* using log directory ‘/data/blackswan/ripley/R/packages/tests-devel/downscaledl.Rcheck’ * using R Under development (unstable) (2023-03-24 r84037) * using platform: x86_64-pc-linux-gnu (64-bit) * R was compiled by gcc (GCC) 11.3.1 20220421 (Red Hat 11.3.1-2) GNU Fortran (GCC) 11.3.1 20220421 (Red Hat 11.3.1-2) * running under: Fedora 34 (Workstation Edition) * using session charset: UTF-8 * checking for file ‘downscaledl/DESCRIPTION’ ... OK * checking extension type ... Package * this is package ‘downscaledl’ version ‘1.0’ * package encoding: UTF-8 * checking package namespace information ... OK * checking package dependencies ... OK * checking if this is a source package ... OK * checking if there is a namespace ... OK * checking for executable files ... OK * checking for hidden files and directories ... OK * checking for portable file names ... OK * checking for sufficient/correct file permissions ... OK * checking whether package ‘downscaledl’ can be installed ... [21s/21s] OK * used C++ compiler: ‘g++ (GCC) 11.3.1 20220421 (Red Hat 11.3.1-2)’ * checking C++ specification ... NOTE Specified C++11: please drop specification unless essential * checking package directory ... OK * checking DESCRIPTION meta-information ... OK * checking top-level files ... OK * checking for left-over files ... OK * checking index information ... OK * checking package subdirectories ... OK * checking R files for non-ASCII characters ... OK * checking R files for syntax errors ... OK * checking whether the package can be loaded ... OK * checking whether the package can be loaded with stated dependencies ... OK * checking whether the package can be unloaded cleanly ... OK * checking whether the namespace can be loaded with stated dependencies ... OK * checking whether the namespace can be unloaded cleanly ... OK * checking loading without being on the library search path ... OK * checking dependencies in R code ... NOTE Namespaces in Imports field not imported from: ‘dplyr’ ‘parallel’ ‘rgdal’ ‘sp’ ‘tensorflow’ All declared Imports should be used. * checking S3 generic/method consistency ... OK * checking replacement functions ... OK * checking foreign function calls ... OK * checking R code for possible problems ... OK * checking Rd files ... OK * checking Rd metadata ... OK * checking Rd line widths ... OK * checking Rd cross-references ... OK * checking for missing documentation entries ... OK * checking for code/documentation mismatches ... OK * checking Rd \usage sections ... OK * checking Rd contents ... OK * checking for unstated dependencies in examples ... OK * checking LazyData ... NOTE 'LazyData' is specified without a 'data' directory * checking line endings in C/C++/Fortran sources/headers ... OK * checking line endings in Makefiles ... OK * checking compilation flags in Makevars ... OK * checking for GNU extensions in Makefiles ... OK * checking for portable use of $(BLAS_LIBS) and $(LAPACK_LIBS) ... OK * checking use of PKG_*FLAGS in Makefiles ... OK * checking use of SHLIB_OPENMP_*FLAGS in Makefiles ... OK * checking compilation flags used ... OK * checking compiled code ... OK * checking examples ... OK * checking examples with --run-donttest ... ERROR Running examples in ‘downscaledl-Ex.R’ failed The error most likely occurred in: > ### Name: AutoEncoderModel > ### Title: AutoEncoderModel > ### Aliases: AutoEncoderModel > > ### ** Examples > > # This is an example to simulate a dataset to demonstrate use of autoencoder > > #Set the sample size as 1000 for the simulated dataset > n=1000 > > #Get the simulated data using random functions > dataDf=data.frame(id=c(1:n),x1=runif(n),x2=rnorm(n,100,10), + x3=runif(n,100,200),x4=rnorm(n,1000,30)) > > #Set the proportion of the test samples > testProp=0.1 > ntest=as.integer(n*testProp) > ntrain=n-ntest > > #Obtain the index for the training and testing samples > index_train=sample(c(1:n),ntrain) > index_test=setdiff(c(1:n),index_train) > > #Obtain y as analytic solution for x plus random noise > dataDf$y=sqrt(dataDf$x1)+dataDf$x2^0.3+log(dataDf$x3)+dataDf$x4^2+rnorm(n) > > #Scale the dataset > scalev = scale(dataDf[,c(2:6)]) > col_means = attr(scalev, "scaled:center") > col_stddevs = attr(scalev, "scaled:scale") > > ## No test: > #Set the early stopping and learning rate adjustement functions > early_stopping = keras::callback_early_stopping(monitor ='loss', min_delta=0.000001) Error: Valid installation of TensorFlow not found. Python environments searched for 'tensorflow' package: /usr/bin/python3.9 /usr/bin/python3.9 /usr/bin/python3.9 Python exception encountered: Traceback (most recent call last): File "/data/blackswan/ripley/R/R-devel/site-library/reticulate/python/rpytools/loader.py", line 119, in _find_and_load_hook return _run_hook(name, _hook) File "/data/blackswan/ripley/R/R-devel/site-library/reticulate/python/rpytools/loader.py", line 93, in _run_hook module = hook() File "/data/blackswan/ripley/R/R-devel/site-library/reticulate/python/rpytools/loader.py", line 117, in _hook return _find_and_load(name, import_) ModuleNotFoundError: No module named 'tensorflow' You can install TensorFlow using the install_tensorflow() function. Execution halted * checking PDF version of manual ... OK * checking for non-standard things in the check directory ... OK * checking for detritus in the temp directory ... OK * checking for new files in some other directories ... OK * DONE Status: 1 ERROR, 3 NOTEs See ‘/data/blackswan/ripley/R/packages/tests-devel/downscaledl.Rcheck/00check.log’ for details. Command exited with non-zero status 1 Time 0:58.73, 51.42 + 11.87