
Statistical Data Mining

B. D. Ripley

April 2003

c© B. D. Ripley 1998–2003. Material from Ripley (1996) isc© B. D. Ripley 1996.
Material from Venables and Ripley (1999, 2002) isc© Springer-Verlag, New York
1994–2002.

i

Introduction

This material is partly based on Ripley (1996), Venables & Ripley (1999, 2002)
and the on-line complements available at

http://www.stats.ox.ac.uk/pub/MASS4/

My copyright agreements allow me to use the material on courses, but no further
distribution is allowed.

The S code in this version of the notes was tested withS-PLUS 6.1 for
Unix/Linux andWindows, andS-PLUS 2000 release 3. With minor changes it
works withR version 1.6.2.

The specific add-ons for the material in this course are available at

http://www.stats.ox.ac.uk/pub/bdr/SDM2001/

All the other add-on libraries mentioned are available forUnix and forWin-
dows. Compiled versions forS-PLUS 2000 are available from

http://www.stats.ox.ac.uk/pub/SWin/

and forS-PLUS 6.x from

http://www.stats.ox.ac.uk/pub/MASS4/Winlibs/

ii

Contents

1 Overview of Data Mining 1

1.1 Multivariate analysis . 2

1.2 Graphical methods .. 3

1.3 Cluster analysis 13

1.4 Kohonen’s self organizing maps 19

1.5 Exploratory projection pursuit 20

1.6 An example of visualization 23

1.7 Categorical data 30

2 Tree-based Methods 36

2.1 Partitioning methods. 37

2.2 Implementation inrpart . 49

3 Neural Networks 58

3.1 Feed-forward neural networks 59

3.2 Multiple logistic regression and discrimination 68

3.3 Neural networks in classification 69

3.4 A look at support vector machines. 76

4 Near-neighbour Methods 79

4.1 Nearest neighbour methods 79

4.2 Learning vector quantization 85

4.3 Forensic glass. 88

5 Assessing Performance 91

5.1 Practical ways of performance assessment. 91

5.2 Calibration plots 93

5.3 Performance summaries and ROC curves. 95

5.4 Assessing generalization 97

References 99

Contents iii

Index 105

1

Chapter 1

Overview of Data Mining

Fifteen years agodata mining was a pejorative phrase amongst statisticians, but
the English language evolves and that sense is now encapsulated in the phrasedata
dredging. In its current sensedata mining means finding structure in large-scale
databases. It is one of many newly-popular terms for this activity, another being
KDD (Knowledge Discovery in Databases), and is a subject at the boundaries of
statistics, engineering, machine learning and computer science.

Such phrases are to a large extent fashion, and finding structure in datasets is
emphaticallynot a new activity. In the words of Witten & Franke (2000, p. 26)

What’s the difference between machine learning and statistics? Cynics,
looking wryly at the explosion of commercial interest (and hype) in this area,
equate data mining to statistics plus marketing.

What is new is the scale of databases that are becoming available through the
computer-based acquisition of data, either through new instrumentation (fMRI
machines can collect 100Mb of images in a hour’s session) or through the by-
product of computerised accounting records (for example, spotting fraudulent use
of credit cards or telephones, linking sales to customers through ‘loyalty’ cards).

This is a short course instatistical data mining. As such we will not cover
the aspects of data mining that are concerned with querying very large databases,
although building efficient database interfaces to statistical software is becoming
an important area in statistical computing. Indeed, many of the problems arise
with quite modest datasets with a thousand or so examples, but even those were
not common a decade or two ago.

We will always need to bear in mind the ‘data dredging’ aspect of the term.
When (literally) mining or dredging, the proportion of good material to dross is
usually very low, and when mining for minerals can often be too low to cover the
costs of extraction. Exactly the same issues occur in looking for structure in data:
it is all too easy to find structure that is only characteristic of the particular set
of data to hand. We wantgeneralization in the terminology of the psychologists,
that is to find structure that will help with future examples too.

Statistics has been concerned with detecting structure in data under uncertainty
for many years: that is what the design of experiments developed in the inter-war
years had as its aims. Generally that gave a single outcome (‘yield’) on a hundred

2 Overview of Data Mining

or so experimental points.Multivariate analysis was concerned with multiple
(usually more than two and often fewer than twenty) measurements on different
cases (often subjects).

In engineering, very similar (often identical) methods were being developed
under the heading ofpattern recognition. Engineers tend to distinguish between

statistical pattern recognition where everything is ‘learnt from examples’

structural pattern recognition where most of the structure is imposed froma
priori knowledge. This used to be calledsyntactic pattern recognition, in
which the structure was imposed by a formal grammar, but that has proved
to be pretty unsuccessful.

Note that structure is imposed instatistical pattern recognition via prior assump-
tions on the difference between signal and noise, but that structure is not determin-
istic as in structural pattern recognition. It is the inability to cope with exceptions
that has bedevilled structural pattern recognition (and much of the research on
expert systems).

However, a practically much more important distinction is between

unsupervised methods in which there is no known grouping of the examples

supervised methods in which the examples are known to be grouped in advance,
or ordered by some response, and the task is to group future examples or
predict which are going to be give a ‘good’ response.

It is important to bear in mind that unsupervised pattern recognition is like
looking for needles in haystacks. It covers the formation of good scientific theories
and the search for therapeutically useful pharmaceutical compounds. It is best
thought of as hypothesis formation, and independent confirmation will be needed.

There are a large number of books in this area, including Dudaet al. (2001);
Handet al. (2001); Hastieet al. (2001); Ripley (1996); Webb (1999); Witten &
Frank (2000).

1.1 Multivariate analysis

Multivariate analysis is concerned with datasets which have more than one re-
sponse variable for each observational or experimental unit. The datasets can be
summarized by data matricesX with n rows andp columns, the rows repre-
senting the observations or cases, and the columns the variables. The matrix can
be viewed either way, depending whether the main interest is in the relationships
between the cases or between the variables. Note that for consistency we represent
the variables of a case by therow vector x .

The main division in multivariate methods is between unsupervised and su-
pervised methods. One of our examples is the (in)famous iris data collected by
Anderson (1935) and given and analysed by Fisher (1936). This has 150 cases,
which are stated to be 50 of each of the three speciesIris setosa, I. virginica and

1.2 Graphical methods 3

I. versicolor. Each case has four measurements on the length and width of its
petals and sepals.A priori this is a supervised problem, and the obvious questions
are to use measurements on a future case to classify it, and perhaps to ask how the
variables vary between the species. (In fact, Fisher (1936) used these data to test
a genetic hypothesis which placedI. versicolor as a hybrid two-thirds of the way
from I. setosa to I. virginica.) However, the classification of species is uncertain,
and similar data have been used to identify species by grouping the cases. (Indeed,
Wilson (1982) and McLachlan (1992, §6.9) consider whether the iris data can be
split into sub-species.)

1.2 Graphical methods

The simplest way to examine multivariate data is via a pairs plot, enhanced to
show the groups. More dynamic versions are available inXGobi, GGobi and
S-PLUS’s brush .

Figure 1.1: S-PLUS brush plot of the iris data.

Principal component analysis

Linear methods are the heart of classical multivariate analysis, and depend on
seeking linear combinations of the variables with desirable properties. For the

4 Overview of Data Mining

unsupervised case the main method isprincipal component analysis, which seeks
linear combinations of the columns ofX with maximal (or minimal) variance.
Because the variance can be scaled by rescaling the combination, we constrain the
combinations to have unit length.

Let S denote the covariance matrix of the dataX , which is defined1 by

nS = (X − n−111T X)T (X − n−111T X) = (XT X − nxxT)

wherex = 1T X/n is the row vector of means of the variables. Then the sample
variance of a linear combinationxa of a row vectorx is aT Σa and this is
to be maximized (or minimized) subject to‖a‖2 = aT a = 1 . Since Σ is a
non-negative definite matrix, it has an eigendecomposition

Σ = CT ΛC

whereΛ is a diagonal matrix of (non-negative) eigenvalues in decreasing order.
Let b = Ca , which has the same length asa (since C is orthogonal). The
problem is then equivalent to maximizingbT Λb =

∑
λib

2
i subject to

∑
b2
i = 1 .

Clearly the variance is maximized by takingb to be the first unit vector, or
equivalently takinga to be the column eigenvector corresponding to the largest
eigenvalue ofΣ . Taking subsequent eigenvectors gives combinations with as
large as possible variance which are uncorrelated with those which have been
taken earlier. Thei th principal component is then thei th linear combination
picked by this procedure. (It is only determined up to a change of sign; you may
get different signs in different implementations ofS, even on different platforms.)

Another point of view is to seek new variablesyj which are rotations of the old
variables to explain best the variation in the dataset. Clearly these new variables
should be taken to be the principal components, in order. Suppose we use the
first k principal components. Then the subspace they span contains the ‘best’
k -dimensional view of the data. It both has maximal covariance matrix (both
in trace and determinant) and best approximates the original points in the sense
of minimizing the sum of squared distance from the points to their projections.
The first few principal components are often useful to reveal structure in the data.
The principal components corresponding to the smallest eigenvalues are the most
nearly constant combinations of the variables, and can also be of interest.

Note that the principal components depend on the scaling of the original
variables, and this will be undesirable except perhaps if (as in theiris data) they
are in comparable units. (Even in this case, correlations would often be used.)
Otherwise it is conventional to take the principal components of thecorrelation
matrix, implicitly rescaling all the variables to have unit sample variance.

The functionprincomp computes principal components. The argumentcor
controls whether the covariance or correlation matrix is used (via re-scaling the
variables).

1 A divisor of n − 1 is more conventional, butprincomp calls cov.wt , which usesn .

1.2 Graphical methods 5

first principal component

se
co

nd
 p

rin
ci

pa
l c

om
po

ne
nt

-4 -2 0 2

-3
-2

-1
0

1
2

s

s
s

s

s

s

s
s

s

s

s

s

s

s

s

s

s

s

s

s

s

s

s
ss

s

s
s
s

ss

s

s

s

s
s

s
s

s

ss

s

s

s

s

s

s

s

s

s

c
c c

c

c

c

c

c

c

c

c

c

c

c
c

c

c

c

c

c

c

c

c

c

c
c

c

c

c

c

cc

c
c

c

c
c

c

c

c
c

c

c

c

c

c
c

c

c

c

v

v

v

v
v

v

v

v

v

v

v

v

v

v

v

v

v

v

v

v

v

v

v

v

v v

v

v
v

v

v

v

vv

v

vv

v

v

vvv

v

v
v

v

v

v

v

v

Figure 1.2: First two principal components for the log-transformediris data.

> ir.pca <- princomp(log(ir), cor=T)
> ir.pca
Standard deviations:
Comp.1 Comp.2 Comp.3 Comp.4
1.7125 0.95238 0.3647 0.16568

....
> summary(ir.pca)
Importance of components:

Comp.1 Comp.2 Comp.3 Comp.4
Standard deviation 1.71246 0.95238 0.364703 0.1656840

Proportion of Variance 0.73313 0.22676 0.033252 0.0068628
Cumulative Proportion 0.73313 0.95989 0.993137 1.0000000

> plot(ir.pca)
> loadings(ir.pca)

Comp.1 Comp.2 Comp.3 Comp.4
Sepal L. 0.504 0.455 0.709 0.191
Sepal W. -0.302 0.889 -0.331
Petal L. 0.577 -0.219 -0.786
Petal W. 0.567 -0.583 0.580
> ir.pc <- predict(ir.pca)
> eqscplot(ir.pc[, 1:2], type = "n",

xlab = "first principal component",
ylab = "second principal component")

> text(ir.pc[,1:2], cex=0.8, labels = as.character(ir.sp),
col = 1+as.numeric(ir.sp))

In the terminology of this function, theloadings are columns giving the linear
combinationsa for each principal component, and thescores are the data on
the principal components. The plot (not shown) is thescreeplot , a barplot of
the variances of the principal components labelled by

∑j
i=1 λi/trace(Σ) . The

result ofloadings is rather deceptive, as small entries are suppressed in printing
but will be insignificant only if the correlation matrix is used, and that isnot the
default. Thepredict method rotates to the principal components.

6 Overview of Data Mining

Figure 1.2 shows the first two principal components for theiris data based
on the covariance matrix, revealing the group structure if it had not already been
known.A warning: principal component analysis will reveal the gross features of
the data, which may already be known, and is often best applied to residuals after
the known structure has been removed.

There are two books devoted solely to principal components, Jackson (1991)
and Jolliffe (1986), which over-states its value as a technique. Other projection
techniques such asprojection pursuit discussed below choose rotations based on
more revealing criteria than variances.

Distance methods

There is a class of methods based on representing the cases in a low-dimensional
Euclidean space so that their proximity reflects the similarity of their variables.
We can think of ‘squeezing’ a high-dimensional point cloud into a small number
of dimensions (2, perhaps 3) whilst preserving as well as possible the inter-point
distances.

To do so we have to produce a measure of (dis)similarity. The functiondist
uses one of four distance measures between the points in thep -dimensional
space of variables; the default is Euclidean distance. Distances are often called
dissimilarities. Jardine & Sibson (1971) discuss several families of similarity and
dissimilarity measures. For categorical variables most dissimilarities are measures
of agreement. Thesimple matching coefficient is the proportion of categorical
variables on which the cases differ. TheJaccard coefficient applies to categorical
variables with a preferred level. It is the proportion of such variables with one of
the cases at the preferred level in which the cases differ. Thebinary method
of dist is of this family, being the Jaccard coefficient if all non-zero levels are
preferred. Applied to logical variables on two cases it gives the proportion of
variables in which only one is true among those that are true on at least one case.
The functiondaisy (in packagecluster in R) provides a more general way
to compute dissimilarity matrices. The main extension is to variables that are not
on interval scale, for example, ordinal, log-ratio and asymmetric binary variables.
There are many variants of these coefficients; Kaufman & Rousseeuw (1990,
§2.5) provide a readable summary and recommendations, and Cox & Cox (2001,
Chapter 2) provide a more comprehensive catalogue.

The most obvious of the distance methods ismultidimensional scaling (MDS),
which seeks a configuration inRd such that distances between the points best
match (in a sense to be defined) those of the distance matrix. We start with
the classical form of multidimensional scaling, which is also known asprincipal
coordinate analysis. For theiris data we can use:

ir.scal <- cmdscale(dist(ir), k = 2, eig = T)
ir.scal$points[, 2] <- -ir.scal$points[, 2]
eqscplot(ir.scal$points, type="n")
text(ir.scal$points, cex=0.8, labels = as.character(ir.sp),

col = 1+as.numeric(ir.sp))

1.2 Graphical methods 7

Metric scaling

x

y

-2 0 2

-2
-1

0
1

2

s

ss
s

s

s

s
s

s

s

s

s
s

s

s s

s

s

s
s ss

s sss
s

ss

ss

s
s
s

s
s

s
s

s

ss

s

s

s
s

s

s

s

s

s

c
c

c

c

c

c

c

c

c

c

c

c

c

cc

c

cc
cc

cc
cc

c
c c c

c
c

cc
c cc

c
c

cc
c c

c
c

c

c
cc

c

c
c

v

v

v

v v

v

v

v

v

v

v

v

v

v
v

vv

v

v

v

v

v

v

v

v
v

vv v

v v

v

vv
v

v

vv
v

v
v

v

v

vvv

v

vv
v

Sammon mapping

x

y

-2 0 2 4

-2
-1

0
1

2

s

ss
s

s
s

s
s

s

s

s

s
s

s

s s

s

s

s
s

ss
s s

ss
s

ss

ss

s

s
s

s
s

s
s

s

ss

s

s

s
s

s

s

s

s

s

c

c
c

c

c

c

c

c

c

c
c

c

c

cc

c

c
c

c
c

c
c

cc

c
c c c

c
c

cc
c c

c

c
c

c
c

c c

c
c

c

c
cc

c

c
c v

v

v

v
v

v

v

v

v

v

v
v

v

v v

vv

v

v

v

v

v

v

v
v

v

vv v

v
v

v

v
v

v

v

v
v

v

v
v

v
vv

v

v

v

vv

Kruskal’s MDS

x

y

-2 0 2

-2
-1

0
1

2

s

sss

s
s

s
s

s
s

s

s
s

s

s s

s

s

s
s ss

s sss
s

ss

ss

s

s
s

ss

s
s

s

ss

s

s

s
s

s

s

s

s
s

c

c
c

c

c

c

c

c

c

c

c

c

c

cc

c

cc
cc

cc
cc

c
c c c
c

c
cc

c c
c

c
c

c
c

c c

c
c

c

c
cc

c

c
c v

v

v

v v

v

v

v

v

v

v
v

v

v v

vv

v

v

v

v

v

v

v
v

v

vv v

v v

v

vv

v

v

vv
v

v
v

v
vvv

v
v

v
v

Figure 1.3: Distance-based representations of theiris data. The top left plot is by
multidimensional scaling, the top right by Sammon’s non-linear mapping, the bottom left
by Kruskal’s isotonic multidimensional scaling. Note that each is defined up to shifts,
rotations and reflections.

where care is taken to ensure correct scaling of the axes (see the top left plot of
Figure 1.3). Note that a configuration can be determined only up to translation,
rotation and reflection, since Euclidean distance is invariant under the group
of rigid motions and reflections. (We chose to reflect this plot to match later
ones.) Using classical multidimensional scaling with a Euclidean distance (as
here) is equivalent to plotting the firstk principal components (without rescaling
to correlations).

Another form of multidimensional scaling is Sammon’s (1969) non-linear
mapping, which given a dissimilarityd on n points constructs ak -dimensional
configuration with distances̃d to minimize a weighted measure of fit,

ESammon(d, d̃) =
1∑

i�=j dij

∑
i�=j

(dij − d̃ij)2

dij

by an iterative algorithm implemented in our functionsammon . We have to drop
duplicate observations to make sense ofE(d, d̃) ; running sammon would report
which observations are duplicates.

ir.sam <- sammon(dist(ir[-143,]))
eqscplot(ir.sam$points, type="n")
text(ir.sam$points, cex=0.8, labels = as.character(ir.sp[-143]),

col = 1+as.numeric(ir.sp[-143]))

8 Overview of Data Mining

Contrast this with the objective for classical MDS applied to a Euclidean config-
uration of points (but not in general), which minimizes

Eclassical(d, d̃) =
∑
i�=j

[
d2

ij − d̃2
ij

] /∑
i�=j

d2
ij

The Sammon function puts much more stress on reproducing small distances
accurately, which is normally what is needed.

A more thoroughly non-metric version of multidimensional scaling goes back
to Kruskal and Shepard in the 1960s (see Cox & Cox, 2001 and Ripley, 1996).
The idea is to choose a configuration to minimize

STRESS2 =
∑
i�=j

[
θ(dij)− d̃ij

]2 /∑
i�=j

d̃2
ij

over both the configuration of points and an increasing functionθ . Now the
location, rotation, reflection and scale of the configuration are all indeterminate.
This is implemented in functionisoMDS which we can use by

ir.iso <- isoMDS(dist(ir[-143,]))
eqscplot(ir.iso$points, type="n")
text(ir.iso$points, cex=0.8, labels = as.character(ir.sp[-143]),

col = 1+as.numeric(ir.sp[-143]))

The optimization task is difficult and this can be quite slow.

F

F

F
F F FFF

F
F FF FFFFF

F

F
FF

F

FFFFF FFFFFFFF
F

F
F

F

F FF

F

F
F F

F

F

F

F

F
FF F

F

F
F

FFF
F

F
F

F
FFFF

F NN

NNNNNN
N
NN
NN N

N
N NNNN

N
NNNN

NN

N NN
NNN

N

N

N

N
N

N

N

NN

N

N NNN N
NN

N
NNN

N

N
N

NN

NN
N

N
N
NNN

N NNNN
NN

N

N V
VV

V
V

V

V VV VV

V

VVV
V

V

C

CC

C

C C
C

C

CCC

C

C

TT
TT

T

T

T
T

T

H

H

H

H

H

H

HHH H HHH HH H

H

HH HH H

H

HHHH HH

Figure 1.4: Isotonic multidimensional scaling representation in two dimensions of the
fgl data. The groups are plotted by the initial letter, exceptF for window float glass, and
N for window non-float glass. Small dissimilarities correspond to small distances on the
plot and conversely.

The MDS representations can be quite different in examples such as our dataset
fgl that do not project well into a small number of dimensions; Figure 1.4 shows
a non-metric MDS plot. (We omit one of an identical pair of fragments.)

fgl.iso <- isoMDS(dist(as.matrix(fgl[-40, -10])))
eqscplot(fgl.iso$points, type="n", xlab="", ylab="")
text(fgl.iso$points, labels = c("F", "N", "V", "C", "T", "H")

[fgl$type[-40]], cex=0.6)

1.2 Graphical methods 9

There are 214 fragments of class taken from scenes of crimes, classified into
‘window float’, ‘window non-float’, !vehicle window’, ‘containers’, ‘tableware’
and ‘vehicle headlamp’ (column 10) and measurements of the refractive index and
the chemical composition (8 oxides).

Biplots

The biplot (Gabriel, 1971) is another method to represent both the cases and
variables. We suppose thatX has been centred to remove column means. The
biplot representsX by two sets of vectors of dimensionsn and p producing
a rank-2 approximation toX . The best (in the sense of least squares) such
approximation is given by replacingΛ in the singular value decomposition ofX
by D , a diagonal matrix settingλ3, . . . to zero, so

X ≈ X̃ = [u1 u2]
[

λ1 0
0 λ2

] [
vT

1

vT
2

]
= GHT

where the diagonal scaling factors can be absorbed intoG andH in a number of
ways. For example, we could take

G = na/2 [u1 u2]
[

λ1 0
0 λ2

]1−λ

, H =
1

na/2
[v1 v2]

[
λ1 0
0 λ2

]λ

The biplot then consists of plotting then + p 2-dimensional vectors which form
the rows ofG and H . The interpretation is based on inner products between
vectors from the two sets, which give the elements ofX̃ . For λ = a = 0 this is
just a plot of the first two principal components and the projections of the variable
axes.

The most popular choice isλ = a = 1 (which Gabriel, 1971, calls theprinci-
pal component biplot). ThenG contains the first two principal components scaled
to unit variance, so the Euclidean distances between the rows ofG represents the
Mahalanobis distances

(x− µ)Σ−1(x− µ)T

between the observations and the inner products between the rows ofH represent
the covariances between the (possibly scaled) variables (Jolliffe, 1986, pp. 77–8);
thus the lengths of the vectors represent the standard deviations.

Figure 1.5 shows a biplot withλ = 1 , obtained by

library(MASS, first=T) # R: library(MASS)
state <- state.x77[,2:7]; row.names(state) <- state.abb
biplot(princomp(state, cor=T), pc.biplot=T, cex = 0.7, ex=0.8)

We specified a rescaling of the original variables to unit variance. (There are
additional argumentsscale which specifiesλ and expand which specifies a
scaling of the rows ofH relative to the rows ofG , both of which default to 1.)

