* using log directory ‘/data/blackswan/ripley/R/packages/tests-devel/cdcatR.Rcheck’ * using R Under development (unstable) (2025-12-20 r89211) * using platform: x86_64-pc-linux-gnu * R was compiled by gcc (GCC) 14.2.1 20240912 (Red Hat 14.2.1-3) GNU Fortran (GCC) 14.2.1 20240912 (Red Hat 14.2.1-3) * running under: Fedora Linux 40 (Workstation Edition) * using session charset: UTF-8 * checking for file ‘cdcatR/DESCRIPTION’ ... OK * checking extension type ... Package * this is package ‘cdcatR’ version ‘1.0.6’ * package encoding: UTF-8 * checking package namespace information ... OK * checking package dependencies ... OK * checking if this is a source package ... OK * checking if there is a namespace ... OK * checking for executable files ... OK * checking for hidden files and directories ... OK * checking for portable file names ... OK * checking for sufficient/correct file permissions ... OK * checking whether package ‘cdcatR’ can be installed ... [12s/12s] OK * checking package directory ... OK * checking DESCRIPTION meta-information ... OK * checking top-level files ... OK * checking for left-over files ... OK * checking index information ... OK * checking package subdirectories ... NOTE Problems with news in ‘NEWS.md’: No news entries found. * checking code files for non-ASCII characters ... OK * checking R files for syntax errors ... OK * checking whether the package can be loaded ... OK * checking whether the package can be loaded with stated dependencies ... OK * checking whether the package can be unloaded cleanly ... OK * checking whether the namespace can be loaded with stated dependencies ... OK * checking whether the namespace can be unloaded cleanly ... OK * checking loading without being on the library search path ... OK * checking whether startup messages can be suppressed ... OK * checking dependencies in R code ... OK * checking S3 generic/method consistency ... OK * checking replacement functions ... OK * checking foreign function calls ... OK * checking R code for possible problems ... [21s/21s] OK * checking Rd files ... OK * checking Rd metadata ... OK * checking Rd line widths ... OK * checking Rd cross-references ... OK * checking for missing documentation entries ... OK * checking for code/documentation mismatches ... OK * checking Rd \usage sections ... OK * checking Rd contents ... OK * checking for unstated dependencies in examples ... OK * checking contents of ‘data’ directory ... OK * checking data for non-ASCII characters ... OK * checking LazyData ... OK * checking data for ASCII and uncompressed saves ... OK * checking examples ... [8s/13s] OK * checking examples with --run-donttest ... [14s/49s] ERROR Running examples in ‘cdcatR-Ex.R’ failed The error most likely occurred in: > ### Name: cdcat > ### Title: Cognitively based computerized adaptive test application > ### Aliases: cdcat > > ### ** Examples > > ## Don't show: > Q <- sim180GDINA$simQ > dat <- sim180GDINA$simdat[1:20, ] > att <- sim180GDINA$simalpha[1:20, ] > fit <- GDINA::GDINA(dat = dat, Q = Q, verbose = 0) # GDINA package > > res.FIXJ <- cdcat(fit = fit, dat = dat, FIXED.LENGTH = TRUE, + MAXJ = 20, n.cores = 2) | | | 0% | |==== | 5% | |======= | 10% | |========== | 15% | |============== | 20% | |================== | 25% | |===================== | 30% | |======================== | 35% | |============================ | 40% | |================================ | 45% | |=================================== | 50% | |====================================== | 55% | |========================================== | 60% | |============================================== | 65% | |================================================= | 70% | |==================================================== | 75% | |======================================================== | 80% | |============================================================ | 85% | |=============================================================== | 90% | |================================================================== | 95% | |======================================================================| 100% > res.FIXJ$est[[1]] # estimates for the first examinee (fixed-length) $est.cat j qj xj ML nmodesML Lik MAP nmodesMAP Post EAP K1 1 131 01101 0 00000 8 0.9999 00000 8 0.09089 00000 0.5 2 32 10000 0 00000 4 0.9998 00000 4 0.18176 00000 1e-04 3 173 11100 1 00100 2 0.9997 00100 2 0.49963 00100 0.00027 4 110 00110 1 00110 1 0.9996 00110 1 0.9995 00110 1e-04 5 134 10101 0 00110 1 0.9995 00110 1 0.9998 00110 0 6 145 01011 1 00110 1 0.9994 00110 1 1 00110 0 7 126 01001 0 00110 1 0.9993 00110 1 1 00110 0 8 166 01110 1 00110 1 0.9992 00110 1 1 00110 0 