* using log directory ‘/data/blackswan/ripley/R/packages/tests-devel/nlpsem.Rcheck’ * using R Under development (unstable) (2025-11-17 r89032) * using platform: x86_64-pc-linux-gnu * R was compiled by gcc (GCC) 14.2.1 20240912 (Red Hat 14.2.1-3) GNU Fortran (GCC) 14.2.1 20240912 (Red Hat 14.2.1-3) * running under: Fedora Linux 40 (Workstation Edition) * using session charset: UTF-8 * checking for file ‘nlpsem/DESCRIPTION’ ... OK * checking extension type ... Package * this is package ‘nlpsem’ version ‘0.3’ * package encoding: UTF-8 * checking package namespace information ... OK * checking package dependencies ... OK * checking if this is a source package ... OK * checking if there is a namespace ... OK * checking for executable files ... OK * checking for hidden files and directories ... OK * checking for portable file names ... OK * checking for sufficient/correct file permissions ... OK * checking whether package ‘nlpsem’ can be installed ... [84s/86s] OK * checking package directory ... OK * checking ‘build’ directory ... OK * checking DESCRIPTION meta-information ... OK * checking top-level files ... OK * checking for left-over files ... OK * checking index information ... OK * checking package subdirectories ... OK * checking code files for non-ASCII characters ... OK * checking R files for syntax errors ... OK * checking whether the package can be loaded ... OK * checking whether the package can be loaded with stated dependencies ... OK * checking whether the package can be unloaded cleanly ... OK * checking whether the namespace can be loaded with stated dependencies ... OK * checking whether the namespace can be unloaded cleanly ... OK * checking loading without being on the library search path ... OK * checking dependencies in R code ... OK * checking S3 generic/method consistency ... OK * checking replacement functions ... OK * checking foreign function calls ... OK * checking R code for possible problems ... [171s/174s] OK * checking Rd files ... OK * checking Rd metadata ... OK * checking Rd line widths ... OK * checking Rd cross-references ... OK * checking for missing documentation entries ... OK * checking for code/documentation mismatches ... OK * checking Rd \usage sections ... OK * checking Rd contents ... OK * checking for unstated dependencies in examples ... OK * checking contents of ‘data’ directory ... OK * checking data for non-ASCII characters ... OK * checking LazyData ... OK * checking data for ASCII and uncompressed saves ... OK * checking installed files from ‘inst/doc’ ... OK * checking files in ‘vignettes’ ... OK * checking examples ... OK * checking examples with --run-donttest ... [30m/30m] ERROR Running examples in ‘nlpsem-Ex.R’ failed The error most likely occurred in: > ### Name: getEstimateStats > ### Title: Calculate p-Values and Confidence Intervals of Parameters for a > ### Fitted Model > ### Aliases: getEstimateStats > > ### ** Examples > > mxOption(model = NULL, key = "Default optimizer", "CSOLNP", reset = FALSE) > # Load ECLS-K (2011) data > data("RMS_dat") > RMS_dat0 <- RMS_dat > # Re-baseline the data so that the estimated initial status is for the starting point of the study > baseT <- RMS_dat0$T1 > RMS_dat0$T1 <- RMS_dat0$T1 - baseT > RMS_dat0$T2 <- RMS_dat0$T2 - baseT > RMS_dat0$T3 <- RMS_dat0$T3 - baseT > RMS_dat0$T4 <- RMS_dat0$T4 - baseT > RMS_dat0$T5 <- RMS_dat0$T5 - baseT > RMS_dat0$T6 <- RMS_dat0$T6 - baseT > RMS_dat0$T7 <- RMS_dat0$T7 - baseT > RMS_dat0$T8 <- RMS_dat0$T8 - baseT > RMS_dat0$T9 <- RMS_dat0$T9 - baseT > # Standardized time-invariant covariates > RMS_dat0$ex1 <- scale(RMS_dat0$Approach_to_Learning) > RMS_dat0$ex2 <- scale(RMS_dat0$Attention_focus) > ## No test: > # Fit bilinear spline latent growth curve model (fixed knots) > paraBLS_LGCM.r <- c( + "mueta0", "mueta1", "mueta2", "knot", + paste0("psi", c("00", "01", "02", "11", "12", "22")), + "residuals" + ) > BLS_LGCM_r <- getLGCM( + dat = RMS_dat0, t_var = "T", y_var = "M", curveFun = "BLS", intrinsic = FALSE, + records = 1:9, res_scale = 0.1, paramOut = TRUE, names = paraBLS_LGCM.r) Running LGCM, Bilinear Spline Functional Form, Fixed knot with 11 parameters Treating first argument as an expression Treating first argument as an expression Treating first argument as an expression Treating first argument as an expression > ## Generate P value and Wald confidence intervals > getEstimateStats( + est_in = BLS_LGCM_r@Estimates, CI_type = "Wald" + ) An object of class "StatsOutput" Slot "wald": Estimate SE p.value wald_lbound wald_ubound mueta0 39.4122 0.5314 <0.0001 38.3707 40.4537 mueta1 1.7669 0.0164 <0.0001 1.7348 1.7990 mueta2 0.6906 0.0172 <0.0001 0.6569 0.7243 knot 34.7703 0.3626 <0.0001 34.0596 35.4810 psi00 123.7682 8.8735 <0.0001 106.3765 141.1599 psi01 0.6017 0.1853 0.0012 0.2385 0.9649 psi02 -1.2618 0.1634 <0.0001 -1.5821 -0.9415 psi11 0.0813 0.0078 <0.0001 0.0660 0.0966 psi12 -0.0094 0.0050 0.0601 -0.0192 0.0004 psi22 0.0311 0.0058 <0.0001 0.0197 0.0425 residuals 34.0030 0.8793 <0.0001 32.2796 35.7264 Slot "likelihood": data frame with 0 columns and 0 rows Slot "bootstrap": data frame with 0 columns and 0 rows > # Fit bilinear spline latent growth curve model (random knots) with time-invariant covariates for > # mathematics development > ## Define parameter names > paraBLS.TIC_LGCM.f <- c( + "alpha0", "alpha1", "alpha2", "alphag", + paste0("psi", c("00", "01", "02", "0g", "11", "12", "1g", "22", "2g", "gg")), "residuals", + paste0("beta1", c(0:2, "g")), paste0("beta2", c(0:2, "g")), paste0("mux", 1:2), + paste0("phi", c("11", "12", "22")), "mueta0", "mueta1", "mueta2", "mu_knot" + ) > ## Fit the model > BLS_LGCM.TIC_f <- getLGCM( + dat = RMS_dat0, t_var = "T", y_var = "M", curveFun = "BLS", intrinsic = TRUE, records = 1:9, + growth_TIC = c("ex1", "ex2"), res_scale = 0.1, paramOut = TRUE, names = paraBLS.TIC_LGCM.f + ) Running LGCM_TICs, Bilinear Spline Functional Form, Random knot with 28 parameters Treating first argument as an expression Treating first argument as an expression Treating first argument as an expression Treating first argument as an expression Treating first argument as an expression Treating first argument as an expression > ## Change optimizer to "SLSQP" for getting likelihood-based confidence interval > mxOption(model = NULL, key = "Default optimizer", "SLSQP", reset = FALSE) > ## Generate P value and all three types of confidence intervals > getEstimateStats( + model = BLS_LGCM.TIC_f@mxOutput, est_in = BLS_LGCM.TIC_f@Estimates, CI_type = "all", rep = 1000 + ) Running LGCM_TICs, Bilinear Spline Functional Form, Random knot with 28 parameters Beginning initial fit attempt Running LGCM_TICs, Bilinear Spline Functional Form, Random knot with 28 parameters Lowest minimum so far: 33537.4152746348 Solution found Final run, for Hessian and/or standard errors and/or confidence intervals Running LGCM_TICs, Bilinear Spline Functional Form, Random knot with 28 parameters * checking for unstated dependencies in vignettes ... OK * checking package vignettes ... OK * checking re-building of vignette outputs ... [141s/145s] OK * checking PDF version of manual ... [11s/11s] OK * checking for non-standard things in the check directory ... OK * checking for detritus in the temp directory ... OK * checking for new files in some other directories ... OK * DONE Status: 1 ERROR See ‘/data/blackswan/ripley/R/packages/tests-devel/nlpsem.Rcheck/00check.log’ for details. Command exited with non-zero status 1 Time 39:34.50, 2286.38 + 43.22