Gower & Hand (1996) in a book-length discussion of biplots criticize conven-
tional plots such as Figure 1.5. In particular they point out that the axis scales are

10 Overview of Data Mining

Comp. 1

C
om

p.
 2

-3 -2 -1 0 1 2

-3
-2

-1
0

1
2

AL

AK

AZ

AR

CA

COCTDE

FL

GA

HI

ID

IL

IN

IA

KS

KY

LA

ME

MD

MA

MI

MN
MS

MO

MT NE

NV

NH

NJ

NM

NY

NC
ND

OH

OK

OR

PA

RI

SC

SD

TN

TX

UT

VT

VA

WA

WV

WI

WY

-1.5 -1.0 -0.5 0.0 0.5 1.0

-1
.5

-1
.0

-0
.5

0.
0

0.
5

1.
0

Income

Illiteracy

Life Exp

Murder HS Grad

Frost

Figure 1.5: Principal component biplot of the part of thestate.x77 data. Distances be-
tween states represent Mahalanobis distance, and inner product between variables represent
correlations. (The arrows extend 80% of the way along the variable’s vector.)

not at all helpful. Notice that Figure 1.5 has two sets of scales. That on the lower
and left axes refers to the values of the rows ofG . The upper/right scale is for the
values of the rows ofH which are shown as arrows. Gower & Hand’s preferred
style (for λ = 0) is to omit the external axes and to replace each arrow by a scale
for that variable.

Independent component analysis

Independent component analysis (ICA) was named by Comon (1994), and has
since become a ‘hot’ topic in data visualization; see the books by Lee (1998);
Hyvärinenet al. (2001) and the expositions by Hyvärinen & Oja (2000) and
Hastieet al. (2001, §14.6).

ICA looks for rotations of sphered data that have approximately independent
coordinates. This will be true (in theory) for all rotations of samples from mul-
tivariate normal distributions, so ICA is of most interest for distributions that are
far from normal.

The original context for ICA was ‘unmixing’ of signals. Suppose there are
k � p independent sources in a data matrixS , and we observe thep linear
combinationsX = SA with mixing matrix A . The ‘unmixing’ problem is to
recover S . Clearly there are identifiability problems: we cannot recover the
amplitudes or the labels of the signals, so we may as well suppose that the signals
have unit variances. Unmixing is often illustrated by the problem of listening to
just one speaker at a party. Note that this is a ‘no noise’ model: all the randomness
is assumed to come from the signals.

1.2 Graphical methods 11

B O b o

−
2

−
1

0
1

B O b o
−

2
−

1
0

1
2

B O b o

−
3

−
2

−
1

0
1

2
3

B O b o

−
2

−
1

0
1

2

Figure 1.6: Boxplots of four ‘signals’ recovered by ICA from thecrabs data.

Suppose the dataX have been sphered; by assumptionS is sphered and
so X has varianceAT A and we look for an orthogonal matrixA . Thus ICA
algorithms can be seen as exploratory projection pursuit in which the measure of
interestingness emphasises independence (not just uncorrelatedness), say as the
sum of the entropies of the projected coordinates. Like most projection pursuit
indices, approximations are used for speed, and that proposed by Hyvärinen &
Oja (2000) is implemented is theR packagefastICA .2 We can illustrate this for
the crabs data, where the first and fourth signals shown in Figure 1.6 seem to
pick out the two colour forms and two sexes respectively.

library(fastICA)
nICA <- 4
crabs.ica <- fastICA(crabs[, 4:8], nICA)
Z <- crabs.ica$S
par(mfrow = c(2, nICA))
for(i in 1:nICA) boxplot(split(Z[, i], crabs.grp))

There is a lot of arbitrariness in the use of ICA, in particular in choosing the
number of signals. We might have expected to need two here, when the results
are much less impressive.

Glyph representations

There is a wide range of ways to trigger multiple perceptions of a figure, and we
can use these to represent each of a moderately large number of rows of a data
matrix by an individual figure. Perhaps the best known of these are Chernoff’s
faces (Chernoff, 1973, implemented in theS-PLUS function faces ; there are
other versions by Bruckner, 1978 and Flury & Riedwyl, 1981) and the star plots
as implemented in the functionstars (see Figure 1.11), but Wilkinson (1999,
Chapter 3) gives many more.

These glyph plots do depend on the ordering of variables and perhaps also
their scaling, and they do rely on properties of human visual perception. So they
have rightly been criticised as subject to manipulation, and one should be aware

2 By Jonathan Marchini. Also ported toS-PLUS by BDR.

12 Overview of Data Mining

Alabama
Alaska

Arizona
Arkansas

California
Colorado

Connecticut

Delaware
Florida

Georgia
Hawaii

Idaho
Illinois

Indiana

Iowa
Kansas

Kentucky
Louisiana

Maine
Maryland

Massachusetts

Michigan
Minnesota

Mississippi
Missouri

Montana
Nebraska

Nevada

New Hampshire
New Jersey

New Mexico
New York

North Carolina
North Dakota

Ohio

Oklahoma
Oregon

Pennsylvania
Rhode Island

South Carolina
South Dakota

Tennessee

Texas
Utah

Vermont
Virginia

Washington
West Virginia

Wisconsin

Wyoming Frost

Life Exp
HS GradIncome

Murder

Illiteracy

Figure 1.7: R version ofstars plot of the state.x77 dataset.

of the possibility that the effect may differ by viewer.3 Nevertheless they can be
very effective as tools for private exploration.

As an example, a stars plot for thestate.x77 dataset with variables in the
order showing up in the biplot of Figure 1.5 can be drawn by

S: stars(state.x77[, c(7, 4, 6, 2, 5, 3)], byrow = T)
R: stars(state.x77[, c(7, 4, 6, 2, 5, 3)], full = FALSE,

key.loc = c(10, 2))

Parallel coordinate plots

Parallel coordinates plots (Inselberg, 1984; Wegman, 1990) join the same points
across a set of parallel axes. We can show thestate.x77 dataset in the order
showing up in the biplot of Figure 1.5 by

parcoord(state.x77[, c(7, 4, 6, 2, 5, 3)])

Such plots are often too ‘busy’ without a means of interaction to identify obser-
vations, sign-change and reorder variables, brush groups and so on (as is possible
in XGobi andGGobi). As an example of a revealing parallel coordinate plot try

3 Especially if colour is involved; it is amazingly common to overlook the prevalence of red–green
colour blindness.

1.3 Cluster analysis 13

parcoord(log(ir)[, c(3, 4, 2, 1)], col = 1 + (0:149)%/%50)

on a device which can plot colour.

1.3 Cluster analysis

Cluster analysis is concerned with discovering group structure amongst the cases
of our n by p matrix.

A comprehensive general reference is Gordon (1999); Kaufman & Rousseeuw
(1990) give a good introduction and their methods are available inS-PLUS and in
packagecluster for R. Clustering methods can be clustered in many different
ways; here is one.

• Agglomerative hierarchical methods (hclust , agnes , mclust).

– Produces a set of clusterings, usually one withk clusters for eachk =
n, . . . , 2 , successively amalgamating groups.

– Main differences are in calculating group–group dissimilarities from point–
point dissimilarities.

– Computationally easy.

• Optimal partitioning methods (kmeans , pam , clara , fanny).

– Produces a clustering for fixedK .

– Need an initial clustering.

– Lots of different criteria to optimize, some based on probability models.

– Can have distinct ‘outlier’ group(s).

• Divisive hierarchical methods (diana , mona).

– Produces a set of clusterings, usually one for eachk = 2, . . . , K � n .

– Computationally nigh-impossible to find optimal divisions (Gordon, 1999,
p. 90).

– Most available methods aremonothetic (split on one variable at each stage).

Do not assume that ‘clustering’ methods are the best way to discover interesting
groupings in the data; in our experience the visualization methods are often far
more effective. There are many different clustering methods, often giving different
answers, and so the danger of over-interpretation is high.

Many methods are based on a measure of the similarity or dissimilarity between
cases, but some need the data matrix itself. Adissimilarity coefficient d is
symmetric (d(A, B) = d(B, A)), non-negative andd(A, A) is zero. A similarity
coefficient has the scale reversed. Dissimilarities may bemetric

d(A, C) � d(A, B) + d(B, C)

or ultrametric
d(A, B) � max

(
d(A, C), d(B, C)

)

14 Overview of Data Mining

but need not be either. We have already seen several dissimilarities calculated by
dist and daisy .

Ultrametric dissimilarities have the appealing property that they can be repre-
sented by adendrogram such as those shown in Figure 1.8, in which the dissim-
ilarity between two cases can be read from the height at which they join a single
group. Hierarchical clustering methods can be thought of as approximating a dis-
similarity by an ultrametric dissimilarity. Jardine & Sibson (1971) argue that one
method, single-link clustering, uniquely has all the desirable properties of a clus-
tering method. This measures distances between clusters by the dissimilarity of
the closest pair, and agglomerates by adding the shortest possible link (that is, join-
ing the two closest clusters). Other authors disagree, and Kaufman & Rousseeuw
(1990, §5.2) give a different set of desirable properties leading uniquely to their
preferred method, which views the dissimilarity between clusters as the average of
the dissimilarities between members of those clusters. Another popular method is
complete-linkage, which views the dissimilarity between clusters as the maximum
of the dissimilarities between members.

The functionhclust implements these three choices, selected by itsmethod
argument which takes values"compact" (the default, for complete-linkage,
called "complete" in R), "average" and "connected" (for single-linkage,
called "single" in R). Functionagnes also has these (with theR names) and
others.

TheS dataset4 swiss.x gives five measures of socio-economic data on Swiss
provinces about 1888, given by Mosteller & Tukey (1977, pp. 549–551). The data
are percentages, so Euclidean distance is a reasonable choice. We use single-link
clustering:

S: h <- hclust(dist(swiss.x), method = "connected")
R: data(swiss); swiss.x <- as.matrix(swiss[, -1])
R: h <- hclust(dist(swiss.x), method = "single")
plclust(h)
cutree(h, 3)
S: plclust(clorder(h, cutree(h, 3)))

The hierarchy of clusters in a dendrogram is obtained by cutting it at different
heights. The first plot suggests three main clusters, and the remaining code re-
orders the dendrogram to display (see Figure 1.8) those clusters more clearly.
Note that there appear to be two main groups, with the point 45 well separated
from them.

Functiondiana performsdivisive clustering, in which the clusters are repeat-
edly subdivided rather than joined, using the algorithm of Macnaughton-Smith
et al. (1964). Divisive clustering is an attractive option when a grouping into a
few large clusters is of interest. The lower panel of Figure 1.8 was produced by
pltree(diana(swiss.x)).

4 In R the numbers are slightly different, and the provinces has been given names.

1.3 Cluster analysis 15

1

2 3

4

5 6

7 8

9 10
1112

13 1415

16

17

18

19

20 2122

23

2425 26

27

28

29

30

31

32 3334

35

36

37
3839 40

41

42

43

44

45

46 47

0
10

20
30

40

1 2 3

4
5 6 7 8

9 10

1112 1314 15

16

1718
19

2021 2223 24 2526

27

28

29 30

31 3233 34

35

3637

383940

41 42 4344

45
46 47

0
20

40
60

80
12

0

H
ei

gh
t

Figure 1.8: Dendrograms for the socio-economic data on Swiss provinces computed by
single-link clustering (top) and divisive clustering (bottom).

Partitioning methods

The K-means clustering algorithm (MacQueen, 1967; Hartigan, 1975; Hartigan
& Wong, 1979) chooses a pre-specified number of cluster centres to minimize the
within-class sum of squares from those centres. As such it is most appropriate
to continuous variables, suitably scaled. The algorithm needs a starting point,
so we choose the means of the clusters identified by group-average clustering.
The clustersare altered (cluster 3 contained just point 45), and are shown in
principal-component space in Figure 1.9. (Its standard deviations show that a
two-dimensional representation is reasonable.)

h <- hclust(dist(swiss.x), method = "average")
initial <- tapply(swiss.x, list(rep(cutree(h, 3),

ncol(swiss.x)), col(swiss.x)), mean)
dimnames(initial) <- list(NULL, dimnames(swiss.x)[[2]])
km <- kmeans(swiss.x, initial)
(swiss.pca <- princomp(swiss.x))
Standard deviations:

Comp.1 Comp.2 Comp.3 Comp.4 Comp.5
42.903 21.202 7.588 3.6879 2.7211
....

swiss.px <- predict(swiss.pca)
dimnames(km$centers)[[2]] <- dimnames(swiss.x)[[2]]
swiss.centers <- predict(swiss.pca, km$centers)
eqscplot(swiss.px[, 1:2], type = "n",

xlab = "first principal component",
ylab = "second principal component")

text(swiss.px[, 1:2], labels = km$cluster)
points(swiss.centers[,1:2], pch = 3, cex = 3)

16 Overview of Data Mining

first principal component

se
co

nd
 p

rin
ci

pa
l c

om
po

ne
nt

-40 -20 0 20 40 60

-2
0

0
20

40
60

3
2

2

3

1

2

2
2

2

2

2

1

1

1

1 1

1

33

1

11

1

1

1

1

1

1

3

1

2
2

2

2

2

2

2

2
1

3

3

3

1

3

3

3

3

45

47

46

4

16

Figure 1.9: The Swiss provinces data plotted on its first two principal components. The
labels are the groups assigned by K-means; the crosses denote the group means. Five points
are labelled with smaller symbols.

identify(swiss.px[, 1:2], cex = 0.5)

By definition, K-means clustering needs access to the data matrix and uses
Euclidean distance. We can apply a similar method using only dissimilarities if
we confine the cluster centres to the set of given examples. This is known as the
k -medoids criterion (of Vinod, 1969) implemented inpam and clara . Using
pam picks provinces 29, 8 and 28 as cluster centres.

> library(cluster) # needed in R only
> swiss.pam <- pam(swiss.px, 3)
> summary(swiss.pam)
Medoids:

Comp. 1 Comp. 2 Comp. 3 Comp. 4 Comp. 5
[1,] -29.716 18.22162 1.4265 -1.3206 0.95201
[2,] 58.609 0.56211 2.2320 -4.1778 4.22828
[3,] -28.844 -19.54901 3.1506 2.3870 -2.46842
Clustering vector:
[1] 1 2 2 1 3 2 2 2 2 2 2 3 3 3 3 3 1 1 1 3 3 3 3 3 3 3 3 3

[29] 1 3 2 2 2 2 2 2 2 2 1 1 1 1 1 1 1 1 1
....

> eqscplot(swiss.px[, 1:2], type = "n",
xlab = "first principal component",
ylab = "second principal component")

> text(swiss.px[,1:2], labels = swiss.pam$clustering)
> points(swiss.pam$medoid[,1:2], pch = 3, cex = 5)

The functionfanny implements a ‘fuzzy’ version of thek -medoids criterion.
Rather than pointi having a membership of just one clusterv , its membership is
partitioned among clusters as positive weightsuiv summing to one. The criterion
then is

min
(uiv)

∑
v

∑
i,j u2

ivu
2
jv dij

2
∑

i u2
iv

.

1.3 Cluster analysis 17

first principal component

se
co

nd
 p

rin
ci

pa
l c

om
po

ne
nt

-50 0 50

-2
0

0
20

40
60

1
2

2

1

3

2

22

2
2

2

3
3
3

3 3

1

11

3

33

3
3

3

3
3
3

1

3
222

2

2
2

2

21

1
1
1

1

1

1

1

1

pam

first principal component

se
co

nd
 p

rin
ci

pa
l c

om
po

ne
nt

-50 0 50

-2
0

0
20

40
60

1
2

2

3

1

2

22

2
2

2

1
1
1

1 1

1

31

1

11

1
1

1

1
1
1

3

1
222

2

2
2

2

2
1

1
1
3

1

1

3

3

3

me

first principal component

se
co

nd
 p

rin
ci

pa
l c

om
po

ne
nt

-50 0 50

-2
0

0
20

40
60

1
2

2

3

4

2

55

2
2

5

6
7
6

7 8

4

81

7

66

8
8

7

6
7
6

8

4
999

9

5
9

9

54

1
1
8

4

1

3

3

3

emclust

Figure 1.10: Clusterings of the Swiss provinces data bypam with three clusters (with the
medoids marked by crosses),me with three clusters andemclust with up to nine clusters
(it chose nine).

For our running example we find

> fanny(swiss.px, 3)
iterations objective

16 354.01
Membership coefficients:

[,1] [,2] [,3]
[1,] 0.725016 0.075485 0.199499
[2,] 0.189978 0.643928 0.166094
[3,] 0.191282 0.643596 0.165123

....
Closest hard clustering:
[1] 1 2 2 1 3 2 2 2 2 2 2 3 3 3 3 3 1 1 1 3 3 3 3 3 3 3 3 3

[29] 1 3 2 2 2 2 2 2 2 2 1 1 1 1 1 1 1 1 1

The ‘hard’ clustering is formed by assigning each point to the cluster for which
its membership coefficient is highest.

Other partitioning methods are based on the idea that the data are independent
samples from a series of group populations, but the group labels have been lost, so
the data can be regarded as from a mixture distribution. The idea is then to find the
mixture distribution, usually as a mixture of multivariate normals, and to assign

18 Overview of Data Mining

points to the component for which their posterior probability of membership is
highest.

S-PLUS has functionsmclust , mclass and mreloc based on ‘maximum-
likelihood’ clustering in which the mixture parameters and the classification are
optimized simultaneously. Later work in themclust library section5 uses sounder
methods in which the mixtures are fitted first. Nevertheless, fitting normal mixtures
is a difficult problem, and the results obtained are often heavily dependent on the
initial configuration supplied.

K-means clustering can be seen as ‘maximum-likelihood’clustering where the
clusters are assumed all to be spherically symmetric multivariate normals with the
same spread. Themodelid argument to themclust functions allows a wider
choice of normal mixture components, including"EI" (equal spherical)"VI"
(spherical, differing by component),"EEE" (same elliptical),"VEV" (same shape
elliptical, variable size and orientation) and"VVV" (arbitrary components).

Library sectionmclust provides hierarchical clustering via functionsmhtree
and mhclass . Then for a given numberk of clusters the fitted mixture can be
optimized by callingme (which here does not change the classification).

library(mclust)
h <- mhtree(swiss.x, modelid = "VVV")
(mh <- as.vector(mhclass(h, 3)))
[1] 1 2 2 3 1 2 2 2 2 2 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

[29] 1 1 2 2 2 2 2 2 2 2 1 1 1 1 1 1 3 3 3
z <- me(swiss.x, modelid = "VVV", z = (ctoz(mh)+1/3)/2)
eqscplot(swiss.px[, 1:2], type = "n",

xlab = "first principal component",
ylab = "second principal component")

text(swiss.px[, 1:2], labels = max.col(z))

Function mstep can be used to extract the fitted components, andmixproj to
plot them, but unfortunately only on a pair of the original variables.

Functionemclust automates the whole cluster process, including choosing
the number of clusters and between differentmodelid ’s. One additional possi-
bility controlled by argumentnoise is to include a background ‘noise’ term, that
is a component that is a uniform Poisson process. It chooses lots of clusters (see
Figure 1.10).

> vals <- emclust(swiss.x) # all possible models, 0:9 clusters.
> sm <- summary(vals, swiss.x)
> eqscplot(swiss.px[, 1:2], type = "n",

xlab = "first principal component",
ylab = "second principal component")

> text(swiss.px[, 1:2], labels = sm$classification)

5 Available athttp://www.stat.washington.edu/fraley/mclust/ and forR from CRAN.
There are ‘1998’ and ‘2002’ versions available with different interfaces (but often the same function
names) and different results. The ‘1998’ versions are described here, as the ‘2002’ versions do not
return underWindows.

1.4 Kohonen’s self organizing maps 19

B
B

BBB

B

B

BB

B

BB

BB

BB

B BB B

B

B

B

BBBB BBB

BBBB

B

B

B

B

B

B
BBB

B

BB

B
B

B B

b
bb bbb b

b
b
bb

b

bb
bb

b

b

b

b

b

bb

bb

bb

b

bbb

b bb bb bbb bb bb bbb

bbb

bO
O

O

O

O
O

O

O

O

O O

OOOOO

OOO

O
OO OOO O

OO

O

OO OOOOOO

OOO O OO
OOOOO

OO

oo

o

o o

ooo

oo

o

o
oo
o

ooo

o

o

oo

o

o

o

o

ooo

o

o ooo

o
oo ooooooo

oo o
ooo

Figure 1.11: Batch SOM applied to thecrabs dataset. The left plot is astars plot of
the representatives, and the right plot shows the assignments of the original points, placed
randomly within the circle. (Plots fromR.)

1.4 Kohonen’s self organizing maps

All multidimensional scaling algorithms are slow, not least because they work with
all the distances between pairs of points and so scale at least asO(n2) and often
worse. Engineers have looked for methods to find maps from many more than
hundreds of points, of which the best known is ‘Self-Organizing Maps’ (Kohonen,
1995). Kohonen describes his own motivation as:

‘I just wanted an algorithm that would effectively map similar patterns
(pattern vectors close to each other in the input signal space) onto
contiguous locations in the output space.’ (p. VI)

which is the same aim as most variants of MDS. However, he interpreted ‘con-
tiguous’via a rectangular or hexagonal 2-D lattice of representatives6 mj , with
representatives at nearby points on the grid that are more similar than those that
are widely separated. Data points are then assigned to the nearest representative
(in Euclidean distance). Since Euclidean distance is used, pre-scaling of the data
is important.

Kohonen’s SOM is a family of algorithms with no well-defined objective to be
optimized, and the results can be critically dependent on the initialization and the
values of the tuning constants used. Despite this high degree of arbitrariness, the
method scales well (it is at worst linear inn) and often produces useful insights
in datasets whose size is way beyond MDS methods (for example, Roberts &
Tarassenko, 1995).

If all the data are available at once (as will be the case inS applications), the
preferred method isbatch SOM (Kohonen, 1995, §3.14). For a single iteration,
assign all the data points to representatives, and then update all the representatives
by replacing each by the mean of all data points assigned to that representative or
one of its neighbours (possibly using a distance-weighted mean). The algorithm
proceeds iteratively, shrinking the neighbourhood radius to zero over a small

6 Called ‘codes’ or a ‘codebook’ in some of the literature.

20 Overview of Data Mining

number of iterations. Figure 1.11 shows the result of one run of the following
code.

library(class)
gr <- somgrid(topo = "hexagonal")
crabs.som <- batchSOM(lcrabs, gr, c(4, 4, 2, 2, 1, 1, 1, 0, 0))
plot(crabs.som)

bins <- as.numeric(knn1(crabs.som$code, lcrabs, 0:47))
plot(crabs.som$grid, type = "n")
symbols(crabs.som$grid$pts[, 1], crabs.som$grid$pts[, 2],

circles = rep(0.4, 48), inches = F, add = T)
text(crabs.som$grid$pts[bins,] + rnorm(400, 0, 0.1),

as.character(crabs.grp))

batchSOM The initialization used is to select a random subset of the data points.
Different runs give different patterns but do generally show the gradation for small
to large animals shown in the left panel7 of Figure 1.11.

Traditional SOM uses an on-line algorithm, in which examples are presented
in turn until convergence, usually by sampling from the dataset. Whenever an
examplex is presented, the closest representativemj is found. Then

mi ←mi + α[x−mi] for all neighboursi .