9 179 11001 1 00110 1 0.9991 00110 1 1 00110 0 10 132 01101 0 00110 1 0.999 00110 1 1 00110 0 11 140 00111 1 00110 1 0.9989 00110 1 1 00110 0 12 96 11000 0 00110 1 0.9988 00110 1 1 00110 0 13 86 00011 1 00110 1 0.9987 00110 1 1 00110 0 14 127 01101 0 00110 1 0.9986 00110 1 1 00110 0 15 5 00001 0 00110 1 0.9985 00110 1 1 00110 0 16 170 00111 1 00110 1 0.9984 00110 1 1 00110 0 17 164 10011 1 00110 1 0.9983 00110 1 1 00110 0 18 130 01011 1 00110 1 0.9982 00110 1 1 00110 0 19 91 00011 1 00110 1 0.9981 00110 1 1 00110 0 20 15 00001 0 00110 1 0.998 00110 1 1 00110 0 K2 K3 K4 K5 1 0.00015 0.36367 0.5 0.27281 2 0.00015 0.36367 0.5 0.27281 3 2e-04 0.99965 0.5 0.00035 4 2e-04 1 0.9999 2e-04 5 1e-04 1 0.9999 0 6 0 1 1 0 7 0 1 1 0 8 0 1 1 0 9 0 1 1 0 10 0 1 1 0 11 0 1 1 0 12 0 1 1 0 13 0 1 1 0 14 0 1 1 0 15 0 1 1 0 16 0 1 1 0 17 0 1 1 0 18 0 1 1 0 19 0 1 1 0 20 0 1 1 0 $item.usage [1] 131 32 173 110 134 145 126 166 179 132 140 96 86 127 5 170 164 130 91 [20] 15 > ## End(Don't show) > ## No test: > ###################################### > # Example 1. # > # CD-CAT simulation for a GDINA obj # > ###################################### > > #-----------Data----------# > Q <- sim180GDINA$simQ > K <- ncol(Q) > dat <- sim180GDINA$simdat > att <- sim180GDINA$simalpha > > #----------Model estimation----------# > fit <- GDINA::GDINA(dat = dat, Q = Q, verbose = 0) # GDINA package > #fit <- CDM::gdina(data = dat, q.matrix = Q, progress = 0) # CDM package > > #---------------CD-CAT---------------# > res.FIXJ <- cdcat(fit = fit, dat = dat, FIXED.LENGTH = TRUE, + MAXJ = 20, n.cores = 2) | | | 0% | | | 1% | |= | 1% | |= | 2% | |== | 2% | |== | 3% | |=== | 4% | |=== | 5% | |==== | 5% | |==== | 6% | |===== | 7% | |===== | 8% | |====== | 8% | |====== | 9% | |======= | 9% | |======= | 10% | |======= | 11% | |======== | 11% | |======== | 12% | |========= | 12% | |========= | 13% | |========== | 14% | |========== | 15% | |=========== | 15% | |=========== | 16% | |============ | 17% | |============ | 18% | |============= | 18% | |============= | 19% | |============== | 19% | |============== | 20% | |============== | 21% | |=============== | 21% | |=============== | 22% | |================ | 22% | |================ | 23% | |================= | 24% | |================= | 25% | |================== | 25% | |================== | 26% | |=================== | 27% | |=================== | 28% | |==================== | 28% | |==================== | 29% | |===================== | 29% | |===================== | 30% | |===================== | 31% | |====================== | 31% | |====================== | 32% | |======================= | 32% | |======================= | 33% | |======================== | 34% | |======================== | 35% | |========================= | 35% | |========================= | 36% | |========================== | 37% | |========================== | 38% | |=========================== | 38% | |=========================== | 39% | |============================ | 39% | |============================ | 40% | |============================ | 41% | |============================= | 41% | |============================= | 42% | |============================== | 42% | |============================== | 43% | |=============================== | 44% | |=============================== | 45% | |================================ | 45% | |================================ | 46% | |================================= | 47% | |================================= | 48% | |================================== | 48% | |================================== | 49% | |=================================== | 49% | |=================================== | 50% | |=================================== | 51% | |==================================== | 51% | |==================================== | 52% | |===================================== | 52% | |===================================== | 53% | |====================================== | 54% | |====================================== | 55% | |======================================= | 55% | |======================================= | 56% | |======================================== | 57% | |======================================== | 58% | |========================================= | 58% | |========================================= | 59% | |========================================== | 59% | |========================================== | 60% | |========================================== | 61% | |=========================================== | 61% | |=========================================== | 62% | |============================================ | 62% | |============================================ | 