (sin x/x) form.
The effect can sometimes be seen at sharp interfaces (most often the
skull / tissue interface) as a rippling effect, but is thought to be small.



Bias Fields

There is an extensive literature on bias field correction. One approach uses
a stochastic process prior for the bias field, and is thus another re-invention
of the ideas known askriging in the geostatistical literature. Based on
experience with the difficulty of choosing the degree of smoothing and the
lack of resistance to outliers (kriging is based on assumptions of Gaussian
processes) we prefer methods with more statistical content and control.

Our basic model is

log Yij = µ + βclass(ij) + s(i, j) + εij

for the intensity at voxel(i, j), studied independently for each of the T1 and
T2 responses. Heres(x, y) is a spatially smooth function.

Of course, the equation depends on the classification, which will itself
depend on the predicted bias field. This circularity is solved by iterative
procedure, starting with no bias field.



Estimation

If the classification were known we would use a robust method that fits a
long-tailed distribution forεij, unconstrained termsαj for each class, and
a ‘smooth’ functions. We cope with unknown class in two ways. In the
early stages of the process we only include data points whose classification
is nearly certain, and later we use

log Yij = µ +
∑

classc

βc p(c |Yij) + s(i, j) + εij

that is, we average the class term over the posterior probabilities for the
current classification.

For the smooth terms we initially fitted a linear trend plus a spline model in
the distance from the central axis of the magnet, but this did not work well,
so we switched toloess. Loess is based on fitting a linear surface locally
plus approximation techniques to avoid doing for the order of 27 000 fits.



Fits of bias fields

Fitted ‘bias fields’ for T1 (left) and T2 (right) images.

The bias fields for these images are not large and change intensity by 5–10%.



Clustering model

Our model is that for the bias-corrected images (Yij/ŝ(i, j)) T1 and T2
measurements jointly follow a mixture of six distributions.

The bivariate distributions for the six classes will have elliptical contours.
We have experimented with normal and bivariatet distributions: the latter
are often desirable as the normal density decays extremely rapidly.

These should correspond to white matter, grey matter, CSF, two types of
skull (the distribution of skull seems to split into two ellipses) and ‘outlier’,
a diffuse distribution picking up the isolated points.

Our fitting approach is ‘unsupervised’, but the initial locations of the cluster
are taken from a reference model whose clusters were labelled by interactive
visualization.



Fitting the model

There is an extensive literature on fitting mixtures of densities, and using
them as a model for classification. There are two distinct approaches in the
literature, and the one we have taken is ‘Bayesian’ rather than ‘maximum
likelihood’ in character. That is, we estimate the parameters in a finite
mixture model

p(T1, T2) =
6∑

i=1

πi pi(T1, T2; φi)

and then use the posterior probabilities for a ‘soft’ classification.

This in contrast to, e.g. Banfield & Raftery (1993), who simultaneously
maximize over the parametersand the classification of the observations.

Fitting the parameters(πi) and (φi) is currently by maximum-likelihood,
although we will investigate using Markov Chain Monte Carlo methods for
a full Bayesian scheme with linked hyperpriors.



Unsupervised Approach

Banfield & Raftery (1993)Biometrics

T1, T2 and PD images of an MRI brain slice with26 100 voxels.



They claim to find seven clusters:



Spatial locations of the 7 ‘clusters’, labelled in retrospect as A: Bone, B: Air: C: White
matter, D: Fluids, E: Muscle, F: Fat and G: Grey matter.



Our Results

Classified image and T1–T2 plot showing the classification with normally-distributed

clusters.



Classification before and after removing the bias field.



A Second Dataset

Raw T1 and T2 images.



Second data set: before bias-field correction.



Second data set: after bias-field correction.



Outliers and anomalies

We have found our scheme to be quite robust to variation in imaging
conditions and to different ‘normal’ subjects. The ‘background’ class helps
greatly in achieving this robustness as it ‘mops up’ the observations which
do not agree with the model.

However, outliers can be more extreme:



T1–T2 plot of a brain slice of a brain with a pathology.



This illustrates the dangers of classifying all the points. This is a particularly
common mistake when neural networks are used for classification, and we
have seen MRI brain scans classified by neural networks where common
sense suggested an ‘outlier’ report was the appropriate one.

The procedure presented here almost entirely ignores the spatial nature of
the image. For some purposes this would be a severe criticism, ascontextual
classification would be appropriate. However, our interest in these images
is not a pretty picture but is indeed in the anomalies, and for that we prefer
to stay close to the raw data. The other interest is in producing summary
measures that can be compared across time.



Part 2:

Statistics of fMRI Data



SPM

‘Statistical Parametric Mapping’ is a widely used program and methodology
of Friston and co-workers, originating with PET. The idea is to map ‘t-
statistic’ images, and to set a threshold for statistical significance.