Both the constantα and the definition of ‘neighbour’ change with time. This can
be exploredvia function SOM , for example,

crabs.som2 <- SOM(lcrabs, gr); plot(crabs.som2)

See Murtagh & Herńandez-Pajares (1995) for another statistical assessment.

1.5 Exploratory projection pursuit

Projection pursuit methods seek aq -dimensional projection of the data that max-
imizes some measure of ‘interestingness’, usually forq = 1 or 2 so that it can
be visualized. This measure would not be the variance, and would normally be
scale-free. Indeed, most proposals are also affine invariant, so they do not depend
on the correlations in the data either.

The methodology was named by Friedman & Tukey (1974),8 who sought
a measure which would reveal groupings in the data. Later reviews (Huber,
1985; Friedman, 1987; Jones & Sibson, 1987) have used the result of Diaconis &
Freedman (1984) that a randomly selected projection of a high-dimensional dataset
will appear similar to a sample from a multivariate normal distribution to stress
that ‘interestingness’ has to mean departures from multivariate normality. Another
argument is that the multivariate normal distribution is elliptically symmetrical,

7 In S-PLUS the stars plot will be drawn on a rectangular grid.
8 The idea goes back to Kruskal (1969, 1972). Kruskal (1969) needed a snappier title!

1.5 Exploratory projection pursuit 21

and cannot show clustering or non-linear structure, so all elliptically symmetrical
distributions should be uninteresting.

The simplest way to achieve affine invariance is to ‘sphere’ the data before
computing the index of ‘interestingness’. Since a spherically symmetric point
distribution has covariance matrix proportional to the identity, we transform the
data to have identity covariance matrix. This can be done by transforming to prin-
cipal components, discarding any components of zero variance (hence constant)
and then rescaling each component to unit variance. As principal components
are uncorrelated, the data are sphered. Of course, this process is susceptible to
outliers and it may be wise to use a robust version of principal components. The
discussion of Jones & Sibson (1987) included several powerful arguments against
sphering, but as in principal component analysis something of this sort is needed
unless a particular common scale for the features can be justified.

Specific examples of projection pursuit indices are given below. Once an
index is chosen, a projection is chosen by numerically maximizing the index
over the choice of projection. Aq -dimensional projection is determined by a
p × q orthogonal matrix andq will be small, so this may seem like a simple
optimization task. One difficulty is that the index is often very sensitive to the
projection directions, and good views may occur within sharp and well-separated
peaks in the optimization space. Another is that the index may be very sensitive
to small changes in the data configuration and so have very many local maxima.
Rather than use a method which optimizes locally (such as quasi-Newton methods)
it will be better to use a method which is designed to search for isolated peaks and
so makes large steps. In the discussion of Jones & Sibson (1987), Friedman says

‘It has been my experience that finding the substantive minima of a projection
index is a difficult problem, and that simple gradient-guided methods (such
as steepest ascent) are generally inadequate. The power of a projection
pursuit procedure depends crucially on the reliability and thoroughness of
the numerical optimizer.’

and our experience supports Friedman’s wisdom. It will normally be necessary
to try many different starting points, some of which may reveal projections with
large values of the projection index.

Once an interesting projection is found, it is important to remove the structure
it reveals to allow other interesting views to be found more easily. If clusters
(or outliers) are revealed, these can be removed, and both the clusters and the
remainder investigated for further structure. If non-linear structures are found,
Friedman (1987) suggests non-linearly transforming the current view towards
joint normality, but leaving the orthogonal subspace unchanged. This is easy
for q = 1 ; any random variable with cumulative distribution functionF can
be transformed to a normal distribution byΦ−1(F (X)) . For q = 2 Friedman
suggests doing this for randomly selected directions until the two-dimensional
projection index is small.

22 Overview of Data Mining

Projection indices

A very wide variety of indices have been proposed, as might be expected from the
many ways a distribution can look non-normal. A projection index will be called
repeatedly, so needs to be fast to compute. Recent attention has shifted towards
indices which are rather crude approximations to desirable ones, but very fast to
compute (being based on moments).

For simplicity, most of our discussion will be for one-dimensional projections;
we return to two-dimensional versions at the end. Thus we seek a measure of the
non-normality of a univariate random variableX . Our discussion will be in terms
of the densityf even though the index will have to be estimated from a finite
sample. (This can be done by replacing population moments by sample moments
or using some density estimate forf .)

The original Friedman–Tukey index had two parts, a ‘spread’ term and a ‘local
density’ term. Once a scale has been established forX (including protecting
against outliers), the local density term can be seen as a kernel estimator of∫

f2(x) dx . The choice of bandwidth is crucial in any kernel estimation problem;
as Friedman & Tukey were looking for compact non-linear features (cross-sections
of ‘rods’—see Tukey’s contribution to the discussion of Jones & Sibson, 1987) they
chose a small bandwidth. Even with efficient approximate methods to compute
kernel estimates, this index remains one of the slowest to compute.

Jones & Sibson (1987) introduced an entropy index
∫

f log f (which is also
very slow to compute) and indices based on moments such as[κ 2

3 + 1/4κ2
4]/12 ,

where theκ ’s are cumulants, the skewness and kurtosis here. These are fast to
compute but sensitive to outliers (Best & Rayner, 1988).

Friedman (1987) motivated an index by first transforming normality to uni-
formity on [−1, 1] by Y = 2Φ(X) − 1 and using a moment measure of non-
uniformity, specifically

∫
(fY − 1/2)2 . This can be transformed back to the

original scale to give the index

IL =
∫ [

f(x)− φ(x)
]2

2φ(x)
dx.

This has to be estimated from a sample, and lends itself naturally to an orthogonal
series expansion, the Legendre series for the transformed density.

The indexIL has the unfortunate effect of giving large weight to fluctuations
in the densityf in its tails (whereφ is small), and so will display sensitivity to
outliers and the precise scaling used for the density. This motivated Hall (1989)
to propose the index

IH =
∫ [

f(x)− φ(x)
]2 dx

and Cooket al. (1993) to propose

IN =
∫ [

f(x)− φ(x)
]2

φ(x) dx.

1.6 An example of visualization 23

Both of these are naturally computed via an orthogonal series estimator off
using Hermite polynomials. Note that all three indices reduce to

∑∞
0 wi(ai −

bi)2 , whereai are the coefficients in the orthogonal series estimator, andb i are
constants arising from the expansion for a standard normal distribution.

To make use of these indices, the series expansions have to be truncated,
and possibly tapered as well. Cooket al. (1993) make the much more extreme
suggestion of keeping only a very few terms, maybe the first one or two. These
still give indices which are zero for the normal distribution, but which are much
more attuned to large-scale departures from normality. For example,I N

0 is
formed by keeping the first term of the expansion ofI N , (a0 − 1/2

√
π)2 where

a0 =
∫

φ(x)f(x) dx = Eφ(X) , and this is maximized whena0 is maximal. In
this case the most ‘interesting’ distribution has all its mass at0 . The minimal
value ofa0 gives a local maximum, attained by giving equal weight to±1 . Now
of course a point mass at the origin will not meet our scaling conditions, but this
indicates thatIN

0 is likely to respond to distributions with a central clump or a
central hole. To distinguish between them we can maximizea0 (for a clump) or
−a0 (for a central hole). These heuristics are borne out by experiment.

In principle the extension of these indices to two dimensions is simple. Those
indices based on density estimation just need a two-dimensional density estimate
and integration (and so are likely to be even slower to compute). Those based on
moments use bivariate moments. For example, the indexI N becomes

IN =
∫∫ [

f(x, y)− φ(x)φ(y)
]2

φ(x)φ(y) dxdy

and bivariate Hermite polynomials are used. To maintain rotational invariance in
the index, the truncation has to include all terms up to a given degree of polynomial.

There is no unanimity over the merits of these indices (except the moment
index, which seems universally poor). Some workers have reported that the
Legendre index is very sensitive to outliers, and this is our experience. Yet
Posse (1995) found it to work well, in a study that appears to contain no outliers.
The natural Hermite index is particularly sensitive to a central hole and hence
clustering. The best advice is to try a variety of indices.

1.6 An example of visualization

This is a dataset on 61 viruses with rod-shaped particles affecting various crops
(tobacco, tomato, cucumber and others) described by Fauquetet al. (1988) and
analysed by Eslava-Ǵomez (1989). There are 18 measurements on each virus, the
number of amino acid residues per molecule of coat protein; the data come from
a total of 26 sources. There is an existing classification by the number of RNA
molecules and mode of transmission, into

39Tobamoviruses with monopartite genomes spread by contact,
6 Tobraviruses with bipartite genomes spread by nematodes,

24 Overview of Data Mining

3 Hordeiviruses with tripartite genomes, transmission modeunknown
and
13 ‘furoviruses’, 12 of which are known to be spread fungally.

The question of interest to Fauquetet al. was whether the furoviruses form a
distinct group, and they performed various multivariate analyses.

120 140 160 180 200 220 240

0
5

10
15

20
25

total residue

12
0

16
0

20
0

Hord Tobr Toba Furo

virus group

to
ta

l r
es

id
ue

Figure 1.12: Histogram and boxplot by group of the viruses dataset. A boxplot is a
representation of the distribution; the central grey box shows the middle 50% of the data,
with median as a white bar. ‘Whiskers’ go out to plausible extremes, with outliers marked
by bars.

One initial question with this dataset is whether the numbers of residues are
absolute or relative. The data are counts from 0 to 32, with the totals per virus
varying from 122 to 231. The average numbers for each amino acid range from
1.4 to 20.3. As a classification problem, this is very easy as Figure 1.12 shows.
The histogram shows a multimodal distribution, and the boxplots show an almost
complete separation by virus type. The only exceptional value is one virus in
the furovirus group with a total of 170; this is the only virus in that group whose
mode of transmission is unknown and Fauquetet al. (1988) suggest it has been
tentatively classified as aTobamovirus. The other outlier in that group (with a
total of 198) is the only beet virus. The conclusions of Fauquetet al. may be
drawn from the totals alone.

It is interesting to see if there are subgroups within the groups, so we will use
this dataset to investigate further the largest group (theTobamoviruses). There are

1.6 An example of visualization 25

two viruses with identical scores, of which only one is included in the analyses.
(No analysis of these data could differentiate between the two.)

Principal Component Analysis

(a)

-15 -10 -5 0 5 10

-5
0

5

10

11

12 13

1415

16

17

1819

20
21

22

23

2425
26

27
28

30
3132

3334

35

36
37

38
39 4041

42
4344

454647
48

(b)

-4 -2 0 2 4

-3
-2

-1
0

1
2

10

11

12
13

14
15

16

17

18
19

2021

22

23

24
2526

27
28 30

31
32

33
34

35

36

37

38
39

40
41

4243

44 45

46
47

48

(c)

-20 -10 0 10

-1
0

-5
0

5
10

10

11

12
13

14
15

16

17

18
19

20

21

22

23

2425

26
2728

30

3132

3334

35

36

37

38
39

4041

42
4344

45
4647

48

(d)

-10 -5 0 5 10

-4
-2

0
2

4
6

10

11

12
13

14 15

16

17

1819

20
21

22

23

24
2526

27
28 30

31

32

33

34

35
36

37

3839 4041

4243

44

45

46

47
48

Figure 1.13: Principal component (top row) and Sammon mapping (bottom row) plots of
theTobamovirus group of the viruses example. The plots in the left column are of the raw
data, those in the right column with variables rescaled to have unit variance. The points are
labelled by the index number of the virus.

We consider theTobamovirus group of the viruses example, which hasn = 38
examples withp = 18 features. Figure 1.13 shows plots of the first two principal
components with ‘raw’ and scaled variables. As the data here are counts, there are
arguments for both, but principally for scaling as the counts vary in range quite
considerably between variables. Virus 11 (Sammon’s opuntia virus) stands out on
both plots: this is the one virus with a much lower total (122 rather than 157–161).
Both plots suggest three subgroupings.

In both cases the first two principal components have about equal variances,
and together contain about 69% and 52% of the variance in the raw and scaled
plots respectively.

26 Overview of Data Mining

17

36

46

17

45

46

36

22

1117

14

39 41

45

11

14

22

10

16
30

45

45

37
36
35212017

14
47

(a) (b)

(c) (d)

(e) (f)

Figure 1.14: Projections of theTobamovirus group of the viruses data found by projection
pursuit. Views (a) and (b) were found using the natural Hermite index, view (c) by
minimizing a0 , and views (d, e, f) were found by the Friedman–Tukey index

∫
f2 with

different choices of bandwidth for the kernel density estimator.

1.6 An example of visualization 27

Projection Pursuit

Figure 1.14 shows six views of the main group of the viruses dataset obtained by
(locally) optimizing various projection indices; this is a small subset of hundreds
of views obtained in interactive experimentation inXGobi. With only 38 points
in 18 dimensions, there is a lot of scope for finding a view in which an arbitrarily
selected point appears as an outlier, and there is no clear sense in which this dataset
contains outliers (except point 11, whose total residue is very much less than the
others). When viewing rotating views of multidimensional datasets (agrand tour
in the terminology of Asimov, 1985) true outliers are sometimes revealed by the
differences in speed and direction which they display—certainly point 11 stands
out in this dataset.

Not many views showed clear groupings rather than isolated points. The
Friedman–Tukey index was most successful in this example. Eslava-Gómez
(1989) studied all three groups (which violates the principle of removing known
structure).

This example illustrates a point made by Huber (1985, §21); we need avery
large number of points in 18 dimensions to be sure that we are not finding quirks
of the sample but real features of the generating process. Thus projection pursuit
may be used for hypothesis formation, but we will need independent evidence of
the validity of the structure suggested by the plots.

Multidimensional Scaling

Figure 1.15 shows a local minimum for ordinal multidimensional scaling for the
scaled viruses data. (The fit is poor, withSTRESS ≈ 17% , and we found
several local minima differing in where the outliers were placed.) This fit is
similar to that by Sammon mapping in Figure 1.13, but the subgroups are more
clearly separated, and viruses 10 (frangipani mosaic virus), 17 (cucumber green
mottle mosaic virus) and 31 (pepper mild mottle virus) have been clearly separated.
Figure 1.16 shows the distortions of the distances produced by the Sammon and
ordinal scaling methods. Both show a tendency to increase large distances relative
to short ones for this dataset, and both have considerable scatter.

Figure 1.15 shows some interpretable groupings. That on the upper left is the
cucumber green mottle virus, the upper right group is the ribgrass mosaic virus
and two others, and a group at bottom centre-right (16, 18, 19, 30, 33, 34) are the
tobacco mild green mosaic and odontoglossum ringspot viruses.

Cluster Analysis

Figure 1.17 shows the clusters for6 -means for the virus data. The iterative process
has to be started somewhere, and in this case was initialized from a hierarchical
clustering discussed below. The choice of6 clusters was by inspection of the
visualization plots discussed above and the dendrograms shown in Figure 1.18.

28 Overview of Data Mining

-5 0 5

-4
-2

0
2

4

10

11

12
13

14
15

16

17

18
19

20

21

22

23

242526
2728

30

31

32

33
34

35

36

37

3839 40
41

42

43

44
45

46

47

48

Figure 1.15: Non-metric multidimensional scaling plot of theTobamovirus group of the
viruses example. The variables were scaled before Euclidean distance was used. The
points are labelled by the index number of the virus.

•

•

•

•

•

•

•

•

•

••

•

•
•

•

• ••

•

•

•

•

•

•
•
•

•
•

•

•

•

• •

•

•
•

•

•
•

•

•
•

•

•
•

•
•

•

•

•

•
•

•

•

•

•

•

•

•

•
•

•

•
•••

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•
•

•

•

•
•

•

••

•

•

•

•

•

•
•

•

•
•

•

•

•

••

•

•
•

•

•

•

•

•

•

•

••

•

••
•

•

••

•
•

•

•

•

•
••

••

•

•

•

•
•

•
•

•

•

•

•

•

• •

••

•

•

•

•

•

•
•

•

•

•

•

•

••

•

••

•

•

•
•

•

•

•

•
•

•

•

• •

••

•

•

•

•

•

•
•

•

•

•

•

•

••

•

• •

•

•

•

•

•

•

•

• •

•

• •

••
•

••
•

•

••

•

•

•
•

•

••

•

••

•

•

• •

•

•

•

•

•

•

•

•
•

••

•
••

•

•

•

•

•

•

•

•

•

•

•
•

•

•

•

•

•

•

•

•

•

•

• •

•

•

• •
•

•

•

•

•

•

••

•
••

•
•

•

•

•
•

•

•

•

•

•

• •

•

•

• •
•

•

• •

•

•

•

•

•
••

•
•

•

•

•
•

•

•

•

•

•

•

•

•

•
••

•
•

•

•

•

•

•

•

•

•

•
•

•

•

•

•

•

•

•

•

•

•

•

•
••

•
•

•

•

•

•

•

•

•
•

•
•

•

•

•

•

•

•

•

•

••

•

•
•

•

•

•

•

•

•

•

•

•

•

•
•
•

•

•

•

• •

•

• •

•
••

•
•

•

••

•

•

•
•

•

•
•

•

•

•

•
•

•

••

•

•
•

•
•

•

•

•

•

•

•
•

•

•
•

•

•

•

••

•

•
•

•

•

••

•

•

•

•

•

•
•

•

•
•

•
•

•

••

•

•
•

•

••

•

•

•

•

•

•
•

•

• •

•

•

•

••

•

•
•

•

•

•
•

•

•

•

•
••

••

•

•

•

••

•
•

•

•

•
•

•

•

•

•
••

•
•

•

•

•

•
•

•
•

•

•

•

•

•

•

••
•

••

•

•

• •

•

•

•

•

•

•

•

•

• •

•

•
•
• •

•

•

•

•

••

•

•

•

••

•

• •

•

•

•

••

•

•
•

•

•

•
••

•
•

•

•

• •

•

•

•

•

• •
••

•
•

•

•

•
•

•

•

•

•

•

•

•

•
•

•

•

•

•

•

•

•

•

•

•

•
•

•

•

•

•

•

•

•

•

•

•
•

•

•

•

•

•

•

•

•

•

•

•

•

•

••

•

•
•

•

•
•

•

••

•

•
•

•

•

•

•
•

•
•

•

•

•

•
•

•

••

•

• • •

•

•
•

•

•

•

•

••

•

•
•

•

•

•

•

•

•

Sammon mapping

observed distances

fit
te

d
di

st
an

ce
s

0 2 4 6 8 10

0
2

4
6

8
10

12

•••••••• •
• ••••••

•
•••

••
••••••

••
••••
•
•••

••••••
•••
••••
•
••
•
•••
••••••

•
•
•

•

•••
••••••
••

••••
•

•••••
•
•
••••••
•••
••••

•
••
••••

•
••

•

•

••
•

•

•••

•

••

•

•

•

•

•

•
••

•
•

•
•
•
•
•

•

•

•

•

•

••
•
•
•

•

•

•••
•

••

••

•

•

•
••

•
•

••
•

•

•
•

••
••
•

•

•
•
•

••
•

•

•
••
•
••••
••
•
••

•

•
•

•

•

•

••
•

••

•
•

•
•

•

•

•
•
•

••
•

•

•••

•

•
•
•

•

•

•

•

•
••

•

•
•
•

•
•
•

•

•
••

•
•

•

•
•

•
•

•

•

••

••

••

•

•
•

••
•
•
•

•

••

•

••
••

•

•

•

•

•
•••

•

•
•
•

•

•

•

•••

•
••
••
••
•

•

••

•
•

•

•
•
•
•
•

•

•

•

•

•

•
•

•

••

•

•••

•

•

•••
•
•
•
•
•
•
•

•

•
••
•
••
••
•

•
•
••

•

••
•
•

•
•
•
•••••
•

•
•
•••
•

•

••

•

•

•

•

•

•

•

•

•

•

•

•

•

•
•

•

•

•

•
••

•

•••••
•

•

•

•

•

•

•

•

•

•

••
•
••
•
•

•

•

•
•
••
•••••••

•

•
•

•
•

•

•

•

•

•

••

•

•••
••
•

•

•

•
•

•

•

•

•

•

••

•

•

•

••
••
•

•

•

•

•

•
•

••

•

•

•

•

•

•

•

•

•
•

•

••
•

•
•
•
•
•
••

•

•
•

•

•

•

•

•
•

•

•

•

•

•

•
•
••

•

•

•

•

•

•

•

••

•

•

•

•

•

•

••

•
•
•

•

•

•

•

•

•
•

•

•

•

•

•

•

•
•

•

•

•

•

•

•

•

•

•

•
•

•

•

•

•

•

•

•

••

•

•
••
•
•

•

•

••

•

•
•

•

•

•

•
•

•

•

•

•

•

•

•

•

•

•

•
•

•

••

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•
•
•

•

••

•
•

•

•
••

•

•
•

•

•
•

•

•

•

•

••

•

•

•

•

•

•

•

•
•
•
••

•

•
•

•

•

•

•

•

•

•

•
•

•••

•

•

•

•

•

••

•

•

•

•

•

•

•

•

•

•
••

•
•

•

•

observed distances

fit
te

d
di

st
an

ce
s

0 2 4 6 8 10

0
2

4
6

8
10

12

Non-metric scaling

Figure 1.16: Distortion plots of Sammon mapping and non-metric multidimensional scal-
ing for the viruses data. For the right-hand plot the fitted isotonic regression is shown as a
step function.

1.6 An example of visualization 29

-5 0 5

-4
-2

0
2

4

4

4

1
1

2
2

1

5

1
1

3
3

6

1

111
11

1

1

1

11

3

3

3

11
1

1

2

2

2
2

2

2

2

Figure 1.17: The clusters suggested byk -means fork = 6 for the virus data displayed
on the ordinal multidimensional scaling plot.

10
11

12

13

14 15

16

17

18
19

20
21

22

23
24 25

26

27
28

30

31

32

33

34

35 36

37

38

39

40
41

42 43

44

45

46
47

48

0
1

2
3

4
5

6

single-link

10
11

12

13

14
15

16

17

18
19

20 21

22

23
24 25

26

27
28

30

31

32

33

34

35 36
37

38

39
40

41

42 43

44

45 46

47

48

0
2

4
6

8
10

complete-link

10

11

12

13

14
15

16

17

18
19

20 21

22

23
24 25

26

27
28

30

31

32

33

34

35 36
37

38

39
40

41

42 43

44

45
46

47

48

0
2

4
6

group average

Figure 1.18: Dendrograms from three common hierarchical clustering techniques applied
to the scaled viruses data. Such plots show the dissimilarity at which clusters are merged
on the vertical scale and so show the construction process from bottom to top.

30 Overview of Data Mining

Figure 1.18 shows dendrograms produced by single-link, complete-link and
group-average clustering for the viruses data. All identify viruses 10, 11, 17, 22
and 31 as loosely connected to the rest, and single-link also highlights virus 46.

(We note that 10, 11, 17, 31, 46 and 48 are called ‘miscellaneous’ in the
original source.) Nevertheless, each graph gives the impression of three or four
major groupings of viruses.