63% | |============================================= | 64% | |============================================= | 65% | |============================================== | 65% | |============================================== | 66% | |=============================================== | 67% | |=============================================== | 68% | |================================================ | 68% | |================================================ | 69% | |================================================= | 69% | |================================================= | 70% | |================================================= | 71% | |================================================== | 71% | |================================================== | 72% | |=================================================== | 72% | |=================================================== | 73% | |==================================================== | 74% | |==================================================== | 75% | |===================================================== | 75% | |===================================================== | 76% | |====================================================== | 77% | |====================================================== | 78% | |======================================================= | 78% | |======================================================= | 79% | |======================================================== | 79% | |======================================================== | 80% | |======================================================== | 81% | |========================================================= | 81% | |========================================================= | 82% | |========================================================== | 82% | |========================================================== | 83% | |=========================================================== | 84% | |=========================================================== | 85% | |============================================================ | 85% | |============================================================ | 86% | |============================================================= | 87% | |============================================================= | 88% | |============================================================== | 88% | |============================================================== | 89% | |=============================================================== | 89% | |=============================================================== | 90% | |=============================================================== | 91% | |================================================================ | 91% | |================================================================ | 92% | |================================================================= | 92% | |================================================================= | 93% | |================================================================== | 94% | |================================================================== | 95% | |=================================================================== | 95% | |=================================================================== | 96% | |==================================================================== | 97% | |==================================================================== | 98% | |===================================================================== | 98% | |===================================================================== | 99% | |======================================================================| 99% | |======================================================================| 100% > res.VARJ <- cdcat(fit = fit, dat = dat, FIXED.LENGTH = FALSE, + MAXJ = 20, precision.cut = .80, n.cores = 2) | | | 0% | | | 1% | |= | 1% | |= | 2% | |== | 2% | |== | 3% | |=== | 4% | |=== | 5% | |==== | 5% | |==== | 6% | |===== | 7% | |===== | 8% | |====== | 8% | |====== | 9% | |======= | 9% | |======= | 10% | |======= | 11% | |======== | 11% | |======== | 12% | |========= | 12% | |========= | 13% | |========== | 14% | |========== | 15% | |=========== | 15% | |=========== | 16% | |============ | 17% | |============ | 18% | |============= | 18% | |============= | 19% | |============== | 19% | |============== | 20% | |============== | 21% | |=============== | 21% | |=============== | 22% | |================ | 22% | |================ | 23% | |================= | 24% | |================= | 25% | |================== | 25% | |================== | 26% | |=================== | 27% | |=================== | 28% | |==================== | 