The t-statistic is in PET of a comparison between states over a number of
subjects, voxel by voxel. Thus the numerator is an average over subjects
of the difference in response in the two states, and the denominator is an
estimate of the standard error of the numerator.

The details differ widely between studies, in particular if a pixel-by-pixel or
global estimate of variance is used.



Example PET Statistics Images

From Holmeset al (1996).

Mean difference image. Voxel-wise variance image.



Voxel-wiset–statistic image.

Smoothed variance image. Resultingt–statistic image.



Multiple comparisons

Finding the voxel(s) with highest SPM values should detect the areas of the
brain with most change, but does not say they are significant changes. Thet

distributionmightapply at one voxel, but it does not apply to the voxel with
the largest response.

Conventional multiple comparison methods (e.g. Bonferroni) will greatly
over-compensate as the voxel values are far from independent, so the effec-
tive number of observations is far fewer that the number of voxels (which
might themselves represent sub-sampling).



Three main approaches:

1. (High) level crossings of Gaussian stochastic processes (Worsleyet
al).

2. Randomization-based analysis (Holmeset al).

3. Variability within the time series at a voxel.

Clearly components of variance need to be considered carefully (and have
not been).

Issue: do we want the voxels of highest values, or do we want regions of
high value?



Euler Characteristics

The Worsleyet al approach is based on modelling the SPM imageXijk

as a Gaussian (later relaxed) stochastic process in continuous space with
a Gaussian autocorrelation function (possibly geometrically anisotropic).
The autocorrelation function must be estimated from the data, but to some
considerable extent is imposed by low-pass filtering.

For such processes there are results (Hasofer, Adler) on the level sets
{x : X(x) > x0}. These will be made up of components, themselves con-
taining holes. The results are on the expected Euler characteristic (number
of sets minus holes) as function ofx0, but for largex0 there is a negligible
probability of a hole, and the number is approximately Poisson distributed.
Thus we can choosex0 such that under the null hypothesis

P (X(x) > x0 for anyx ∈ A) ≈ 5%

Note that this is based on variability within a single image to address the
multiple comparisons point.



Randomization-based Statistics

Classical statistical inference of designed experiments is based on the uncer-
tainly introduced by the randomization, and not on any natural variability.
(Approach associated with Fisher and Yates.)

A typical fPET or fMRI experiment compares two states, say A and B. If
there is no difference between the states we can flip the labels within each
pair (for each subject in PET, for each repetition× subject in fMRI). If
there aren pairs, there are2n possible A–B or B–A labellings. If there is
no difference, these all give equally likely values of an observed statistic, so
compared observed statistic to the permutation distribution.

Can choose any statistic one can compute fairly easily.



The permutation distribution is often remarkably well approximated by at

distribution. Classic example (Box, Hunter & Hunter, 1977)
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Time-Series-based Statistics

The third component of variability is within the time series at each voxel.
Suppose there were no difference between A and B. Then we have a
stationary autocorrelated time series, and we want to estimate its mean and
the standard error of that mean.

This is a well-known problem in the output analysis of (discrete-event)
simulations.

More generally, we want the mean of the A and B phases, and there will
be a delayed response (approximately known) giving a cross-over effect.
Instead, use a matched filter (sin wave?) to extract effect, and estimated
autocorrelations (like Hannan estimation) or spectral theory to estimate
variability. For asin wave the theory is particularly easy: thelog absolute
value of response has a Gumbel distribution with location depending on the
true activation.



fMRI Example

Data on64×64×14 grid of voxels. (Illustrations omit top and bottom slices
and front and back slices, all of which show considerable activity, probably
due to registration effects.)

A series of 100 images at 3 sec intervals: a visual stimulus was applied after
30 secs for 30 secs, and the A–B pattern repeated 5 times.

Conventionally the images are filtered in both space and time, both high-
pass filtering to remove trends and low-pass filtering to reduce noise (and
make the Euler characteristic results valid). The resultingt–statistics images
are shown on the next slide. These have variances estimated for each voxel
based on the time series at that voxel.



slice 1 slice 2 slice 3 slice 4

slice 5 slice 6 slice 7 slice 8

slice 9 slice 10 slice 11 slice 12

Conventionalt–statistic images



Alternative Analyses

We also worked with the raw data, and matched a filter to the expected
pattern of response (square wave input, modified by the haemodynamic re-
sponse). This produced much more extreme deviations from the background
variation, and much more compact areas of response.

log abs filtered response
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slice 1 slice 2 slice 3 slice 4

slice 5 slice 6 slice 7 slice 8

slice 9 slice 10 slice 11 slice 12

Log abs filtered response, with small values coloured as background.