1.7 Categorical data

Most work on visualization and most texts on multivariate analysis implicitly as-
sume continuous measurements. However, large-scale categorical datasets are be-
coming much more prevalent,often collected through surveys or ‘CRM’ (customer
relationship management: that branch of data mining that collects information on
buying habits, for example on shopping baskets) or insurance questionnaires.

There are some useful tools available for exploring categorical data, but it is
often essential to use models to understand the data, most often log-linear models.
Indeed, ‘discrete multivariate analysis’ is the title of an early influential book on
log-linear models, Bishopet al. (1975).

Mosaic plots

There are a few ways to visualize low-dimensional contingency tables.Mosaic
plots (Hartigan & Kleiner, 1981, 1984; Friendly, 1994; Emerson, 1998; Friendly,
2000) divide the plotting surface recursively according to the proportions of each
factor in turn (so the order of the factors matters).

For an example, consider Fisher’s (1940) data on colours of eyes and hair of
people in Caithness, Scotland:

fair red medium dark black
blue 326 38 241 110 3
light 688 116 584 188 4

medium 343 84 909 412 26
dark 98 48 403 681 85

in our datasetcaith . Figure 1.19 shows mosaic plots for these data and for the
Copenhagenhousing data, computed by

caith1 <- as.matrix(caith)
names(dimnames(caith1)) <- c("eyes", "hair")
mosaicplot(caith1, color = T)
use xtabs in R
House <- crosstabs(Freq ~ Type + Infl + Cont + Sat, housing)
mosaicplot(House, color = T)

1.7 Categorical data 31

eyes

ha
ir

blue light medium dark

fa
ir

re
d

m
ed

iu
m

da
rk

bl
ac

k

Type

In
fl

Tower Apartment Atrium Terrace

Lo
w

M
ed

iu
m

H
ig

h

Low High

Lo
w

M
ed

iu
m

H
ig

h
Lo

w
M

ed
iu

m
H

ig
h

Lo
w

M
ed

iu
m

H
ig

h

Low High Low High Low High

Figure 1.19: Mosaic plots for (top) Fisher’s data on people from Caithness and (bottom)
Copenhagen housing satisfaction data.

32 Overview of Data Mining

Correspondence analysis

Correspondence analysis is applied to two-way tables of counts.
Suppose we have anr× c tableN of counts. Correspondence analysis seeks

‘scores’ f and g for the rows and columns which are maximally correlated.
Clearly the maximum correlation is one, attained by constant scores, so we seek
the largest non-trivial solution. LetR andC be matrices of the group indicators of
the rows and columns, soRT C = N . Consider the singular value decomposition
of their correlation matrix

Xij =
nij/n− (ni·/n)(n·j/n)√

(ni·/n)(n·j/n)
=

nij − n ri cj

n
√

ri cj

whereri = ni·/n and cj = n·j/n are the proportions in each row and column.
Let Dr and Dc be the diagonal matrices ofr and c . Correspondence analysis
corresponds to selecting the first singular value and left and right singular vectors
of Xij and rescaling byD−1/2

r and D
−1/2
c , respectively. This is done by our

function corresp :

> corresp(caith)
First canonical correlation(s): 0.44637

eyes scores:
blue light medium dark

-0.89679 -0.98732 0.075306 1.5743

hair scores:
fair red medium dark black

-1.2187 -0.52258 -0.094147 1.3189 2.4518

Can we make use of the subsequent singular values? In what Gower & Hand
(1996) call ‘classical CA’ we considerA = D

−1/2
r UΛ and B = D

−1/2
c V Λ .

Then the first columns ofA andB are what we have termed the row and column
scoresscaled by ρ , the first canonical correlation. More generally, we can see
distances between the rows ofA as approximating the distances between the row
profiles (rows rescaled to unit sum) of the tableN , and analogously for the rows
of B and the column profiles.

Classical CA plots the first two columns ofA and B on the same fig-
ure. This is a form of a biplot and is obtained with our software by plotting a
correspondence analysis object withnf � 2 or as the default for the method
biplot.correspondence. This is sometimes known as a ‘symmetric’ plot.
Other authors (for example, Greenacre, 1992) advocate ‘asymmetric’ plots. The
asymmetric plot for the rows is a plot of the first two columns ofA with the col-
umn labels plotted at the first two columns ofΓ = D

−1/2
c V ; the corresponding

plot for the columns has columns plotted atB and row labels atΦ = D
−1/2
r U .

The most direct interpretation for the row plot is that

A = D−1
r NΓ

1.7 Categorical data 33

-0.4 -0.2 0.0 0.2 0.4 0.6

-0
.4

-0
.2

0.
0

0.
2

0.
4

0.
6

blue

light

medium

dark

-0.5 0.0 0.5 1.0

-0
.5

0.
0

0.
5

1.
0

F

R

M

D

B

symmetric

-1 0 1 2

-1
0

1
2

bluelight

medium

dark

-1 0 1 2

-1
0

1
2

F

R

M

D

B

rows

-1.5 -1.0 -0.5 0.0 0.5 1.0 1.5

-1
.5

-1
.0

-0
.5

0.
0

0.
5

1.
0

1.
5

blue

light

medium

dark

-1.5 -1.0 -0.5 0.0 0.5 1.0 1.5

-1
.5

-1
.0

-0
.5

0.
0

0.
5

1.
0

1.
5

F
R

M

D

B

columns

Figure 1.20: Three variants of correspondence analysis plots from Fisher’s data on people in
Caithness: (left) ‘symmetric", (middle) ‘row asymmetric’ and (right) ‘column asymmetric’.

so A is a plot of therow profiles (the rows normalized to sum to one) as convex
combinations of the column vertices given byΓ .

By default corresp only retains one-dimensional row and column scores;
thenplot.corresp plots these scores and indicates the size of the entries in the
table by the area of circles. The two-dimensional forms of the plot are shown in
Figure 1.20 for Fisher’s data on people from Caithness. These were produced by

R: library(mva)
caith2 <- caith
dimnames(caith2)[[2]] <- c("F", "R", "M", "D", "B")
par(mfcol = c(1, 3))
plot(corresp(caith2, nf = 2)); title("symmetric")
plot(corresp(caith2, nf = 2), type = "rows"); title("rows")
plot(corresp(caith2, nf = 2), type = "col"); title("columns")

Note that the symmetric plot (left) has the row points from the asymmetric row
plot (middle) and the column points from the asymmetric column plot (right)
superimposed on the same plot (but with different scales).

Multiple correspondence analysis

Multiple correspondence analysis (MCA) is (confusingly!) a method for visual-
izing the joint properties ofp � 2 categorical variables that doesnot reduce to
correspondence analysis (CA) forp = 2 , although the methods are closely related
(see, for example, Gower & Hand, 1996, §10.2).

Suppose we haven observations on thep factors with� total levels. Consider
G , the n× � indicator matrix whose rows give the levels of each factor for each
observation. Then all the row sums arep . MCA is often (Greenacre, 1992)
defined as CA applied to the tableG , that is the singular-value decomposition of
D

−1/2
r (G/

∑
ij gij)D

−1/2
c = UΛV T . Note thatDr = pI since all the row sums

are p , and
∑

ij gij = np , so this amounts to the SVD ofp−1/2GD
−1/2
c /pn .9

9 Gower & Hand (1996) omit the divisorpn .

34 Overview of Data Mining

1

2

34

5

6
7

8

9

10

11

12

13

14

15

16

17

18

1920

M1

M2

M4

M5

BF
HF

NM

SF

U1

U2

U3

C0

C1

C2

C3

C4

Figure 1.21: Multiple correspondence analysis plot of datasetfarms on 20 farms on the
Dutch island of Terschelling. Numbers represent the farms and labels levels of moisture
(M1 , M2 , M4 and M5), grassland usage (U1 , U2 and U3), manure usage (C0 to C4) and
type of grassland management (SF : standard,BF : biological, HF : hobby farming,NM :
nature conservation). LevelsC0 and NM are coincident (on the extreme left), as are the
pairs of farms 3 & 4 and 19 & 20.

An alternative point of view is that MCA is a principal components analysis
of the data matrixX = G(pDc)−1/2 ; with PCA it is usual to centre the data, but
it transpires that the largest singular value is one and the corresponding singular
vectors account for the means of the variables. A simple plot for MCA is to plot
the first two principal components ofX (which correspond to the second and
third singular vectors ofX). This is a form of biplot, but it will not be appropriate
to add axes for the columns ofX as the possible values are only{0, 1} , but it is
usual to add the positions of1 on each of these axes, and label these by the factor
level. (The ‘axis’ points are plotted at the appropriate row of(pD c)−1/2V .) The
point plotted for each observation is the vector sum of the ‘axis’ points for the
levels taken of each of the factors. Gower and Hand seem to prefer (e.g., their
Figure 4.2) to rescale the plotted points byp , so they are plotted at the centroid of
their levels. This is exactly the asymmetric row plot of the CA ofG , apart from
an overall scale factor ofp

√
n .

We can apply this to the example of Gower & Hand (1996, p. 75) by

farms.mca <- mca(farms, abbrev = T) # Use levels as names
plot(farms.mca, cex = rep(0.7, 2), axes = F)

shown in Figure 1.21
Sometimes it is desired to add rows or factors to an MCA plot. Adding

rows is easy; the observations are placed at the centroid of the ‘axis’ points for

1.7 Categorical data 35

levels that are observed. Adding factors (so-calledsupplementary variables) is
less obvious. The ‘axis’ points are plotted at the rows of(pD c)−1/2V . Since
UΛV T = X = G(pDc)−1/2 , V = (pDc)−1/2GT UΛ−1 and

(pDc)−1/2V = (pDc)−1GT UΛ−1

This tells us that the ‘axis’ points can be found by taking the appropriate column of
G , scaling to total1/p and then taking inner products with the second and third
columns of UΛ−1 . This procedure can be applied to supplementary variables
and so provides a way to add them to the plot. Thepredict method for class
"mca" allows rows or supplementary variables to be added to an MCA plot.

36

Chapter 2

Tree-based Methods

The use of tree-based models will be relatively unfamiliar to statisticians, although
researchers in other fields have found trees to be an attractive way to express
knowledge and aid decision-making. Keys such as Figure 2.1 are common in
botany and in medical decision-making, and provide a way to encapsulate and
structure the knowledge of experts to be used by less-experienced users. Notice
how this tree uses both categorical variables and splits on continuous variables.
(It is a tree, and readers are encouraged to draw it.)

The automatic construction of decision trees dates from work in the social
sciences by Morgan & Sonquist (1963) and Morgan & Messenger (1973). In
statistics Breimanet al. (1984) had a seminal influence both in bringing the work
to the attention of statisticians and in proposing new algorithms for constructing
trees. At around the same time decision tree induction was beginning to be used in
the field ofmachine learning, notably by Quinlan (1979, 1983, 1986, 1993), and in
engineering (Henrichon & Fu, 1969; Sethi & Sarvarayudu, 1982). Whereas there
is now an extensive literature in machine learning, further statistical contributions
are still sparse. The introduction withinS of tree-based models described by Clark
& Pregibon (1992) made the methods much more freely available. The library
rpart (Therneau & Atkinson, 1997) provides a faster and more tightly-packaged
set ofS functions for fitting trees to data, which we describe here.

Ripley (1996, Chapter 7) gives a comprehensive survey of the subject, with
proofs of the theoretical results.

Constructing trees may be seen as a type of variable selection. Questions of
interaction between variables are handled automatically, and to a large extent so
is monotonic transformation of both thex and y variables. These issues are
reduced to which variables to divide on, and how to achieve the split.

Figure 2.1 is aclassification tree since its endpoint is a factor giving the species.
Although this is the most common use, it is also possible to haveregression trees
in which each terminal node gives a predicted value, as shown in Figure 2.2 for
our datasetcpus .

Much of the machine learning literature is concernedwith logical variables and
correct decisions. The end point of a tree is a (labelled) partition of the spaceX
of possible observations. In logical problems it is assumed that thereis a partition
of the spaceX that will correctly classify all observations, and the task is to find a

2.1 Partitioning methods 37

1. Leaves subterete to slightly flattened, plant with bulb 2.
Leaves flat, plant with rhizome 4.

2. Perianth-tube > 10 mm I. × hollandica
Perianth-tube < 10 mm 3.

3. Leaves evergreen I. xiphium
Leaves dying in winter I. latifolia

4. Outer tepals bearded I. germanica
Outer tepals not bearded 5.

5. Tepals predominately yellow 6.
Tepals blue, purple, mauve or violet 8.

6. Leaves evergreen I. foetidissima
Leaves dying in winter 7.

7. Inner tepals white I. orientalis
Tepals yellow all over I. pseudocorus

8. Leaves evergreen I. foetidissima
Leaves dying in winter 9.

9. Stems hollow, perianth-tube 4–7mm I. sibirica
Stems solid, perianth-tube 7–20mm 10.

10. Upper part of ovary sterile 11.
Ovary without sterile apical part 12.

11. Capsule beak 5–8mm, 1 rib I. enstata
Capsule beak 8–16mm, 2 ridges I. spuria

12. Outer tepals glabrous, many seeds I. versicolor
Outer tepals pubescent, 0–few seeds I. × robusta

Figure 2.1: Key to British species of the genusIris. Simplified from Stace (1991, p. 1140),
by omitting parts of his descriptions.

tree to describe it succinctly. A famous example of Donald Michie (for example,
Michie, 1989) is whether the space shuttle pilot should use the autolander or land
manually (Table 2.1). Some enumeration will show that the decision has been
specified for 253 out of the 256 possible observations. Some cases have been
specified twice. This body of expert opinion needed to be reduced to a simple
decision aid, as shown in Figure 2.3. (Table 2.1 appears to result from a decision
tree that differs from Figure 2.3 in reversing the order of two pairs of splits.)

Note that the botanical problem is treated as if it were a logical problem,
although there will be occasional specimens that do not meet the specification for
their species.

2.1 Partitioning methods

The ideas for classification and regression trees are quite similar, but the termi-
nology differs, so we consider classification first. Classification trees are more
familiar and it is a little easier to justify the tree-construction procedure, so we
consider them first.

38 Tree-based Methods

cach<27

cach>27

43.1200

1.753

mmax<6100

mmax>6100

11.7900

1.525

 3.8940

1.375

syct<360

syct>360

 4.0450

1.704

 2.5010

1.756

 0.1291

1.280

mmax<28000

mmax>28000

 7.6430

2.249

 2.3410

2.062

 1.5230

2.555

Figure 2.2: A regression tree for the cpu performance data on log10 scale. The value in
each node is the prediction for the node; those underneath the nodes indicate the deviance
contributionsDi .

Table 2.1: Example decisions for the space shuttle autolander problem.

stability error sign wind magnitude visibility decision

any any any any any no auto
xstab any any any any yes noauto
stab LX any any any yes noauto
stab XL any any any yes noauto
stab MM nn tail any yes noauto
any any any any Out of range yes noauto
stab SS any any Light yes auto
stab SS any any Medium yes auto
stab SS any any Strong yes auto
stab MM pp head Light yes auto
stab MM pp head Medium yes auto
stab MM pp tail Light yes auto
stab MM pp tail Medium yes auto
stab MM pp head Strong yes noauto
stab MM pp tail Strong yes auto

Classification trees

We have already noted that the endpoint for a tree is a partition of the spaceX , and
we compare trees by how well that partition corresponds to the correct decision
rule for the problem. In logical problems the easiest way to compare partitions is
to count the number of errors, or, if we have a prior over the spaceX , to compute
the probability of error.

In statistical problems the distributions of the classes overX usually overlap,

2.1 Partitioning methods 39

vis: no
vis: yes

108/253

 auto

 0/128

 auto

error: MM, SS
error: LX, XL

 17/125

 noauto

stability:stab
stability:xstab

 17/61

 noauto

magn: Out
magn: Li, Med, Str

 12/29

 auto

 0/8

 noauto

error: MM
error: SS

 4/21

 auto

sign: nn
sign: pp

 4/9

 auto

 0/3

 noauto

magn: Li, Med
magn: Str

 1/6

 auto

 0/4

 auto

wind: head
wind: tail

 1/2

 auto

 0/1

 noauto

 0/1

 auto

 0/12

 auto

 0/32

 noauto

 0/64

 noauto

Figure 2.3: Decision tree for shuttle autolander problem. The numbersm/n denote the
proportion of training cases reaching that node wrongly classified by the label.

so there is no partition that completely describes the classes. Then for each cell of
the partition there will be a probability distribution over the classes, and the Bayes
decision rule will choose the class with highest probability. This corresponds to
assessing partitions by the overall probability of misclassification. Of course, in
practice we do not have the whole probability structure, but a training set ofn
classified examples that we assume are an independent random sample. Then we
can estimate the misclassification rate by the proportion of the training set that is
misclassified.

Almost all current tree-construction methods use a one-step lookahead. That
is, they choose the next split in an optimal way, without attempting to optimize
the performance of the whole tree. (This avoids a combinatorial explosion over
future choices, and is akin to a very simple strategy for playing a game such as
chess.) However, by choosing the right measure to optimize at each split, we can
ease future splits. It does not seem appropriate to use the misclassification rate to
choose the splits.

40 Tree-based Methods

What class of splits should we allow? Both Breimanet al.’s CART methodol-
ogy and therpart functions only allow binary splits, which avoids one difficulty
in comparing splits, that of normalization by size. For a continuous variablex j

the allowed splits are of the formxj < t versusxj � t . For ordered factors
the splits are of the same type. For general factors the levels are divided into two
classes. (Note that forL levels there are2L possible splits, and if we disallow
the empty split and ignore the order, there are still2L−1− 1 . For ordered factors
there are onlyL − 1 possible splits.) Some algorithms, including CART but
excludingS, allow linear combination of continuous variables to be split, and
Boolean combinations to be formed of binary variables.

The justification for theS methodology is to view the tree as providing a
probability model (hence the title ‘tree-based models’ of Clark & Pregibon, 1992).
At each nodei of a classification tree we have a probability distributionp ik over
the classes. The partition is given by theleaves of the tree (also known as terminal
nodes). Each case in the training set is assigned to a leaf, and so at each leaf we
have a random samplenik from the multinomial distribution specified byp ik .

We now condition on the observed variablesx i in the training set, and hence
we know the numbersni of cases assigned to every node of the tree, in particular
to the leaves. The conditional likelihood is then proportional to∏

casesj

p[j]yj
=
∏

leavesi

∏
classesk

pnik

ik

where[j] denotes the leaf assigned to casej . This allows us to define a deviance
for the tree as

D =
∑

i

Di, Di = −2
∑

k

nik log pik

as a sum over leaves.
Now consider splitting nodes into nodest and u . This changes the proba-

bility model within nodes , so the reduction in deviance for the tree is

Ds −Dt −Du = 2
∑

k

[
ntk log

ptk

psk
+ nuk log

puk

psk

]
Since we do not know the probabilities, we estimate them from the proportions in
the split node, obtaining

p̂tk =
ntk

nt
, p̂uk =

nuk

nu
, p̂sk =

ntp̂tk + nup̂uk

ns
=

nsk

ns

so the reduction in deviance is

Ds −Dt −Du = 2
∑

k

[
ntk log

ntkns

nsknt
+ nuk log

nukns

nsknu

]
= 2

[∑
k

ntk log ntk + nuk log nuk − nsk log nsk

+ ns log ns − nt log nt − nu log nu

]

2.1 Partitioning methods 41

This gives a measure of the value of a split. Note that it is size-biased; there
is more value in splitting leaves with large numbers of cases.

The tree construction process takes the maximum reduction in deviance over
all allowed splits of all leaves, to choose the next split. (Note that for continuous
variates the value depends only on the split of the ranks of the observed values,
so we may take a finite set of splits.) The tree construction continues until the
number of cases reaching each leaf is small (by defaultn i < 10 in S) or the leaf
is homogeneous enough (by default its deviance is less than 1% of the deviance
of the root node inS, which is a size-biased measure). Note that as all leaves not
meeting the stopping criterion will eventually be split, an alternative view is to
consider splitting any leaf and choose the best allowed split (if any) for that leaf,
proceeding until no further splits are allowable.

This justification for the value of a split follows Ciampiet al. (1987) and Clark
& Pregibon, but differs from most of the literature on tree construction. The more
common approach is to define a measure of the impurity of the distribution at a
node, and choose the split that most reduces the average impurity. Two common
measures are theentropy or information

∑
pik log pik and theGini index∑

j �=k

pijpik = 1−
∑

k

p2
ik

As the probabilities are unknown, they are estimated from the node proportions.
With the entropy measure, the average impurity differs fromD by a constant
factor, so the tree construction process is the same, except perhaps for the stopping
rule. Breimanet al. preferred the Gini index.

Regression trees

The prediction for a regression tree is constant over each cell of the partition of
X induced by the leaves of the tree. The deviance is defined as

D =
∑

casesj

(yj − µ[j])2

and so clearly we should estimate the constantµi for leaf i by the mean of the
values of the training-set cases assigned to that node. Then the deviance is the
sum over leaves ofDi , the corrected sum of squares for cases within that node,
and the value of a split is the reduction in the residual sum of squares.

The obvious probability model (and that proposed by Clark & Pregibon) is to
take a normalN(µi, σ

2) distribution within each leaf. ThenD is the usual scaled
deviance for a Gaussian GLM. However, the distribution at internal nodes of the
tree is then a mixture of normal distributions, and soD i is only appropriate at the
leaves. The tree-construction process has to be seen as a hierarchical refinement
of probability models, very similar to forward variable selection in regression. In
contrast, for a classification tree, one probability model can be used throughout
the tree-construction process.

42 Tree-based Methods

Missing values

One attraction of tree-based methods is the ease with which missing values can be
handled. Consider the botanical key of Figure 2.1. We only need to know about
a small subset of the 10 observations to classify any case, and part of the art of
constructing such trees is to avoid observations that will be difficult or missing in
some of the species (or as in capsules, for some of the cases). A general strategy
is to ‘drop’ a case down the tree as far as it will go. If it reaches a leaf we can
predict y for it. Otherwise we use the distribution at the node reached to predict
y , as shown in Figure 2.2, which has predictions at all nodes.

An alternative strategy is used by many botanical keys and can be seen at
nodes 9 and 12 of Figure 2.1. A list of characteristics is given, the most important
first, and a decision made from those observations that are available. This is
codified in the method ofsurrogate splits in which surrogate rules are available
at non-terminal nodes to be used if the splitting variable is unobserved. Another
attractive strategy is to split cases with missing values, and pass part of the case
down each branch of the tree (Ripley, 1996, p. 232).

Cutting trees down to size

With ‘noisy’ data, that is when the distributions for the classes overlap, it is quite
possible to grow a tree which fits the training set well, but which has adapted
too well to features of that subset ofX . Similarly, regression trees can be too
elaborate and over-fit the training data. We need an analogue of variable selection
in regression.