28% | |==================== | 29% | |===================== | 29% | |===================== | 30% | |===================== | 31% | |====================== | 31% | |====================== | 32% | |======================= | 32% | |======================= | 33% | |======================== | 34% | |======================== | 35% | |========================= | 35% | |========================= | 36% | |========================== | 37% | |========================== | 38% | |=========================== | 38% | |=========================== | 39% | |============================ | 39% | |============================ | 40% | |============================ | 41% | |============================= | 41% | |============================= | 42% | |============================== | 42% | |============================== | 43% | |=============================== | 44% | |=============================== | 45% | |================================ | 45% | |================================ | 46% | |================================= | 47% | |================================= | 48% | |================================== | 48% | |================================== | 49% | |=================================== | 49% | |=================================== | 50% | |=================================== | 51% | |==================================== | 51% | |==================================== | 52% | |===================================== | 52% | |===================================== | 53% | |====================================== | 54% | |====================================== | 55% | |======================================= | 55% | |======================================= | 56% | |======================================== | 57% | |======================================== | 58% | |========================================= | 58% | |========================================= | 59% | |========================================== | 59% | |========================================== | 60% | |========================================== | 61% | |=========================================== | 61% | |=========================================== | 62% | |============================================ | 62% | |============================================ | 63% | |============================================= | 64% | |============================================= | 65% | |============================================== | 65% | |============================================== | 66% | |=============================================== | 67% | |=============================================== | 68% | |================================================ | 68% | |================================================ | 69% | |================================================= | 69% | |================================================= | 70% | |================================================= | 71% | |================================================== | 71% | |================================================== | 72% | |=================================================== | 72% | |=================================================== | 73% | |==================================================== | 74% | |==================================================== | 75% | |===================================================== | 75% | |===================================================== | 76% | |====================================================== | 77% | |====================================================== | 78% | |======================================================= | 78% | |======================================================= | 79% | |======================================================== | 79% | |======================================================== | 80% | |======================================================== | 81% | |========================================================= | 81% | |========================================================= | 82% | |========================================================== | 82% | |========================================================== | 83% | |=========================================================== | 84% | |=========================================================== | 85% | |============================================================ | 85% | |============================================================ | 86% | |============================================================= | 87% | |============================================================= | 88% | |============================================================== | 88% | |============================================================== | 