The established methodology is cost-complexitypruning, first introduced by
Breimanet al. (1984). They considered rooted subtrees of the treeT grown by
the construction algorithm, that is the possible results of snipping off terminal
subtrees onT . The pruning process chooses one of the rooted subtrees. LetR i

be a measure evaluated at the leaves, such as the deviance or the number of errors,
and let R be the value for the tree, the sum over the leaves ofR i . Let the size
of the tree be the number of leaves. Then Breimanet al. showed that the set of
rooted subtrees ofT which minimize the cost-complexity measure

Rα = R + α size

is itself nested. That is, as we increaseα we can find the optimal trees by a
sequence of snip operations on the current tree (just like pruning a real tree). This
produces a sequence of trees from the size ofT down to just the root node, but
it may prune more than one node at a time. (Short proofs of these assertions
are given by Ripley, 1996, Chapter 7. The treeT is not necessarily optimal for
α = 0 , as we illustrate.)

We need a good way to choose the degree of pruning. If a separate validation
set is available, we can predict on that set, and compute the deviance versusα for
the pruned trees. This will often have a minimum, and we can choose the smallest
tree whose deviance is close to the minimum.

2.1 Partitioning methods 43

If no validation set is available we can make one by splitting the training set.
Suppose we split the training set into 10 (roughly) equally sized parts. We can
then use 9 to grow the tree and test it on the tenth. This can be done in 10 ways,
and we can average the results.

Examples of classification trees

Forensic Glass

Our first example comes from forensic testing of glass collected by B. German on
214 fragments of glass. Each case has a measured refractive index and composition
(weight percent of oxides of Na, Mg, Al, Si, K, Ca, Ba and Fe). The fragments
were originally classed as seven types, one of which was absent in this dataset. The
categories which occur are window float glass (70), window non-float glass (76),
vehicle window glass (17), containers (13), tableware (9) and vehicle headlamps
(29). The composition sums to around 100%; what is not anything else is sand.
The full tree is shown in figure 2.4.

For this tree the pruning sequence

(αi) = (−∞, 0, 0.5, 1, 2, 2.5, 4.67, 7, 8, 11, 27,∞)

Figure 2.5 shows four separate 10-fold cross-validation experiments, differing
only in the random partition into groups. There is a fairly consistent pattern
preferingα ≈ 5 , but also some suggestion thatα ≈ 2 might also be supportable.

The ‘1-SE’ rule says to choose the smallest tree for which the cross-validated
number of errors is within about one standard error of the minimum. Here the
minimum is about error, so a Poisson distribution suggests the standard error is
around 9.

Pima Indians

A population of women who were at least 21 years old, of Pima Indian heritage
and living near Phoenix, Arizona, was tested for diabetes according to World
Health Organization criteria. The data were collected by the US National Institute
of Diabetes and Digestive and Kidney Diseases. The reported variables are

number of pregnancies
plasma glucose concentration in an oral glucose tolerance test
diastolic blood pressure (mm Hg)
triceps skin fold thickness (mm)
serum insulin (µU/ml)
body mass index (weight in kg/(height in m)2)
diabetes pedigree function
age in years

Of the 768 records, 376 were incomplete (most prevalently in serum insulin).
Most of our illustrations omit serum insulin and use the 532 complete records on
the remaining variables. These were randomly split into a training set of size 200
and a validation set of size 332.

44 Tree-based Methods

Mg<2.695

Mg>2.695

138/214
WinNF

Na<13.785

Na>13.785

 35/61
Head

Al<1.38

Al>1.38

 12/24
Con

 1/8
WinNF

Fe<0.085

Fe>0.085

 4/16
Con

 0/10
Con

 2/6
WinNF

Ba<0.2

Ba>0.2

 12/37
Head

RI<1.265

RI>1.265

 3/12
Tabl

 0/7
Tabl

 3/5
WinNF

RI<-2.495

RI>-2.495

 1/25
Head

 1/5
Head

 0/20
Head

Al<1.42

Al>1.42

 83/153
WinF

RI<-0.93

RI>-0.93

 37/101
WinF

RI<-1.885

RI>-1.885

 7/14
Veh

 2/5
WinF

 4/9
Veh

K<0.29

K>0.29

 26/87
WinF

Ca<9.67

Ca>9.67

 8/28
WinF

Al<0.855

Al>0.855

 6/17
WinF

 3/7
Veh

RI<3

RI>3

 2/10
WinF

 1/5
WinF

 1/5
WinF

RI<4.635

RI>4.635

 2/11
WinF

 0/6
WinF

 2/5
WinF

Mg<3.75

Mg>3.75

 18/59
WinF

Fe<0.145

Fe>0.145

 8/49
WinF

RI<1.045

RI>1.045

 2/38
WinF

 0/33
WinF

 2/5
WinF

Al<1.17

Al>1.17

 5/11
WinNF

 0/5
WinNF

 1/6
WinF

 0/10
WinNF

Mg<3.455

Mg>3.455

 12/52
WinNF

Si<72.84

Si>72.84

 6/17
WinNF

 4/8
Veh

 0/9
WinNF

Na<12.835

Na>12.835

 6/35
WinNF

 3/7
WinF

K<0.55

K>0.55

 2/28
WinNF

 2/6
WinNF

 0/22
WinNF

Figure 2.4: The full classification tree for the forensic glass data. Note that a number of
final splits do not change the predicted class.

2.1 Partitioning methods 45

size

m
is

cl
as

s
80

10
0

12
0

14
0

20 15 10 5

-Inf 0.0 1.0 4.7 27.0

size

m
is

cl
as

s
80

10
0

12
0

14
0

20 15 10 5

-Inf 0.0 1.0 4.7 27.0

size

m
is

cl
as

s
80

10
0

12
0

14
0

20 15 10 5

-Inf 0.0 1.0 4.7 27.0

size

m
is

cl
as

s
80

10
0

12
0

14
0

20 15 10 5

-Inf 0.0 1.0 4.7 27.0

Figure 2.5: Four 10-fold cross-validation tests for choosingα (the top axis). They -axis
is the number of errors in the cross-validation.

46 Tree-based Methods

Mg<2.695
Mg>2.695

138/214

WinNF

Na<13.785
Na>13.785

 35/61

Head

Al<1.38
Al>1.38

 12/24

Con

 1/8

WinNF

 4/16

Con

Ba<0.2
Ba>0.2

 12/37

Head

 3/12

Tabl

 1/25

Head

Al<1.42
Al>1.42

 83/153

WinF

RI<-0.93
RI>-0.93

 37/101

WinF

 7/14

Veh

K<0.29
K>0.29

 26/87

WinF

 8/28

WinF

Mg<3.75
Mg>3.75

 18/59

WinF

 8/49

WinF

 0/10

WinNF

 12/52

WinNF

Mg<2.695

Mg>2.695

138/214

WinNF

Na<13.785

Na>13.785

 35/61

Head

Al<1.38

Al>1.38

 12/24

Con

 1/8

WinNF

 4/16

Con

Ba<0.2

Ba>0.2

 12/37

Head

 3/12

Tabl

 1/25

Head

Al<1.42

Al>1.42

 83/153

WinF

 37/101

WinF

 12/52

WinNF

Figure 2.6: Prunings of figure 2.4 byα = 2 (top) andα = 5 (bottom).

2.1 Partitioning methods 47

glu<123.5

glu>123.5

68/200
No

age<28.5

age>28.5

15/109
No

npreg<2.5

npreg>2.5

 4/74
No

bp<79

bp>79

 1/58
No

 0/53
No

 1/5
No

npreg<3.5

npreg>3.5

 3/16
No

 3/6
No

 0/10
No

glu<90

glu>90

11/35
No

 0/9
No

bmi<33.4

bmi>33.4

11/26
No

bp<71

bp>71

 2/10
No

 2/5
No

 0/5
No

bmi<35.85

bmi>35.85

 7/16
Yes

 0/6
Yes

npreg<4.5

npreg>4.5

 3/10
No

 0/5
No

 2/5
Yes

ped<0.3095

ped>0.3095

38/91
Yes

glu<166

glu>166

12/35
No

ped<0.2545

ped>0.2545

 6/27
No

bmi<27.35

bmi>27.35

 6/19
No

 0/6
No

ped<0.18

ped>0.18

 6/13
No

 1/5
No

 3/8
Yes

 0/8
No

 2/8
Yes

bmi<28.65

bmi>28.65

15/56
Yes

age<28.5

age>28.5

 3/11
No

 0/6
No

 2/5
Yes

ped<0.628

ped>0.628

 7/45
Yes

bp<71

bp>71

 7/28
Yes

 0/11
Yes

age<40

age>40

 7/17
Yes

ped<0.393

ped>0.393

 4/10
No

 2/5
Yes

 1/5
No

 1/7
Yes

 0/17
Yes

Figure 2.7: The full classification tree for the Pima Indians data.

48 Tree-based Methods

size

m
is

cl
as

s
80

85
90

95
10

0
10

5
11

0

20 15 10 5

 -Inf 0.00 0.67 0.75 1.00 1.50 5.00 15.00

Figure 2.8: The prune sequence for figure 2.7 on the validation set.

glu<123.5
glu>123.5

68/200

No

15/109

No

ped<0.3095
ped>0.3095

38/91

Yes

glu<166
glu>166

12/35

No

 6/27

No

 2/8

Yes

bmi<28.65
bmi>28.65

15/56

Yes

 3/11

No

 7/45

Yes

Figure 2.9: Figure 2.7 pruned atα = 1.5 .

2.2 Implementation in rpart 49

2.2 Implementation in rpart

The simplest way to use tree-based methods is via the library sectionrpart by
Terry Therneau and Beth Atkinson (Therneau & Atkinson, 1997). The underlying
philosophy is of one function,rpart , that both grows and computes where to
prune a tree; although there is a functionprune.rpart it merely further prunes
the tree at points already determined by the call torpart , which has itself done
some pruning. It is also possible to print a pruned tree by giving a pruning
parameter toprint.rpart . By default rpart runs a 10-fold cross-validation
and the results are stored in therpart object to allow the user to choose the
degree of pruning at a later stage. Since all the work is done in aC function the
calculations are quite fast.

The rpart system was designed to be easily extended to new types of re-
sponses. We only consider the following types, selected by the argumentmethod .

"anova" A regression tree, with the impurity criterion the reduction in sum of
squares on creating a binary split of the data at that node. The criterion
R(T) used for pruning is the mean square error of the predictions of the
tree on the current dataset (that is, the residual mean square).

"class" A classification tree, with a categorical or factor response and default
impurity criterion the Gini index. The deviance-based approach corre-
sponds to the entropy index, selected by the argument settingparms to
list(split="information"). The pruning criterionR(T) is the pre-
dicted loss, normally the error rate.

If the method argument is missing an appropriate type is inferred from the
response variable in the formula.

It is helpful to consider a few examples. First we consider a regression tree
for our cpus data, then a classification tree for theiris data. The model is
specified by a model formula with terms separated by+ ; interactions make no
sense for trees, and- terms are ignored. The precise meaning of the argument
cp is explained later; it is proportional toα in the cost-complexity measure.

> library(rpart)
> set.seed(123)
> cpus.rp <- rpart(log10(perf) ~ ., cpus[, 2:8], cp = 1e-3)
> cpus.rp # gives a large tree not show here.
> print(cpus.rp, cp = 0.01)
node), split, n, deviance, yval

* denotes terminal node

1) root 209 43.116000 1.7533
2) cach<27 143 11.791000 1.5246
4) mmax<6100 78 3.893700 1.3748

8) mmax<1750 12 0.784250 1.0887 *
9) mmax>=1750 66 1.948700 1.4268 *

5) mmax>=6100 65 4.045200 1.7044
10) syct>=360 7 0.129080 1.2797 *

50 Tree-based Methods

11) syct<360 58 2.501200 1.7557
22) chmin<5.5 46 1.226200 1.6986 *
23) chmin>=5.5 12 0.550710 1.9745 *

3) cach>=27 66 7.642600 2.2488
6) mmax<28000 41 2.341400 2.0620
12) cach<96.5 34 1.592000 2.0081
24) mmax<11240 14 0.424620 1.8266 *
25) mmax>=11240 20 0.383400 2.1352 *

13) cach>=96.5 7 0.171730 2.3236 *
7) mmax>=28000 25 1.522900 2.5552
14) cach<56 7 0.069294 2.2684 *
15) cach>=56 18 0.653510 2.6668 *

This shows the predicted value (yval) and deviance within each node. We can
plot the full tree by

> plot(cpus.rp, uniform = T); text(cpus.rp, digits = 3)

> ird <- data.frame(rbind(iris[,,1], iris[,,2],iris[,,3]),
Species = c(rep("s",50), rep("c",50), rep("v",50)))

> ir.rp <- rpart(Species ~ ., data = ird, cp = 1e-3)
> ir.rp
node), split, n, loss, yval, (yprob)

* denotes terminal node

1) root 150 100 c (0.33333 0.33333 0.33333)
2) Petal.L.>=2.45 100 50 c (0.50000 0.00000 0.50000)
4) Petal.W.<1.75 54 5 c (0.90741 0.00000 0.09259) *
5) Petal.W.>=1.75 46 1 v (0.02173 0.00000 0.97826) *

3) Petal.L.<2.45 50 0 s (0.00000 1.00000 0.00000) *

The (yprob) give the distribution by class within each node.
Note that neither tree has yet been pruned to final size. We can now consider

pruning by usingprintcp to print out the information stored in therpart
object.

> printcp(cpus.rp)

Regression tree:
rpart(formula = log10(perf) ~ ., data = cpus[, 2:8], cp = 0.001)

Variables actually used in tree construction:
[1] cach chmax chmin mmax syct

Root node error: 43.1/209 = 0.206

CP nsplit rel error xerror xstd
1 0.54927 0 1.000 1.005 0.0972
2 0.08934 1 0.451 0.480 0.0487
3 0.08763 2 0.361 0.427 0.0433
4 0.03282 3 0.274 0.322 0.0322

2.2 Implementation in rpart 51

5 0.02692 4 0.241 0.306 0.0306
6 0.01856 5 0.214 0.278 0.0294
7 0.01680 6 0.195 0.281 0.0292
8 0.01579 7 0.179 0.279 0.0289
9 0.00946 9 0.147 0.281 0.0322

10 0.00548 10 0.138 0.247 0.0289
11 0.00523 11 0.132 0.250 0.0289
12 0.00440 12 0.127 0.245 0.0287
13 0.00229 13 0.123 0.242 0.0284
14 0.00227 14 0.120 0.241 0.0282
15 0.00141 15 0.118 0.240 0.0282
16 0.00100 16 0.117 0.238 0.0279

The columnsxerror and xstd are random, depending on the random partition
used in the cross-validation. We can see the same output graphically (Figure 2.10)
by a call toplotcp .

> plotcp(cpus.rp)

•

•

• •
• •

• • • • •

cp

X
-v

al
 R

el
at

iv
e

E
rr

or
0.

2
0.

4
0.

6
0.

8
1.

0
1.

2

Inf 0.22 0.054 0.03 0.022 0.013 0.0072 0.0049 0.0032 0.0018 0.0012

1 2 4 5 6 10 11 13 14 16 17
size of tree

Figure 2.10: Plot by plotcp of the rpart object cpus.rp1 .

We need to explain thecomplexity parameter cp ; this is just the parameter
α divided by the numberR(T∅) for the root tree.1 A 10-fold cross-validation
has been done withinrpart to compute the entries2 xerror and xstd ; the
complexity parameter may then be chosen to minimizexerror . An alternative
procedure is to use the 1-SE rule, the largest value withxerror within one
standard deviation of the minimum. In this case the 1-SE rule gives0.238 +

1 Thus for most measures of fit the complexity parameter lies in[0, 1] .
2 All the errors are scaled so the root tree has errorR(T∅) scaled to one.

52 Tree-based Methods

0.0279 , so we choose line 7, a tree with 10 splits and hence 11 leaves.3 We can
examine this by

> print(cpus.rp, cp = 0.006, digits = 3)
node), split, n, deviance, yval

* denotes terminal node

1) root 209 43.1000 1.75
2) cach<27 143 11.8000 1.52
4) mmax<6.1e+03 78 3.8900 1.37

8) mmax<1.75e+03 12 0.7840 1.09 *
9) mmax>=1.75e+03 66 1.9500 1.43 *

5) mmax>=6.1e+03 65 4.0500 1.70
10) syct>=360 7 0.1290 1.28 *
11) syct<360 58 2.5000 1.76
22) chmin<5.5 46 1.2300 1.70

44) cach<0.5 11 0.2020 1.53 *
45) cach>=0.5 35 0.6160 1.75 *

23) chmin>=5.5 12 0.5510 1.97 *
3) cach>=27 66 7.6400 2.25
6) mmax<2.8e+04 41 2.3400 2.06
12) cach<96.5 34 1.5900 2.01
24) mmax<1.12e+04 14 0.4250 1.83 *
25) mmax>=1.12e+04 20 0.3830 2.14 *

13) cach>=96.5 7 0.1720 2.32 *
7) mmax>=2.8e+04 25 1.5200 2.56
14) cach<56 7 0.0693 2.27 *
15) cach>=56 18 0.6540 2.67 *

or

> cpus.rp1 <- prune(cpus.rp, cp = 0.006)
> plot(cpus.rp1, branch = 0.4, uniform = T)
> text(cpus.rp1, digits = 3)

The plot is shown in Figure 2.11.

For theiris data we have

> printcp(ir.rp)
....

Variables actually used in tree construction:
[1] Petal.L. Petal.W.

Root node error: 100/150 = 0.667

CP nsplit rel error xerror xstd
1 0.500 0 1.00 1.18 0.0502
2 0.440 1 0.50 0.60 0.0600
3 0.001 2 0.06 0.10 0.0306

3 The number of leaves is always one more than the number of splits.

2.2 Implementation in rpart 53

|cach<27

mmax<6100

mmax<1750 syct>360

chmin<5.5

cach<0.5

mmax<28000

cach<96.5

mmax<11240

cach<56

1.09 1.43 1.28

1.53 1.75

1.97 1.83 2.14

2.32 2.27 2.67

Figure 2.11: Plot of therpart object cpus.rp1 .

which suggests no pruning, but that too small a tree has been grown sincexerror
may not have reached its minimum.

The summary method,summary.rpart , produces voluminous output:

> summary(ir.rp)
Call:
rpart(formula = Species ~ ., data = ird, method = "class",

cp = 0.001)

CP nsplit rel error xerror xstd
1 0.500 0 1.00 1.18 0.050173
2 0.440 1 0.50 0.60 0.060000
3 0.001 2 0.06 0.10 0.030551

Node number 1: 150 observations, complexity param=0.5
predicted class=c expected loss=0.66667
class counts: 50 50 50
probabilities: 0.333 0.333 0.333
left son=2 (100 obs) right son=3 (50 obs)
Primary splits:

Petal.L. < 2.45 to the right, improve=50.000, (0 missing)
Petal.W. < 0.8 to the right, improve=50.000, (0 missing)
Sepal.L. < 5.45 to the left, improve=34.164, (0 missing)
Sepal.W. < 3.35 to the left, improve=19.039, (0 missing)

Surrogate splits:
Petal.W. < 0.8 to the right, agree=1.000, adj=1.00, (0 split)
Sepal.L. < 5.45 to the right, agree=0.920, adj=0.76, (0 split)
Sepal.W. < 3.35 to the left, agree=0.833, adj=0.50, (0 split)

54 Tree-based Methods

Node number 2: 100 observations, complexity param=0.44
predicted class=c expected loss=0.5
class counts: 50 0 50
probabilities: 0.500 0.000 0.500
left son=4 (54 obs) right son=5 (46 obs)
Primary splits:

Petal.W. < 1.75 to the left, improve=38.9690, (0 missing)
Petal.L. < 4.75 to the left, improve=37.3540, (0 missing)
Sepal.L. < 6.15 to the left, improve=10.6870, (0 missing)
Sepal.W. < 2.45 to the left, improve= 3.5556, (0 missing)

Surrogate splits:
Petal.L. < 4.75 to the left, agree=0.91, adj=0.804, (0 split)
Sepal.L. < 6.15 to the left, agree=0.73, adj=0.413, (0 split)
Sepal.W. < 2.95 to the left, agree=0.67, adj=0.283, (0 split)

Node number 3: 50 observations
predicted class=s expected loss=0
class counts: 0 50 0
probabilities: 0.000 1.000 0.000

Node number 4: 54 observations
predicted class=c expected loss=0.092593
class counts: 49 0 5
probabilities: 0.907 0.000 0.093

Node number 5: 46 observations
predicted class=v expected loss=0.021739
class counts: 1 0 45
probabilities: 0.022 0.000 0.978

The initial table is that given byprintcp . The summary method gives the top few
(default up to five) splits and their reduction in impurity, plus up to five surrogates,
splits on other variables with a high agreement with the chosen split. In this case
the limit on tree growth is the restriction on the size of child nodes (which by
default must cover at least seven cases).

Two arguments tosummary.rpart can help with the volume of output: as
with print.rpart the argumentcp effectively prunes the tree before analysis,
and the argumentfile allows the output to be redirected to a file (viasink).

Forensic glass

For the forensic glass datasetfgl which has six classes we can use

> set.seed(123)
> fgl.rp <- rpart(type ~ ., fgl, cp = 0.001)
> plotcp(fgl.rp)
> printcp(fgl.rp)

Classification tree:

2.2 Implementation in rpart 55

rpart(formula = type ~ ., data = fgl, cp = 0.001)

Variables actually used in tree construction:
[1] Al Ba Ca Fe Mg Na RI

Root node error: 138/214 = 0.645

CP nsplit rel error xerror xstd
1 0.2065 0 1.000 1.000 0.0507
2 0.0725 2 0.587 0.594 0.0515
3 0.0580 3 0.514 0.587 0.0514
4 0.0362 4 0.457 0.551 0.0507
5 0.0326 5 0.420 0.536 0.0504
6 0.0109 7 0.355 0.478 0.0490
7 0.0010 9 0.333 0.500 0.0495

•

• •
• •

•
•

cp

X
-v

al
 R

el
at

iv
e

E
rr

or
0.

4
0.

6
0.

8
1.

0

Inf 0.12 0.065 0.046 0.034 0.019 0.0033

1 3 4 5 6 8 10
size of tree

Figure 2.12: Plot by plotcp of the rpart object fgl.rp .

> print(fgl.rp, cp=0.02)
node), split, n, loss, yval, (yprob)

* denotes terminal node

1) root 214 138 WinNF (0.33 0.36 0.079 0.061 0.042 0.14)
2) Ba<0.335 185 110 WinNF (0.37 0.41 0.092 0.065 0.049 0.016)
4) Al<1.42 113 50 WinF (0.56 0.27 0.12 0.0088 0.027 0.018)

8) Ca<10.48 101 38 WinF (0.62 0.21 0.13 0 0.02 0.02)
16) RI>=-0.93 85 25 WinF (0.71 0.2 0.071 0 0.012 0.012)

32) Mg<3.865 77 18 WinF (0.77 0.14 0.065 0 0.013 0.013) *
33) Mg>=3.865 8 2 WinNF (0.12 0.75 0.12 0 0 0) *

56 Tree-based Methods

17) RI<-0.93 16 9 Veh (0.19 0.25 0.44 0 0.062 0.062) *
9) Ca>=10.48 12 2 WinNF (0 0.83 0 0.083 0.083 0) *

5) Al>=1.42 72 28 WinNF (0.083 0.61 0.056 0.15 0.083 0.014)
10) Mg>=2.26 52 11 WinNF (0.12 0.79 0.077 0 0.019 0) *
11) Mg<2.26 20 9 Con (0 0.15 0 0.55 0.25 0.05)
22) Na<13.495 12 1 Con (0 0.083 0 0.92 0 0) *
23) Na>=13.495 8 3 Tabl (0 0.25 0 0 0.62 0.12) *

3) Ba>=0.335 29 3 Head (0.034 0.034 0 0.034 0 0.9) *

This suggests (Figure 2.12) a tree of size 8, plotted in Figure 2.13 by

> fgl.rp2 <- prune(fgl.rp, cp = 0.02)
> plot(fgl.rp2, uniform = T); text(fgl.rp2, use.n = T)

|Ba<0.335

Al<1.42

Ca<10.48

RI>-0.93

Mg<3.865

Mg>2.26

Na<13.495

WinF
(59/11/5/0/1/1)

WinNF
(1/6/1/0/0/0)

Veh
(3/4/7/0/1/1)

WinNF
(0/10/0/1/1/0)

WinNF
(6/41/4/0/1/0)

Con
(0/1/0/11/0/0)

Tabl
(0/2/0/0/5/1)

Head
(1/1/0/1/0/26)

Figure 2.13: Plot of therpart object fgl.rp .

Missing data

If the control parametermaxsurrogate is positive (without altering the parameter
usesurrogate), the surrogates are used to handle missing cases both in training
and in prediction (including cross-validation to choose the complexity). Each of
the surrogate splits is examined in turn, and if the variable is available that split is
used to decide whether to send the case left or right. If no surrogate is available or

2.2 Implementation in rpart 57

none can be used, the case is sent with the majority unlessusesurrogate < 2
when it is left at the node.

The defaultna.action during training isna.rpart , which excludes cases
only if the response orall the explanatory variables are missing. (This looks like a
sub-optimal choice, as cases with missing response are useful for finding surrogate
variables.)

When missing values are encountered in considering a split they are ignored
and the probabilities and impurity measures are calculated from the non-missing
values of that variable. Surrogate splits are then used to allocate the missing cases
to the daughter nodes.

Surrogate splits are chosen to match as well as possible the primary split
(viewed as a binary classification), and retained provided they send at least two
cases down each branch, and agree as well as the rule of following the majority.
The measure of agreement is the number of cases that are sent the same way,
possibly after swapping ‘left’ and ‘right’ for the surrogate. (As far as we can tell,
missing values on the surrogate are ignored, so this measure is biased towards
surrogate variables with few missing values.)

58

Chapter 3

Neural Networks

Assertions are often made that neural networks provide a new approach to com-
puting, involving analog (real-valued) rather than digital signals and massively
parallel computation. For example, Haykin (1994, p. 2) offers a definition of a
neural network adapted from Aleksander & Morton (1990):

‘A neural network is a massively parallel distributed processor that has a
natural propensity for storing experiential knowledge and making it available
for use. It resembles the brain in two respects:

1. Knowledge is acquired by the network through a learning process.

2. Interneuron connection strengths known as synaptic weights are used
to store the knowledge.’

In practice the vast majority of neural network applications are run on single-
processor digital computers, although specialist parallel hardware is being devel-
oped (if not yet massively parallel). However, all the other methods we consider
use real signals and can be parallelized to a considerable extent; it is far from
clear that neural network methods will have an advantage as parallel computation
becomes common, although they are frequently so slow that they need a speed-up.

The traditional methods of statistics and pattern recognition are eitherpara-
metric based on a family of models with a small number of parameters, ornon-
parametric in which the models used are totally flexible. One of the impacts of
neural network methods on pattern recognition has been to emphasize the need
in large-scale practical problems for something in between, families of models
with large but not unlimited flexibility given by a large number of parameters.
The two most widely used neural network architectures,multi-layer perceptrons
andradial basis functions (RBFs), provide two such families (and several others
already existed in statistics).

Another difference in emphasis is on‘on-line’ methods, in which the data
are not stored except through the changes the learning algorithm has made. The
theory of such algorithms is studied for a very long stream of examples, but the
practical distinction is less clear, as this stream is made up either by repeatedly
cycling through the training set or by sampling the training examples (with re-
placement). In contrast, methods which use all the examples together are called
‘batch’ methods. It is often forgotten that there are intermediate positions, such
as using small batches chosen from the training set.

3.1 Feed-forward neural networks 59

3.1 Feed-forward neural networks

Feed-forward neural networks provide a flexible way to generalize linear regres-
sion functions. General references are Bishop (1995); Hertz, Krogh & Palmer
(1991) and Ripley (1993, 1996).

We start with the simplest but most common form with one hidden layer as
shown in Figure 3.1. The input units just provide a ‘fan-out’ and distribute the
inputs to the ‘hidden’ units in the second layer. These units sum their inputs, add
a constant (the ‘bias’) and take a fixed functionφh of the result. The output units
are of the same form, but with output functionφo . Thus

yk = φo

(
αk +

∑
h

whk φh

(
αh +

∑
i

wih xi

))
(3.1)

Input Hidden

In
pu

ts

O
ut

pu
ts

w

layer layer(s)

ij

Figure 3.1: A generic feed-forward neural network.

The ‘activation function’φh of the hidden layer units is almost always taken
to be the logistic function

�(z) =
exp(z)

1 + exp(z)

and the output units are linear, logistic or threshold units. (The latter haveφ o(x) =
I(x > 0) .)

The general definition allows more than one hidden layer, and also allows
‘skip-layer’ connections from input to output when we have

yk = φo

αk +
∑
i→k

wikxi +
∑
j→k

wjkφh

(
αj +

∑
i→j

wijxi

) (3.2)

which allows the non-linear units to perturb a linear functional form.
We can eliminate the biasesαi by introducing an input unit 0 which is

permanently at+1 and feeds every other unit. The regression functionf is then

60 Neural Networks

parametrized by the set of weightswij , one for every link in the network (or zero
for links which are absent).

The original biological motivation for such networks stems from McCulloch
& Pitts (1943) who published a seminal model of a neuron as a binary thresholding
device in discrete time, specifically that

ni(t) = H
(∑

j→i

wjinj(t− 1)− θi

)
the sum being over neuronsj connected to neuroni . Here H denotes the
Heaviside or threshold functionH(x) = I(x > 0) , ni(t) is the output of
neuroni at time t , and 0 < wij < 1 are attenuation weights. Thus the effect
is to threshold a weighted sum of the inputs at valueθ i . Real neurons are
now known to be more complicated; they have a graded response rather than
the simple thresholding of the McCulloch–Pitts model, work in continuous time,
and can perform more general non-linear functions of their inputs, for example
logical functions. Nevertheless, the McCulloch–Pitts model has been extremely
influential in the development of artificial neural networks.

Feed-forward neural networks can equally be seen as a way to parametrize a
fairly general non-linear function. Such networksare rather general: Cybenko
(1989), Funahashi (1989), Hornik, Stinchcombe & White (1989) and later authors
have shown that neural networks with linear output units can approximate any
continuous functionf uniformly on compact sets, by increasing the size of the
hidden layer.

The approximation results are non-constructive, and in practice the weights
have to be chosen to minimize some fitting criterion, for example least squares

E =
∑

p

‖tp − yp‖2

where tp is the target andyp the output for thep th example pattern. Other
measures have been proposed, including fory ∈ [0, 1] ‘maximum likelihood’ (in
fact minus the logarithm of a conditional likelihood) or equivalently the Kullback–
Leibler distance, which amount to minimizing

E =
∑

p

∑
k

[
tpk log

tpk
yp

k

+ (1− tpk) log
1− tpk
1− yp

k

]
(3.3)

This is half the deviance for a logistic model with linear predictor given by (3.1)
or (3.2).

One way to ensure thatf is smooth is to restrict the class of estimates, for
example by using a limited number of spline knots. Another way isregularization
in which the fit criterion is altered to

E + λC(f)

with a penaltyC on the ‘roughness’ off . Weight decay, specific to neural
networks, uses as penalty the sum of squares of the weightsw ij . (This only

3.1 Feed-forward neural networks 61

makes sense if the inputs are rescaled to range about[0, 1] to be comparable
with the outputs of internal units.) The use of weight decay seems both to help
the optimization process and to avoid over-fitting. Arguments in Ripley (1993,
1994a) based on a Bayesian interpretation suggestλ ≈ 10−4 –10−2 depending
on the degree of fit expected, for least-squares fitting to variables of range one and
λ ≈ 0.01–0.1 for the entropy fit.

Regression examples

Figure 3.2 showed a simulation of an example taken from Wahba & Wold (1975)
where it illustrates smoothing splines. From now on we consider just 100 points
and assume that the true noise variance,σ2 = (0.2)2 , is known.

Model selection amounts to choosing the number of hidden units. Figure 3.4
shows neural-net fitting with 8 hidden units treated as a non-linear regression
problem, with the standard confidence limits produced by linearization (Bates &
Watts, 1988). Figure 3.5 shows that there are quite a number of different local
minima; all these solutions fit about equally well.

We clearly have over-fitting; there are many ways to avoid this, but weight
decay (figure 3.6) is perhaps the simplest.

We now have two ways to control the fit, the number of hidden units andλ ,
the degree of regularization. The true curve is not exactly representable by our
model, so we have some bias (figure 3.7). Choosing fewer hidden units leads to
more bias, as does adding a regularizer. But it also reduces their variability, so
reduces the mean-square error. Note that the error bands in figure 3.4 are smaller
than those in figure 3.6; this is misleading as the conventional local linearization
used for figure 3.4 is not sufficiently accurate.

Software

Software to fit feed-forward neural networks with a single hidden layer but al-
lowing skip-layer connections (as in (3.2)) is provided in my librarynnet . The
format of the call is to the fitting functionnnet is

nnet(formula, data, weights, size, Wts, linout=F, entropy=F,
softmax=F, skip=F, rang=0.7, decay=0, maxit=100, trace=T)

The non-standard arguments are

size number of units in the hidden layer.
Wts optional initial vector forwij .
linout logical for linear output units.
entropy logical for entropy rather than least-squares fit.
softmax logical for log-probability models.
skip logical for links from inputs to outputs.
rang if Wts is missing, use random weights from

runif(n,-rang, rang) .
decay parameterλ .

62
N

eu
ra

lN
et

w
or

ks

0.0 0.5 1.0 1.5 2.0 2.5 3.0

-1
.5

-1
.0

-0
.5

0.
0

0.
5

Degree = 6

•
•

•

••

•
•

••

•

•
•

•

•

•
•
•
•
•

•

•
••

•

•

•

•

•

•

•

••

•

•

•

•

•

•
•

•

•

••

•
•
••

•

•

•

••

•

••
••

•

••

•

••

•

•

••
•

•

•

•

•
•

•

•

•

•

•

•

•

•

•

•

•
•••
•
•

•

•

•

•
•

••

•

••
•
•
•
•
•
•
•
•

•
•••

•

•

•

•
•

•

••

•

•

•

•

•

•
•

•
•

•

•

•••
•

•

•
•

•
•••

•

•

•

•
•

•

•

••

••

•

•

•
•
•
••
•
••
••
•
•

•

•
•
•

•

•

•

•

•

•

•
••

••

•
•

••
••
•

••

••

•

•

•

•

•

•
•

•

•

•

•

•

•

•

••
•

•
•

•
•

•
•

•
•
•

•

•

•
•

••

•

•

•
•

•

•

•

•

•

•

•••

•

•

••••

•

•

•••

•
•

0.0 0.5 1.0 1.5 2.0 2.5 3.0

-1
.5

-1
.0

-0
.5

0.
0

0.
5

Degree = 10

•
•

•

••

•
•

••

•

•
•

•

•

•
•
•
•
•

•

•
••

•

•

•

•

•

•

•

••

•

•

•

•

•

•
•

•

•

••

•
•
••

•

•

•

••

•

••
••

•

••

•

••

•

•

••
•

•

•

•

•
•

•

•

•

•

•

•

•

•

•

•

•
•••
•
•

•

•

•

•
•

••

•

••
•
•
•
•
•
•
•
•

•
•••

•

•

•

•
•

•

••

•

•

•

•

•

•
•

•
•

•

•

•••
•

•

•
•

•
•••

•

•

•

•
•

•

•

••

••

•

•

•
•
•
••
•
••
••
•
•

•

•
•
•

•

•

•

•

•

•

•
••

••

•
•

••
••
•

••

••

•

•

•

•

•

•
•

•

•

•

•

•

•

•

••
•

•
•

•
•

•
•

•
•
•

•

•

•
•

••

•

•

•
•

•

•

•

•

•

•

•••

•

•

••••

•

•

•••

•
•

0.0 0.5 1.0 1.5 2.0 2.5 3.0

-1
.5

-1
.0

-0
.5

0.
0

0.
5

Degree = 16

•
•

•

••

•
•

••

•

•
•

•

•

•
•
•
•
•

•

•
••

•

•

•

•

•

•

•

••

•

•

•

•

•

•
•

•

•

••

•
•
••

•

•

•

••

•

••
••

•

••

•

••

•

•

••
•

•

•

•

•
•

•

•

•

•

•

•

•

•

•

•

•
•••
•
•

•

•

•

•
•

••

•

••
•
•
•
•
•
•
•
•

•
•••

•

•

•

•
•

•

••

•

•

•

•

•

•
•

•
•

•

•

•••
•

•

•
•

•
•••

•

•

•

•
•

•

•

••

••

•

•

•
•
•
••
•
••
••
•
•

•

•
•
•

•

•

•

•

•

•

•
••

••

•
•

••
••
•

••

••

•

•

•

•

•

•
•

•

•

•

•

•

•

•

••
•

•
•

•
•

•
•

•
•
•

•

•

•
•

••

•

•

•
•

•

•

•

•

•

•

•••

•

•

••••

•

•

•••

•
•

(a) Polynomial fits

0.0 0.5 1.0 1.5 2.0 2.5 3.0

-1
.5

-1
.0

-0
.5

0.
0

0.
5

2 hidden units

•
•

•

••

•
•

••

•

•
•

•

•

•
•
•
•
•

•

•
••

•

•

•

•

•

•

•

••

•

•

•

•

•

•
•

•

•

••

•
•
••

•

•

•

••

•

••
••

•

••

•

••

•

•

••
•

•

•

•

•
•

•

•

•

•

•

•

•

•

•

•

•
•••
•
•

•

•

•

•
•

••

•

••
•
•
•
•
•
•
•
•

•
•••

•

•

•

•
•

•

••

•

•

•

•

•

•
•

•
•

•

•

•••
•

•

•
•

•
•••

•

•

•

•
•

•

•

••

••

•

•

•
•
•
••
•
••
••
•
•

•

•
•
•

•

•

•

•

•

•

•
••

••

•
•

••
••
•

••

••

•

•

•

•

•

•
•

•

•

•

•

•

•

•

••
•

•
•

•
•

•
•

•
•
•

•

•

•
•

••

•

•

•
•

•

•

•

•

•

•

•••

•

•

••••

•

•

•••

•
•

0.0 0.5 1.0 1.5 2.0 2.5 3.0

-1
.5

-1
.0

-0
.5

0.
0

0.
5

4 hidden units

•
•

•

••

•
•

••

•

•
•

•

•

•
•
•
•
•

•

•
••

•

•

•

•

•

•

•

••

•

•

•

•

•

•
•

•

•

••

•
•
••

•

•

•

••

•

••
••

•

••

•

••

•

•

••
•

•

•

•

•
•

•

•

•

•

•

•

•

•

•

•

•
•••
•
•

•

•

•

•
•

••

•

••
•
•
•
•
•
•
•
•

•
•••

•

•

•

•
•

•

••

•

•

•

•

•

•
•

•
•

•

•

•••
•

•

•
•

•
•••

•

•

•

•
•

•

•

••

••

•

•

•
•
•
••
•
••
••
•
•

•

•
•
•

•

•

•

•

•

•

•
••

••

•
•

••
••
•

••

••

•

•

•

•

•

•
•

•

•

•

•

•

•

•

••
•

•
•

•
•

•
•

•
•
•

•

•

•
•

••

•

•

•
•

•

•

•

•

•

•

•••

•

•

••••

•

•

•••

•
•

0.0 0.5 1.0 1.5 2.0 2.5 3.0

-1
.5

-1
.0

-0
.5

0.
0

0.
5

8 hidden units

•
•

•

••

•
•

••

•

•
•

•

•

•
•
•
•
•

•

•
••

•

•

•

•

•

•

•

••

•

•

•

•

•

•
•

•

•

••

•
•
••

•

•

•

••

•

••
••

•

••

•

••

•

•

••
•

•

•

•

•
•

•

•

•

•

•

•

•

•

•

•

•
•••
•
•

•

•

•

•
•

••

•

••
•
•
•
•
•
•
•
•

•
•••

•

•

•

•
•

•

••

•

•

•

•

•

•
•

•
•

•

•

•••
•

•

•
•

•
•••

•

•

•

•
•

•

•

••

••

•

•

•
•
•
••
•
••
••
•
•

•

•
•
•

•

•

•

•

•

•

•
••

••

•
•

••
••
•

••

••

•

•

•

•

•

•
•

•

•

•

•

•

•

•

••
•

•
•

•
•

•
•

•
•
•

•

•

•
•

••

•

•

•
•

•

•

•

•

•

•

•••

•

•

••••

•

•

•••

•
•

(b) FFNN fits

0.0 0.5 1.0 1.5 2.0 2.5 3.0

-1
.5

-1
.0

-0
.5

0.
0

0.
5

2 hidden units

•
•

•

••

•
•

••

•

•
•

•

•

•
•
•
•
•

•

•
••

•

•

•

•

•

•

•

••

•

•

•

•

•

•
•

•

•

••

•
•
••

•

•

•

••

•

••
••

•

••

•

••

•

•

••
•

•

•

•

•
•

•

•

•

•

•

•

•

•

•

•

•
•••
•
•

•

•

•

•
•

••

•

••
•
•
•
•
•
•
•
•

•
•••

•

•

•

•
•

•

••

•

•

•

•

•

•
•

•
•

•

•

•••
•

•

•
•

•
•••

•

•

•

•
•

•

•

••

••

•

•

•
•
•
••
•
••
••
•
•

•

•
•
•

•

•

•

•

•

•

•
••

••

•
•

••
••
•

••

••

•

•

•

•

•

•
•

•

•

•

•

•

•

•

••
•

•
•

•
•

•
•

•
•
•

•

•

•
•

••

•

•

•
•

•

•

•

•

•

•

•••

•

•

••••

•

•

•••

•
•

0.0 0.5 1.0 1.5 2.0 2.5 3.0

-1
.5

-1
.0

-0
.5

0.
0

0.
5

4 hidden units

•
•

•

••

•
•

••

•

•
•

•

•

•
•
•
•
•

•

•
••

•

•

•

•

•

•

•

••

•

•

•

•

•

•
•

•

•

••

•
•
••

•

•

•

••

•

••
••

•

••

•

••

•

•

••
•

•

•

•

•
•

•

•

•

•

•

•

•

•

•

•

•
•••
•
•

•

•

•

•
•

••

•

••
•
•
•
•
•
•
•
•

•
•••

•

•

•

•
•

•

••

•

•

•

•

•

•
•

•
•

•

•

•••
•

•

•
•

•
•••

•

•

•

•
•

•

•

••

••

•

•

•
•
•
••
•
••
••
•
•

•

•
•
•

•

•

•

•

•

•

•
••

••

•
•

••
••
•

••

••

•

•

•

•

•

•
•

•

•

•

•

•

•

•

••
•

•
•

•
•

•
•

•
•
•

•

•

•
•

••

•

•

•
•

•

•

•

•

•

•

•••

•

•

••••

•

•

•••

•
•

0.0 0.5 1.0 1.5 2.0 2.5 3.0

-1
.5

-1
.0

-0
.5

0.
0

0.
5

8 hidden units

•
•

•

••

•
•

••

•

•
•

•

•

•
•
•
•
•

•

•
••

•

•

•

•

•

•

•

••

•

•

•

•

•

•
•

•

•

••

•
•
••

•

•

•

••

•

••
••

•

••

•

••

•

•

••
•

•

•

•

•
•

•

•

•

•

•

•

•

•

•

•

•
•••
•
•

•

•

•

•
•

••

•

••
•
•
•
•
•
•
•
•

•
•••

•

•

•

•
•

•

••

•

•

•

•

•

•
•

•
•

•

•

•••
•

•

•
•

•
•••

•

•

•

•
•

•

•

••

••

•

•

•
•
•
••
•
••
••
•
•

•

•
•
•

•

•

•

•

•

•

•
••

••

•
•

••
••
•

••

••

•

•

•

•

•

•
•

•

•

•

•

•

•

•

••
•

•
•

•
•

•
•

•
•
•

•

•

•
•

••

•

•

•
•

•

•

•

•

•

•

•••

•

•

••••

•

•

•••

•
•

(c) More FFNN fits

Figure 3.2: Curve-fitting by polynomials and by feed-forward neural networks to 250 data points.

3.1 Feed-forward neural networks 63

0.0 0.5 1.0 1.5 2.0 2.5 3.0

-1
.5

-1
.0

-0
.5

0.
0

0.
5

1.
0

•

•

•

•
•

•

•
••

••

••

•
••

•

•••

•

•
••

•

•

•

•

•

•
•

••

•

•

•
•
•

•

•

•

•
•••

••

•••
••

•
•

•

•

•

•

•

•
•

•

•

•

•

•
•

•
•••

••
•

•

•

•

•

•

•

••
•

•

•
•
•

•

•

•
•
•
•
•
•

•

•

•
•
•

Figure 3.3: 100 data points from a curve-fitting problem, with the true curve.

0.0 0.5 1.0 1.5 2.0 2.5 3.0

-1
.5

-1
.0

-0
.5

0.
0

0.
5

1.
0

Figure 3.4: Curve fitted by 1-8-1 neural network, with±2 standard error bands (computed
as a non-linear regression problem) and true curve (dotted).

maxit maximum of iterations for the optimizer.
Hess should be Hessian matrix at the solution be returned?
trace logical for output from the optimizer. Very reassuring!

64 Neural Networks

0.0 0.5 1.0 1.5 2.0 2.5 3.0

-1
.5

-1
.0

-0
.5

0.
0

0.
5

1.
0

Figure 3.5: 1-8-1 neural networks with 25 different sets of starting values for the optimiza-
tion.