89% | |=============================================================== | 89% | |=============================================================== | 90% | |=============================================================== | 91% | |================================================================ | 91% | |================================================================ | 92% | |================================================================= | 92% | |================================================================= | 93% | |================================================================== | 94% | |================================================================== | 95% | |=================================================================== | 95% | |=================================================================== | 96% | |==================================================================== | 97% | |==================================================================== | 98% | |===================================================================== | 98% | |===================================================================== | 99% | |======================================================================| 99% | |======================================================================| 100% > > #---------------Results--------------# > res.FIXJ$est[[1]] # estimates for the first examinee (fixed-length) $est.cat j qj xj ML nmodesML Lik MAP nmodesMAP Post EAP K1 1 15 00001 0 00000 16 0.96212 00000 16 0.06249 00000 0.5 2 47 10000 0 00000 8 0.96202 00000 8 0.12256 01110 0.01946 3 12 01000 0 00000 4 0.92872 00000 4 0.24301 00110 0.01946 4 58 00100 1 00100 2 0.89981 00100 2 0.47991 00100 0.01946 5 18 00010 1 00110 1 0.874 00110 1 0.90521 00110 0.01946 6 110 00110 1 00110 1 0.77689 00110 1 0.9602 00110 0.01946 7 11 10000 0 00110 1 0.77376 00110 1 0.97848 00110 0.00079 8 62 01000 0 00110 1 0.744 00110 1 0.98681 00110 0.00079 9 8 00100 1 00110 1 0.73531 00110 1 0.99382 00110 0.00079 10 14 00010 1 00110 1 0.60874 00110 1 0.99845 00110 0.00079 11 6 10000 0 00110 1 0.5842 00110 1 0.99922 00110 2e-05 12 66 00100 1 00110 1 0.56374 00110 1 0.99973 00110 2e-05 13 22 01000 0 00110 1 0.52254 00110 1 0.99984 00110 2e-05 14 45 00001 0 00110 1 0.49483 00110 1 0.99994 00110 2e-05 15 46 00100 1 00110 1 0.47173 00110 1 0.99997 00110 2e-05 16 32 10000 0 00110 1 0.46982 00110 1 0.99999 00110 0 17 162 10011 0 00110 1 0.4092 00110 1 1 00110 0 18 123 01100 1 00110 1 0.36796 00110 1 1 00110 0 19 72 01000 0 00110 1 0.334 00110 1 1 00110 0 20 30 00010 1 00110 1 0.30525 00110 1 1 00110 0 K2 K3 K4 K5 1 0.5 0.5 0.5 1e-04 2 0.5 0.5 0.5 1e-04 3 0.00856 0.5 0.5 1e-04 4 0.00856 0.98742 0.5 1e-04 5 0.00856 0.98742 0.94311 1e-04 6 0.00856 0.99241 0.99537 1e-04 7 0.00856 0.99241 0.99537 1e-04 8 0.00011 0.99241 0.99537 1e-04 9 0.00011 0.99946 0.99536 1e-04 10 0.00011 0.99946 1 1e-04 11 0.00011 0.99946 1 1e-04 12 0.00011 0.99997 1 1e-04 13 0 0.99997 1 1e-04 14 0 0.99997 1 0 15 0 1 1 0 16 0 1 1 0 17 0 1 1 0 18 0 1 1 0 19 0 1 1 0 20 0 1 1 0 $item.usage [1] 15 47 12 58 18 110 11 62 8 14 6 66 22 45 46 32 162 123 72 [20] 30 > res.VARJ$est[[1]] # estimates for the first examinee (fixed-precision) $est.cat j qj xj ML nmodesML Lik MAP nmodesMAP Post EAP K1 1 13 00100 0 00000 16 0.84362 00000 16 0.05256 00000 0.5 2 47 10000 0 00000 8 0.84354 00000 8 0.10308 00000 0.01946 3 15 00001 0 00000 4 0.81158 00000 4 0.20613 00000 0.01946 4 12 01000 0 00000 2 0.78349 00000 2 0.40873 00000 0.01946 5 18 00010 1 00010 1 0.76101 00010 1 0.77096 00010 0.01946 6 58 00100 1 00110 1 0.13943 00110 1 0.85887 00110 0.01946 K2 K3 K4 K5 1 0.5 0.15903 0.5 0.5 2 0.5 0.15903 0.5 0.5 3 0.5 0.15903 0.5 1e-04 4 0.00856 0.15903 0.5 1e-04 5 0.00856 0.15903 0.94311 1e-04 6 0.00856 0.93687 0.94311 1e-04 $item.usage [1] 13 47 15 12 18 58 > att.plot(cdcat.obj = res.FIXJ, i = 1) # plot for the first examinee (fixed-length) > att.plot(cdcat.obj = res.VARJ, i = 1) # plot for the first examinee (fixed-precision) > # FIXJ summary > res.FIXJ.sum.real <- cdcat.summary(cdcat.obj = res.FIXJ, alpha = att) # vs. real accuracy Error in strsplit(x, as.character(split), fixed, perl, useBytes) : NA in coercion to boolean Calls: cdcat.summary -> cdcat.getdata -> unlist -> strsplit Execution halted * checking PDF version of manual ... OK * checking for non-standard things in the check directory ... OK * checking for detritus in the temp directory ... OK * checking for new files in some other directories ... OK * DONE Status: 1 ERROR, 1 NOTE See ‘/data/blackswan/ripley/R/packages/tests-devel/cdcatR.Rcheck/00check.log’ for details. Command exited with non-zero status 1 Time 2:46.12, 107.04 + 18.88