There arepredict , print and summary methods for neural networks,
and a functionnnet.Hess to compute the Hessian with respect to the weight
parameters and so check if a secure local minimum has been found. For ourrock
example we have

> attach(rock)
> area1 <- area/10000; peri1 <- peri/10000
> rock1 <- data.frame(perm, area=area1, peri=peri1, shape)
> rock.nn <- nnet(log(perm) ~ area + peri + shape, data=rock1,

size=3, decay=1e-3, linout=T, skip=T, maxit=1000, Hess=T)
weights: 19
initial value 1092.816748
iter 10 value 32.272454

....
final value 14.069537
converged
> summary(rock.nn)
a 3-3-1 network with 19 weights
options were - skip-layer connections linear output units

decay=0.001
b->h1 i1->h1 i2->h1 i3->h1
1.21 8.74 -15.00 -3.45
b->h2 i1->h2 i2->h2 i3->h2
9.50 -4.34 -12.66 2.48
b->h3 i1->h3 i2->h3 i3->h3
6.20 -7.63 -10.97 3.12
b->o h1->o h2->o h3->o i1->o i2->o i3->o

3.1 Feed-forward neural networks 65

0.0 0.5 1.0 1.5 2.0 2.5 3.0

-1
.5

-1
.0

-0
.5

0.
0

0.
5

1.
0

0.0 0.5 1.0 1.5 2.0 2.5 3.0

-1
.5

-1
.0

-0
.5

0.
0

0.
5

1.
0

Figure 3.6: The effect of adding weight decay. Curves fitted by 1-8-1 neural network, with
±2 standard error bands and true curveλ = 10−3 (top) andλ = 0.1 (bottom).

7.74 20.17 -7.68 -7.02 -12.95 -15.19 6.92
> sum((log(perm) - predict(rock.nn))^2)
[1] 12.231
> detach(rock)
> eigen(rock.nn@Hess, T)$values # $ in S+2000
[1] 9.1533e+02 1.6346e+02 1.3521e+02 3.0368e+01 7.3914e+00
[6] 3.4012e+00 2.2879e+00 1.0917e+00 3.9823e-01 2.7867e-01

66 Neural Networks

0.0 0.5 1.0 1.5 2.0 2.5 3.0

-1
.5

-1
.0

-0
.5

0.
0

0.
5

1.
0

Figure 3.7: Fits to thetrue curve with 2 and 3 hidden units, and 8 units withλ = 10−3 .

[11] 1.9953e-01 7.5159e-02 3.2513e-02 2.5950e-02 1.9077e-02
[16] 1.0834e-02 6.8937e-03 3.7671e-03 2.6974e-03

(There are several solutions and a random starting point, so your results may well
differ.) The quoted values include the weight decay term. The eigenvalues of the
Hessian suggest that a secure local minimum has been achieved. In the summary
the b refers to the ‘bias’ unit (input unit 0), andi , h ando to input, hidden and
bias units.

To view the fitted surface for therock dataset we can use

Xp <- expand.grid(area=seq(0.1,1.2,0.05),
peri=seq(0,0.5,0.02), shape=0.2)

rock.grid <- cbind(Xp,fit=predict(rock.nn, Xp))
trellis.device()
wireframe(fit ~ area + peri, rock.grid, screen=list(z=160,x=-60),

aspect=c(1,0.5), drape=T)

An example: the cpus data

To use thennet software effectively it is essential to scale the problem. A
preliminary run with a linear model demonstrates that we get essentially the same
results as the conventional approach to linear models.

cpus0 <- cpus[, 2:8]
for(i in 1:3) cpus0[,i] <- log10(cpus0[,i])
set.seed(123); samp <- sample(1:209, 100)
attach(cpus0)

3.1 Feed-forward neural networks 67

cpus1 <- data.frame(syct=syct-2, mmin=mmin-3, mmax=mmax-4,
cach=cach/256, chmin=chmin/100, chmax=chmax/100, perf=perf)
detach()

test <- function(fit)
sqrt(sum((log10(cpus1[-samp, "perf"]) -

predict(fit, cpus1[-samp,]))^2)/109)
cpus.nn1 <- nnet(log10(perf) ~ ., data=cpus1[samp,], linout=T,

skip=T, size=0)
test(cpus.nn1)
[1] 0.21295

We now consider adding non-linear terms to the model.

cpus.nn2 <- nnet(log10(perf) ~ ., data=cpus1[samp,], linout=T,
skip=T, size=4, decay=0.01, maxit=1000)

final value 2.369581
test(cpus.nn2)
[1] 0.21132
cpus.nn3 <- nnet(log10(perf) ~ ., data=cpus1[samp,], linout=T,

skip=T, size=10, decay=0.01, maxit=1000)
final value 2.338387
test(cpus.nn3)
[1] 0.21068
cpus.nn4 <- nnet(log10(perf) ~ ., data=cpus1[samp,], linout=T,

skip=T, size=25, decay=0.01, maxit=1000)
final value 2.339850
test(cpus.nn4)
[1] 0.23

This demonstrates that the degree of fit is almost completely controlled by the
amount of weight decay rather than the number of hidden units (provided there
are sufficient). We have to be able to choose the amount of weight decaywithout
looking at the test set. To do so we use cross-validation and by averaging across
multiple fits (see later).

CVnn.cpus <- function(formula, data=cpus1[samp,],
size = c(0, 4, 4, 10, 10),
lambda = c(0, rep(c(0.003, 0.01), 2)),
nreps = 5, nifold = 10, ...)

{
CVnn1 <- function(formula, data, nreps=1, ri, ...)
{
truth <- log10(data$perf)
res <- numeric(length(truth))
cat(" fold")
for (i in sort(unique(ri))) {

cat(" ", i, sep="")
for(rep in 1:nreps) {
learn <- nnet(formula, data[ri !=i,], trace=F, ...)
res[ri == i] <- res[ri == i] +

68 Neural Networks

predict(learn, data[ri == i,])
}

}
cat("\n")
sum((truth - res/nreps)^2)

}
choice <- numeric(length(lambda))
ri <- sample(nifold, nrow(data), replace=T)
for(j in seq(along=lambda)) {
cat(" size =", size[j], "decay =", lambda[j], "\n")
choice[j] <- CVnn1(formula, data, nreps=nreps, ri=ri,

size=size[j], decay=lambda[j], ...)
}

cbind(size=size, decay=lambda, fit=sqrt(choice/100))
}
CVnn.cpus(log10(perf) ~ ., data=cpus1[samp,],

linout=T, skip=T, maxit=1000)
size decay fit

[1,] 0 0.000 0.19746
[2,] 4 0.003 0.23297
[3,] 4 0.010 0.20404
[4,] 10 0.003 0.22803
[5,] 10 0.010 0.20130

This took around 6 Mb and 15 minutes on the PC. The cross-validated results
seem rather insensitive to the choice of model. The non-linearity does not seem
justified.

3.2 Multiple logistic regression and discrimination

The functionmultinom is a wrapper function that usesnnet to fit a multiple
logistic regression.

The model is specified by a formula. The response can be either a matrix
giving the number of occurrences of each class at that particularx value, or (more
commonly) a factor giving the observed class. The right-hand side specifies the
design matrix in the usual way. If the responseY is a factor with just two levels,
the model fitted is

logit p(Y = 1 |X = x) = βT x

This is a logistic regression, and is fitted as a neural network with skip-layer
connections and no units in the hidden layer. There is a potential problem in that
both the bias unit and an intercept inx may provide an intercept term: this is
avoided by constraining the bias coefficient to be zero. The entropy measure of fit
is used; this is equivalent to maximizing the likelihood.

For a factor response with more that two levels or a matrix response the model
fitted is

log
p(Y = c |X = x)
p(Y = 1 |X = x)

= βT
c x (3.4)

3.3 Neural networks in classification 69

where β1 ≡ 0 . Once again the parameters are chosen by maximum likelihood.
Approximate standard errors of the coefficients are found forvcov.multinom
andsummary.multinom by inverting the Hessian of the (negative) log-likelihood
at the maximum likelihood estimator.

It is possible to add weight decay by setting a non-zero value fordecay
on the call tomultinom . Beware that because the coefficients for class one
are constrained to be zero, this has a rather asymmetric effect and that the quoted
standard errors are no longer appropriate. Using weight decay has an effect closely
analogous to ridge regression, and will often produce better predictions than using
stepwise selection of the variables.

In all these problems the measure of fit is convex, so there is a unique global
minimum. This is attained at a single point unless there is collinearity in the
explanatory variables or the minimum occurs at infinity (which can occur if the
classes are partially or completely linearly separable).

3.3 Neural networks in classification

A simple example

We will illustrate these methods by a small example taken from Aitchison & Dun-
smore (1975, Tables 11.1–3) and used for the same purpose by Ripley (1996).
The data are on diagnostic tests on patients with Cushing’s syndrome, a hyper-
sensitive disorder associated with over-secretion of cortisol by the adrenal gland.
This dataset has three recognized types of the syndrome represented asa, b, c.
(These encode ‘adenoma’, ‘bilateral hyperplasia’ and ‘carcinoma’, and represent
the underlying cause of over-secretion. This can only be determined histopatho-
logically.) The observations are urinary excretion rates (mg/24h) of the steroid
metabolites tetrahydrocortisone and pregnanetriol,and are considered on log scale.

There are six patients of unknown type (markedu), one of whom was later
found to be of a fourth type, and another was measured faultily.

Figure 3.8 shows the classifications produced bylda and the various options
of quadratic discriminant analysis. This was produced by

predplot <- function(object, main="", len=100, ...)
{

plot(Cushings[,1], Cushings[,2], log="xy", type="n",
xlab="Tetrahydrocortisone", ylab = "Pregnanetriol", main)

text(Cushings[1:21,1], Cushings[1:21,2],
as.character(tp))

text(Cushings[22:27,1], Cushings[22:27,2], "u")
xp <- seq(0.6, 4.0, length=len)
yp <- seq(-3.25, 2.45, length=len)
cushT <- expand.grid(Tetrahydrocortisone=xp,
Pregnanetriol=yp)

Z <- predict(object, cushT, ...); zp <- unclass(Z$class)
zp <- Z$post[,3] - pmax(Z$post[,2], Z$post[,1])

70 Neural Networks

LDA

Tetrahydrocortisone

P
re

gn
an

et
rio

l

5 10 50

0.
05

0.
50

5.
00

a

a

a

a

a

a

b

b

b
b

b

b

b

bb

b

cc

c c

c

u

u

u

u u

u

QDA

Tetrahydrocortisone

P
re

gn
an

et
rio

l

5 10 50

0.
05

0.
50

5.
00

a

a

a

a

a

a

b

b

b
b

b

b

b

bb

b

cc

c c

c

u

u

u

u u

u

QDA (predictive)

Tetrahydrocortisone

P
re

gn
an

et
rio

l

5 10 50

0.
05

0.
50

5.
00

a

a

a

a

a

a

b

b

b
b

b

b

b

bb

b

cc

c c

c

u

u

u

u u

u

QDA (debiased)

Tetrahydrocortisone

P
re

gn
an

et
rio

l

5 10 50

0.
05

0.
50

5.
00

a

a

a

a

a

a

b

b

b
b

b

b

b

bb

b

cc

c c

c

u

u

u

u u

u

Figure 3.8: Linear and quadratic discriminant analysis applied to the Cushing’s syndrome
data.

contour(xp/log(10), yp/log(10), matrix(zp, len),
add=T, levels=0, labex=0)

zp <- Z$post[,1] - pmax(Z$post[,2], Z$post[,3])
contour(xp/log(10), yp/log(10), matrix(zp, len),
add=T, levels=0, labex=0)

invisible()
}
cush <- log(as.matrix(Cushings[, -3]))
tp <- factor(Cushings$Type[1:21])
cush.lda <- lda(cush[1:21,], tp); predplot(cush.lda, "LDA")
cush.qda <- qda(cush[1:21,], tp); predplot(cush.qda, "QDA")

We can contrast these with logistic discrimination performed by

library(nnet)
Cf <- data.frame(tp = tp,

Tetrahydrocortisone = log(Cushings[1:21,1]),
Pregnanetriol = log(Cushings[1:21,2]))

cush.multinom <- multinom(tp ~ Tetrahydrocortisone
+ Pregnanetriol, Cf, maxit=250)

xp <- seq(0.6, 4.0, length=100); np <- length(xp)
yp <- seq(-3.25, 2.45, length=100)
cushT <- expand.grid(Tetrahydrocortisone=xp,

Pregnanetriol=yp)
Z <- predict(cush.multinom, cushT, type="probs")

3.3 Neural networks in classification 71

plot(Cushings[,1], Cushings[,2], log="xy", type="n",
xlab="Tetrahydrocortisone", ylab = "Pregnanetriol")

text(Cushings[1:21,1], Cushings[1:21,2],
labels = as.character(tp))

text(Cushings[22:27,1], Cushings[22:27,2], labels = "u")
zp <- Z[,3] - pmax(Z[,2], Z[,1])
contour(xp/log(10), yp/log(10), matrix(zp, np),

add=T, levels=0, labex=0)
zp <- Z[,1] - pmax(Z[,2], Z[,3])
contour(xp/log(10), yp/log(10), matrix(zp, np),

add=T, levels=0, labex=0)

When, as here, the classes have quite different variance matrices, linear and logistic
discrimination can give quite different answers (compare Figures 3.8 and 3.9).

Tetrahydrocortisone

P
re

gn
an

et
rio

l

5 10 50

0.
05

0.
50

5.
00

a

a

a

a

a

a

b

b

b
b

b

b

b

bb

b

cc

c c

c

u

u

u

u u

u

Tetrahydrocortisone

P
re

gn
an

et
rio

l

1 2 3 4

-3
-2

-1
0

1
2

a

a

a

a

a

a

b

b

b
b

b

b

b

bb

b

cc

c c

c

u

u

u

u u

ua
b

c

Figure 3.9: Logistic regression and classification trees applied to the Cushing’s syndrome
data. The classification trees are discussed on page 71.

Neural networks provide a flexible non-linear extension of multiple logistic
regression, as we saw in Section 3.1. We can consider them for this example by
the following code.

library(nnet)
cush <- cush[1:21,]; tpi <- class.ind(tp)
par(mfrow=c(2,2))
pltnn(main = "Size = 2")
set.seed(1); plt.bndry(size=2, col=2)
set.seed(3); plt.bndry(size=2, col=3); plt.bndry(size=2, col=4)

pltnn(main = "Size = 2, lambda = 0.001")
set.seed(1); plt.bndry(size=2, decay=0.001, col=2)
set.seed(2); plt.bndry(size=0, decay=0.001, col=4)

pltnn(main = "Size = 2, lambda = 0.01")
set.seed(1); plt.bndry(size=2, decay=0.01, col=2)
set.seed(2); plt.bndry(size=2, decay=0.01, col=4)

pltnn(main = "Size = 5, 20 lambda = 0.01")
set.seed(2); plt.bndry(size=5, decay=0.01, col=1)
set.seed(2); plt.bndry(size=20, decay=0.01, col=2)

72 Neural Networks

Size = 2

Tetrahydrocortisone

P
re

gn
an

et
rio

l

5 10 50

0.
05

0.
50

5.
00

a

a

a

a

a

a

b

b

b
b

b

b

b

bb

b

cc

c c

c

u

u

u

u u

u

Size = 2, lambda = 0.001

Tetrahydrocortisone

P
re

gn
an

et
rio

l

5 10 50

0.
05

0.
50

5.
00

a

a

a

a

a

a

b

b

b
b

b

b

b

bb

b

cc

c c

c

u

u

u

u u

u

Size = 2, lambda = 0.01

Tetrahydrocortisone

P
re

gn
an

et
rio

l

5 10 50

0.
05

0.
50

5.
00

a

a

a

a

a

a

b

b

b
b

b

b

b

bb

b

cc

c c

c

u

u

u

u u

u

Size = 5, 20 lambda = 0.01

Tetrahydrocortisone

P
re

gn
an

et
rio

l

5 10 50

0.
05

0.
50

5.
00

a

a

a

a

a

a

b

b

b
b

b

b

b

bb

b

cc

c c

c

u

u

u

u u

u

Figure 3.10: Neural networks applied to the Cushing’s syndrome data. Each panel shows
the fits from two or three local maxima of the (penalized) log-likelihood.

The results are shown in Figure 3.10. We see that in all cases there are multiple
local maxima of the likelihood.

Many local maxima

Tetrahydrocortisone

P
re

gn
an

et
rio

l

5 10 50

0.
05

0.
50

5.
00

a

a

a

a

a

a

b

b

b
b

b

b

b

bb

b

cc

c c

c

u

u

u

u u

u

Averaged

Tetrahydrocortisone

P
re

gn
an

et
rio

l

5 10 50

0.
05

0.
50

5.
00

a

a

a

a

a

a

b

b

b
b

b

b

b

bb

b

cc

c c

c

u

u

u

u u

u

Figure 3.11: Neural networks applied to the Cushing’s syndrome data. The right panel
shows many local minima and their average (as the thick line).

Once we have a penalty, the choice of the number of hidden units is often not
critical (see Figure 3.10). The spirit of the predictive approach is to average the
predictedp(c |x) over the local maxima. A simple average will often suffice:

functions pltnn and b1 are in the scripts
pltnn("Many local maxima")
Z <- matrix(0, nrow(cushT), ncol(tpi))

3.3 Neural networks in classification 73

for(iter in 1:20) {
set.seed(iter)
cush.nn <- nnet(cush, tpi, skip=T, softmax=T, size=3,

decay=0.01, maxit=1000, trace=F)
Z <- Z + predict(cush.nn, cushT)
change @ to $ for S+2000
cat("final value", format(round(cush.nn@value,3)), "\n")
b1(predict(cush.nn, cushT), col=2, lwd=0.5)

}
pltnn(main = "Averaged")
b1(Z, lwd=3)

but more sophisticated integration can be done (Ripley, 1996, §5.5). Note that
there are two quite different types of local maxima occurring here, and some local
maxima occur several times (up to convergence tolerances).

Forensic glass

The forensic glass datasetfgl has 214 points from six classes with nine measure-
ments, and provides a fairly stiff test of classification methods. The types of glass
do not form compact well-separated groupings, and the marginal distributions are
far from normal. There are some small classes (with 9, 13 and 17 examples), so
we cannot use quadratic discriminant analysis.

We will assess their performance by 10-fold cross-validation, using the same
random partition for all the methods. Logistic regression provides a suitable
benchmark (as is often the case).

set.seed(123); rand <- sample (10, 214, replace=T)
con<- function(x,y)
{

tab <- table(x,y)
print(tab)
diag(tab) <- 0
cat("error rate = ", round(100*sum(tab)/length(x),2),"%\n")
invisible()

}
CVtest <- function(fitfn, predfn, ...)
{

res <- fgl$type
for (i in sort(unique(rand))) {

cat("fold ",i,"\n", sep="")
learn <- fitfn(rand != i, ...)
res[rand == i] <- predfn(learn, rand==i)

}
res

}
res.multinom <- CVtest(

function(x, ...) multinom(type ~ ., fgl[x,], ...),
function(obj, x) predict(obj, fgl[x,],type="class"),

74 Neural Networks

maxit=1000, trace=F)

> con(fgl$type, res.multinom)
WinF WinNF Veh Con Tabl Head

WinF 44 20 4 0 2 0
WinNF 20 50 0 3 2 1

Veh 9 5 3 0 0 0
Con 0 4 0 8 0 1
Tabl 0 2 0 0 4 3
Head 1 1 0 3 1 23

error rate = 38.79 %

We will write some general functions for testing neural network models byV
-fold cross-validation. First we re-scale the dataset so the inputs have range[0, 1] .

fgl1 <- lapply(fgl[, 1:9], function(x)
{r <- range(x); (x-r[1])/diff(r)})

fgl1 <- data.frame(fgl1, type=fgl$type)

Then we can experiment with multiple logistic regressions.

res.multinom <- CVtest(
function(x, ...) multinom(type ~ ., fgl1[x,], ...),
function(obj, x) predict(obj, fgl1[x,],type="class"),
maxit=1000, trace=F)

con(fgl$type, res.multinom)

res.mult2 <- CVtest(
function(x, ...) multinom(type ~ ., fgl1[x,], ...),
function(obj, x) predict(obj, fgl1[x,], type="class"),
maxit=1000, trace=F, decay=1e-3)

> con(fgl$type, res.mult2)
....

error rate = 36.45 %

It is straightforward to fit a fully specified neural network in the same way.
We will, however, want to average across several fits and to choose the number
of hidden units and the amount of weight decay by an inner cross-validation. To
do so we wrote fairly general function that can easily be used or modified to suit
other problems.

CVnn <- function(nreps=1, ...)
{

res <- matrix(0, 214, 6)
dimnames(res) <- list(NULL, levels(fgl$type))
for (i in sort(unique(rand))) {
cat("fold ",i,"\n", sep="")
for(rep in 1:nreps) {

learn <- nnet(type ~ ., fgl1[rand !=i,], trace=F, ...)
res[rand == i,] <- res[rand == i,] +
predict(learn, fgl1[rand==i,])

3.3 Neural networks in classification 75

}
}
max.col(res/nreps)

}
> res.nn <- CVnn(maxit=1000, size=6, decay=0.01)
> con(fgl$type, res.nn)

....
error rate = 29.44 %

CVnn2 <- function(formula, data,
size = rep(6,2), lambda = c(0.001, 0.01),
nreps = 1, nifold = 5, verbose = 99, ...)

{
CVnn1 <- function(formula, data, nreps=1, ri, verbose, ...)
{
truth <- data[,deparse(formula[[2]])]
res <- matrix(0, nrow(data), length(levels(truth)))
if(verbose > 20) cat(" inner fold")
for (i in sort(unique(ri))) {

if(verbose > 20) cat(" ", i, sep="")
for(rep in 1:nreps) {
learn <- nnet(formula, data[ri !=i,], trace=F, ...)
res[ri == i,] <- res[ri == i,] +

predict(learn, data[ri == i,])
}

}
if(verbose > 20) cat("\n")
sum(unclass(truth) != max.col(res/nreps))

}
truth <- data[,deparse(formula[[2]])]
res <- matrix(0, nrow(data), length(levels(truth)))
choice <- numeric(length(lambda))
for (i in sort(unique(rand))) {
if(verbose > 0) cat("fold ", i,"\n", sep="")
ri <- sample(nifold, sum(rand!=i), replace=T)
for(j in seq(along=lambda)) {

if(verbose > 10)
cat(" size =", size[j], "decay =", lambda[j], "\n")

choice[j] <- CVnn1(formula, data[rand != i,], nreps=nreps,
ri=ri, size=size[j], decay=lambda[j],
verbose=verbose, ...)

}
decay <- lambda[which.is.max(-choice)]
csize <- size[which.is.max(-choice)]
if(verbose > 5) cat(" #errors:", choice, " ")
if(verbose > 1) cat("chosen size = ", csize,

" decay = ", decay, "\n", sep="")
for(rep in 1:nreps) {

learn <- nnet(formula, data[rand != i,], trace=F,
size=csize, decay=decay, ...)

76 Neural Networks

res[rand == i,] <- res[rand == i,] +
predict(learn, data[rand == i,])

}
}
factor(levels(truth)[max.col(res/nreps)],

levels = levels(truth))
}
> res.nn2 <- CVnn2(type ~ ., fgl1, skip=T, maxit=500, nreps=10)
> con(fgl$type, res.nn2)

WinF WinNF Veh Con Tabl Head
WinF 57 10 3 0 0 0

WinNF 16 51 3 4 2 0
Veh 8 3 6 0 0 0
Con 0 3 0 9 0 1
Tabl 0 1 0 1 5 2
Head 0 3 0 1 0 25

error rate = 28.5 %

This fits a neural network 1000 times, and so is fairly slow (hours).
This code chooses between neural nets on the basis of their cross-validated

error rate. An alternative is to use logarithmic scoring, which is equivalent to
finding the deviance on the validation set. Rather than count 0 if the predicted
class is correct and 1 otherwise, we count− log p(c |x) for the true classc . We
can easily code this variant by replacing the line

sum(unclass(truth) != max.col(res/nreps))

by

sum(-log(res[cbind(seq(along=truth),unclass(truth))]/nreps))

in CVnn2 .

3.4 A look at support vector machines

Support vector machines (SVMs) are the latest set of methods within this field.
They have been promoted enthusiastically, but with little respect to the selection
effects of choosing the test problem and the member of the large class of classifiers
to present. The original ideas are in Boseret al. (1992); Cortes & Vapnik (1995);
Vapnik (1995, 1998); the books by Cristianini & Shawe-Taylor (2000) and Hastie
et al. (2001, §4.5, 12.2, 12.3) present the underlying theory.

The method forg = 2 classes is fairly simple to describe. Logistic regression
will fit exactly in separable cases where there is a hyperplane that has all class-one
points on one side and all class-two points on the other. It would be a coincidence
for there to be only one such hyperplane, and fitting a logistic regression will
tend to fit a decision surfacep(2 |x) = 0.5 in the middle of the ‘gap’ between
the groups. Support vector methods attempt directly to find a hyperplane in the
middle of the gap, that is with maximal margin (the distance from the hyperplane

3.4 A look at support vector machines 77

to the nearest point). This is quadratic programming problem that can be solved
by standard methods. Such a hyperplane hassupport vectors, data points that are
exactly the margin distance away from the hyperplane. It will typically be a very
good classifier.

The problem is that usually no separating hyperplane will exist. This difficulty
is tackled in two ways. First, we can allow some points to be on the wrong side
of their margin (and for some on the wrong side of the hyperplane) subject to
a constraint on the total of the ‘mis-fit’ distances being less than some constant,
with Lagrange multiplierC > 0 . This is still a quadratic programming problem,
because of the rather arbitrary use of sum of distances.

Second, the set of variables is expanded greatly by taking non-linear functions
of the original set of variables. Thus rather than seeking a classifying hyperplane
f(x) = xT β + β0 = 0 , we seekf(x) = h(x)T β + β0 = 0 for a vector of
M 	 p functionshi . Then finding a optimal separating hyperplane is equivalent
to solving

min
β0,β

n∑
i=1

[1− yif(xi)]+ +
1

2C
‖β‖2

whereyi = ±1 for the two classes. This is yet another penalized fitting problem,
not dissimilar (Hastieet al., 2001, p. 380) to a logistic regression with weight
decay (which can be fitted bymultinom). The claimed advantage of SVMs is
that because we only have to find the support vectors, the family of functionsh
can be large, even infinite-dimensional.

There is an implementation of SVMs forR in function svm in package
e1071 .1 The default values do not do well, but after some tuning for thecrabs
data we can get a good discriminant with 21 support vectors. Herecost is C
and gamma is a coefficient of the kernel used to formh .

> # R: library(e1071)
> # S: library(libsvm)
> crabs.svm <- svm(crabs$sp ~ ., data = lcrabs, cost = 100,

gamma = 1)
> table(true = crabs$sp, predicted = predict(crabs.svm))

predicted
true B O
B 100 0
O 0 100

We can try a 10-fold cross-validation by

> svm(crabs$sp ~ ., data = lcrabs, cost = 100, gamma = 1,
cross = 10)

....
Total Accuracy: 100
Single Accuracies:
100 100 100 100 100 100 100 100 100 100

1 Code by David Meyer based on C++ code by Chih-Chung Chang and Chih-Jen Lin. A port to
S-PLUS is available for machines with a C++ compiler.

78 Neural Networks

The extension tog > 2 classes is much less elegant, and several ideas have
been used. Thesvm function uses one attributed to Knerret al. (1990) in which
classifiers are built comparing each pair of classes, and the majority vote amongst
the resultingg(g − 1)/2 classifiers determines the predicted class.

Forensic glass

res.svm <- CVtest(
function(x, ...) svm(type ~ ., fgl[x,], ...),
function(obj, x) predict(obj, fgl[x,]),
cost = 100, gamma = 1)

con(true = fgl$type, predicted = res.svm)
....

error rate = 28.04 %

The following is faster, but not strictly comparable with the results above, as a
different random partition will be used.

> svm(type ~ ., data = fgl, cost = 100, gamma = 1, cross = 10)
....

Total Accuracy: 71.03
Single Accuracies:
66.67 61.90 68.18 76.19 77.27 85.71 76.19 72.73 57.14 68.18

79

Chapter 4

Near-neighbour Methods

There are a number of non-parametric classifiers based on non-parametric esti-
mates of the class densities or of the log posterior. Libraryclass implements
the k –nearest neighbour classifier and related methods (Devijver & Kittler, 1982;
Ripley, 1996) and learning vector quantization (Kohonen, 1990b, 1995; Ripley,
1996). These are all based on finding thek nearest examples in some reference
set, and taking a majority vote amongst the classes of thesek examples, or, equiv-
alently, estimating the posterior probabilitiesp(c |x) by the proportions of the
classes amongst thek examples.

The methods differ in their choice of reference set. Thek –nearest neighbour
methods use the whole training set or an edited subset. Learning vector quantiza-
tion is similar to K-means in selecting points in the space other than the training
set examples to summarize the training set, but unlike K-means it takes the classes
of the examples into account.

These methods almost always measure ‘nearest’ by Euclidean distance.

4.1 Nearest neighbour methods

A simple estimate of the posterior distribution is the proportions of the classes
amongst the nearestk data points. This is a piecewise constant function and gives
a classifier known as thek -nearest neighbour rule. If the prior probabilities are
known and the proportions of the classes in the training set are not proportional to
πk , the proportions amongst the neighbours need to be weighted.

The version withk = 1 is often rather successful. This divides the spaceX
into the cells of the Dirichlet tessellation1 of the data points, and labels each by
the class of the data point it contains.

Nearest neighbour rules can readily be extended to allow a ‘doubt’ option by
the so-called(k, �) -rules, called in this field a ‘reject option’. These take a vote
amongst the classes of thek nearest patterns inX , but only declare the class with
the majority if it has� or more votes, otherwise declare ‘doubt’. Indeed, if there

1 Given a set of points inRp , associate with each those points ofR
p to which it is nearest. This

defines atile, and the tiles partition the space. Also known as Voronoi or Thiessen polygons inR
2 .

80 Near-neighbour Methods

Bayes risk

k-
nn

 r
is

k

0.0 0.1 0.2 0.3 0.4 0.5

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

k=1
k=3
k=5
k=2
k=4

Figure 4.1: Large-sample riskrk (k odd) orr′k (k even) ofk -nn rules against the Bayes
risk r∗ in a two-class problem.

are different error costs, we may want to allow the minimum majority to depend
on the class to be declared.

The k -nn rule can be critically dependent on the distance used in the space
X , especially if there are few examples ork is large (Figure 4.5).

Large-sample results

Cover & Hart (1967) gave a famous result on the large-sample behaviour of the
nearest neighbour rule. Note that the expected error rate is always bounded below
by E∗ , by the optimality of the Bayes rule.

Proposition 4.1 Let E∗ denote the error rate of the Bayes rule in a K -class
problem. Then the error rate of the nearest neighbour rule averaged over training
sets converges in L1 as the size of the training set increases, to a value E1

bounded above by

E∗
(

2− K

K − 1
E∗
)

.

It is easy to see that the upper bound is attained if the densitiespk(x) are
identical and so the conditional risks are independent ofx .

For thek -th nearest neighbour rule detailed results are only available for two
classes. Intuitively one would expect the 2-nn rule to be no improvement over
the 1-nn rule, since it will achieve either a majority of two or a tie, which we will
suppose is broken at random. The following result supports that intuition. On the
other hand, we could report ‘doubt’ in the case of ties (the(2, 2) -rule).

4.1 Nearest neighbour methods 81

Proposition 4.2 Suppose there are two classes, and let Ek denote the asymptotic
error rate of the k -nn rule with ties broken at random and E ′

k if ties are reported
as ‘doubt’. Then

E′
2 � E′

4 � · · · � E′
2k ↗ E∗ ↙ E2k = E2k−1 � · · · � E2 = E1 = 2E′

2

Figure 4.1 showsrk(x) as a function ofr∗(x) ; this shows the agreement is
excellent for moderater∗(x) even for smallk (but not k = 1).

Proposition 4.3 In the large-sample theory the means of the risk-averaged (3, 2) -
nn rule and the error rate of the (2, 2) -nn rule are equal and provide a lower
bound for the Bayes risk. The risk-averaged estimator has smaller variance.

This suggests estimating a lower bound for the Bayes risk by running the 3-nn
classifier on the training set and reporting 1/3 the number of occasions on which
the neighbours are two of one class, one of another (and of course one of the
neighbours will be the training-set example itself). If the distances are tied, we
can average over ways of breaking the tie, since this will be equivalent to averaging
over perturbations of the points.

Data editing

One common complaint about both kernel andk -nn methods is that they can
take too long to compute and need too much storage for the whole training set.
The difficulties are sometimes exaggerated, as there are fast ways to find near
neighbours. However, in many problems it is only necessary to retain a small
proportion of the training set to approximate very well the decision boundary of
the k -nn classifier. This concept is known asdata editing. It can also be used to
improve the performance of the classifier by removing apparent outliers.

There are many editing algorithms: the literature on data editing is extensive
but contains few comparisons. Themultiedit algorithm of Devijver & Kittler
(1982) can be specified as follows (with parametersI and V):

1. Put all patterns in the current set.

2. Divide the current set more or less equally intoV � 3 sets. Use pairs
cyclically as test and training sets.

3. For each pair classify the test set using thek -nn rule from the training set.

4. Delete from the current set all those patterns in the test set which were
incorrectly classified.

5. If any patterns were deleted in the lastI passes return to step 2.

The edited set is then used with the1 -nn rule (not the original value ofk).
Devijver & Kittler indicate that (for two classes) asymptotically the1 -nn rule
on the edited set out-performs thek -nn rule on the original set and approaches
the performance of the Bayes rule. (The idea is that each edit biases the retained

82 Near-neighbour Methods

-1.0 -0.5 0.0 0.5 1.0

0.
0

0.
5

1.
0

•
•

•

•

•

•

•

•

•

••

•
•

•

•

•

•

•

•

•

•

• •
•

•
•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•
•

•

•

•

•

•

•

•

•

••

•

•

•

•

•

•

•

•

•

•

•

••

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•
•

•

•

•

••

•

•

•

•

•

• •

•
•

• •
•

•

••

•

•

•

•

•

•

•

•

•

•

•
•

•

•

•

•

•
•

Figure 4.2: Two-class synthetic data from Ripley (1994b). The two classes are shown by
solid circles and open squares: there are 125 points in each class.

points nearx in favour of the class given by the Bayes rule atx , so eventually this
class dominates the nearest neighbours. This applies to any number of classes.)

Figure 4.3(a) illustrates themultiedit algorithm applied to the synthetic dataset
shown in Figure 4.2 on page 82. The Bayes rule is known in this example (since it
is synthetic). In practicemultiediting can perform much less well and drop whole
classes when applied to moderately sized training sets with more dimensions and
classes. Another idea (Hand & Batchelor, 1978) is to retain only points whose
likelihood ratio py(x)/pi(x) against every classi �= y exceeds some threshold
t . (The densities are estimated non-parametrically.) It make more sense to retain
points for whichp(y |x) is high, for example those which attain a majority� in
a (k, �) -rule for a larger value ofk . This is illustrated in Figure 4.3(b) for the
synthetic example using the (10,9)-nn.

Themultiedit algorithm aims to form homogeneous clusters inX . However,
only the points on the boundaries of the clusters are really effective in defining
the classifier boundaries.Condensing algorithms aim to retain only the crucial
exterior points in the clusters. For example, Hart (1968) gives:

1. Divide the current patterns into a store and a grabbag. One possible partition
is to put the first point in the store, the rest in the grabbag.

2. Classify each sample in the grabbag by the1 -nn rule using the store as
training set. If the sample is incorrectly classified transfer it to the store.

3. Return to 2 unless no transfers occurred or the grabbag is empty.

4. Return the store.

This is illustrated in Figure 4.3(c).
A refinement, thereduced nearest neighbour rule of Gates (1972), is to go back

over the condensed training set and drop any patterns (one at a time) which are not

4.1 Nearest neighbour methods 83

(a)

•
•

•
••

•

•
••

• • •

•

•
•

•

•

•

• • •
• •

•
•

•

•

•
•

•

•
•

•

•
•

•

• •
•

•
•

••
•

•

•

•

•

• ••
•

•

•

•

•

•

•

• •

•
•

•

•

•• •
•

••

•

•

•
•

• •
••

• • •
••

•
•

•

•

•
•

•
• •

•

•
•
•

• •

(b)

•
•

•
••

•

•

•

•

•
•

•

• • •
• •

•••

•

•

•

•
•

•

• •
•

•
•

••
••

•

••
•

•

•

•

•

•
•

•

•

••

•

•

•
••

• • •
••

•

•

•

•
• ••

•

(c)

•
•

•

•
•

(d)

•

•

•
•

Figure 4.3: Reduction algorithms applied to Figure 4.2. The known decision boundary of
the Bayes rule is shown with a solid line; the decision boundary for the 1-nn rule is shown
dashed.
(a) multiedit.
(b) The result of retaining only those points whose posterior probability of the actual class
exceeds 90% when estimated from the remaining points.
(c) condense aftermultiedit.
(d) reduced nn applied aftercondense to (a).

needed to correctly classify the rest of the (edited) training set. As Figure 4.3(d)
shows, this can easily go too far and drop whole regions of a class.

A simple example

The simplest nonparametric method isk -nearest neighbours. We use Euclidean
distance on the logged covariates, rather arbitrarily treating them equally.

library(class)
cush <- log(as.matrix(Cushings[1:21, -3]))
tp <- factor(Cushings$Type[1:21])
xp <- seq(0.6, 4.0, length=100); np <- length(xp)
yp <- seq(-3.25, 2.45, length=100)
cushT <- expand.grid(Tetrahydrocortisone=xp,

Pregnanetriol=yp)

84 Near-neighbour Methods

-1.0 -0.5 0.0 0.5 1.0

0.
0

0.
5

1.
0

•

•

•

•
•

•

•

•

•
•

••

•

•

•

•
•

• •

•

• •

•

•

••

Figure 4.4: The result of thereduced nearest neighbour rule of Gates (1972) applied after
condense to the unedited data of Figure 4.2.

1-NN

Tetrahydrocortisone

P
re

gn
an

et
rio

l

5 10 50

0.
05

0.
50

5.
00

a

a

a

a

a

a

b

b

b

b

b

b

b

bb

b

c
c

c
c

c

u

u

u

u u

u

3-NN

Tetrahydrocortisone

P
re

gn
an

et
rio

l

5 10 50

0.
05

0.
50

5.
00

a

a

a

a

a

a

b

b

b

b

b

b

b

bb

b

c
c

c
c

c

u

u

u

u u

u

Figure 4.5: k -nearest neighbours applied to the Cushing’s syndrome data.

par(pty="s", mfrow=c(1,2))
plot(Cushings[,1], Cushings[,2], log="xy", type="n",

xlab = "Tetrahydrocortisone", ylab = "Pregnanetriol",
main = "1-NN")

text(Cushings[1:21,1], Cushings[1:21,2],
labels = as.character(tp))

text(Cushings[22:27,1], Cushings[22:27,2], labels = "u")
Z <- knn(scale(cush, F, c(3.4, 5.7)),

scale(cushT, F, c(3.4, 5.7)), tp)
contour(xp/log(10), yp/log(10), matrix(as.numeric(Z=="a"), np),

add=T, levels=0.5, labex=0)

4.2 Learning vector quantization 85

contour(xp/log(10), yp/log(10), matrix(as.numeric(Z=="c"), np),
add=T, levels=0.5, labex=0)

plot(Cushings[,1], Cushings[,2], log="xy", type="n",
xlab="Tetrahydrocortisone", ylab = "Pregnanetriol",
main = "3-NN")

text(Cushings[1:21,1], Cushings[1:21,2],
labels = as.character(tp))

text(Cushings[22:27,1], Cushings[22:27,2], labels = "u")
Z <- knn(scale(cush, F, c(3.4, 5.7)),

scale(cushT, F, c(3.4, 5.7)), tp, k=3)
contour(xp/log(10), yp/log(10), matrix(as.numeric(Z=="a"), np),

add=T, levels=0.5, labex=0)
contour(xp/log(10), yp/log(10), matrix(as.numeric(Z=="c"), np),

add=T, levels=0.5, labex=0)

This dataset is too small to try the editing methods.

4.2 Learning vector quantization

The refinements of thek -nn rule aim to choose a subset of the training set in such
a way that the 1-nn rule based on this subset approximates the Bayes classifier. It is
not necessary that the modified training set is a subset of the original and an early
step to combine examples to form prototypes was taken by Chang (1974). The
approach taken in Kohonen’s (1995)learning vector quantization is to construct a
modified training set iteratively. Following Kohonen, we call the modified training
set thecodebook. This procedure tries to represent the decision boundaries rather
than the class distributions. Once again the metric in the spaceX is crucial, so
we assume the variables have been scaled in such a way that Euclidean distance
is appropriate (at least locally).

Vector quantization

The use of ‘vector quantization’ is potentially misleading, since it has a different
aim, but as it motivated Kohonen’s algorithm we will digress for a brief description.

Vector quantization is a classical method in signal processing to produce an
approximation to the distribution of a single class by a codebook. Each incoming
signal is mapped to the nearest codebook vector, and that vector sent instead of the
original signal. Of course, this can be coded more compactly by first sending the
codebook, then just the indices in the codebook rather than the whole vectors. One
way to choose the codebook is to minimize some measure of the approximation
error averaged over the distribution of the signals (and in practice over the training
patterns of that class). Taking the measure as the squared distance from the signal
to the nearest codebook vector leads to thek -means algorithm which aims to
minimize the sum-of-squares of distances within clusters. An ‘on-line’ iterative

86 Near-neighbour Methods

algorithm for this criterion is to present each patternx in turn, and update the
codebook by

mc ← mc + α(t)[x −mc] if mc is closest tox (4.1)

mi ← mi for the rest of the codebook.

Update rule (4.1) motivated Kohonen’s iterative algorithms. Note that this is not
a good algorithm fork -means.

Iterative algorithms

Kohonen (1990c) advocated a series of iterative procedures which has since been
modified; our description follows the implementation known asLVQ_PAK docu-
mented in Kohonenet al. (1992). A initial set of codebook vectors is chosen from
the training set. (We discuss later precisely how this might be done.) Each of
the procedures moves codebook vectors to try to achieve better classification of
the training set by the 1-nn rule based on the codebook. The examples from the
training set are presented one at a time, and the codebook is updated after each
presentation. In our experiments the examples were chosen randomly from the
training set, but one might cycle through the training set in some pre-specified
order.

The original procedure LVQ1 uses the following update rule. A examplex is
presented. The nearest codebook vector tox , m c , is updated by

mc ← mc + α(t)[x −mc] if x is classified correctly bymc

mc ← mc − α(t)[x −mc] if x is classified incorrectly (4.2)

and all other codebook vectors are unchanged. Initiallyα(t) is chosen smaller
than 0.1 (0.03 by default inLVQ_PAK) and it is reduced linearly to zero during the
fixed number of iterations. The effect of the updating rule is to move a codebook
vector towards nearby examples of its own class, and away from ones of other
classes. ‘Nearby’ here can cover quite large regions, as the codebook will typically
be small and in any case will coverX rather sparsely. Kohonen (1990c) motivates
this as applying vector quantization to the function

∣∣π1p1(x)− π2p2(x)
∣∣ for two

classes (or the two classes which are locally most relevant).

A variant, OLVQ1, provides learning ratesαc(t) for each codebook vector,
with an updating rule for the learning rates of

αc(t) =
αc(t− 1)

1 + (−1)I(classification is incorrect) αc(t− 1)
. (4.3)

This decreases the learning rate if the example is correctly classified, and increases
it otherwise. Thus codebook vectors in the centre of classes will have rapidly
decreasing learning rates, and those near class boundaries will have increasing
rates (and so be moved away from the boundary quite rapidly). As the learning
rates may increase, they are constrained not to exceed an upper bound, often 0.3.

4.2 Learning vector quantization 87

-1.0 -0.5 0.0 0.5 1.0

0.
0

0.
5

1.
0

Figure 4.6: Results of learning vector quantization applied to Figure 4.2. The initially
chosen codebook is shown by small circles, the result of OLVQ1 by+ and subsequently
applying 25,000 passes of LVQ2.1 by triangles. The known decision boundary of the Bayes
rule is also shown.

Practical experience shows that the convergence is usually rapid, andLVQ_PAK
uses 40 times as many iterations as codebook vectors.

An explanation of this rule is given by Kohonenet al. (1992) and Kohonen
(1995, p.180) which we interpret as follows. At all times the codebook vectors are
a linear combination of the training set vectors (and their initializers, if these are
not in the training set). Lets(t) = (−1)I(classification is incorrect) , so we can rewrite
(4.2) as

mc(t + 1) = mc(t) + s(t)α(t)[x(t) −mc]
= [1− s(t)α(t)]mc(t) + s(t)α(t)x(t)
= [1− s(t)α(t)][1 − s(t− 1)α(t− 1)]mc(t− 1)

+ [1− s(t)α(t)]s(t − 1)α(t− 1)x(t− 1) + s(t)α(t)x(t).

Now supposex(t − 1) = x(t) and the same codebook vector is closest at both
times (sos(t − 1) = s(t)). If we ask that the multiplier ofx(t) is the same in
both terms, we find

[1− s(t)α(t)]α(t − 1) = α(t)

which gives (4.3). This adaptive choice of rate seems to work well, as in our
examples.

The procedure LVQ2.1 (Kohonen, 1990a) tries harder to approximate the
Bayes rule by pairwise adjustments of the codebook vectors. Supposem s , mt

are the two nearest neighbours tox . They are updated simultaneously provided
that ms is of the same class asx and the class ofmt is different, andx falls

88 Near-neighbour Methods

into a ‘window’ near the mid-point ofms andmt . Specifically, we must have

min
(

d(x,ms)
d(x,mt)

,
d(x,mt)
d(x,ms)

)
>

1− w

1 + w

for w ≈ 0.25 . (We can interpret this condition geometrically. Ifx is projected
onto the vector joiningms andmt , it must fall at least(1−w)/2 of the distance
from each end.) If all these conditions are satisfied the two vectors are updated by

ms ← ms + α(t)[x −ms], (4.4)

mt ← mt − α(t)[x −mt].

This rule may update the codebook only infrequently. It tends to over-correct,
as can be seen in Figure 4.6, where the result of iterating LVQ2.1 is to push the
codebook vectors away from the decision boundary, and eventually off the figure.
Thus it is recommended that LVQ2.1 only be used for a small number of iterations
(30–200 times the number of codebook vectors).

The rule LVQ3 tries to overcome over-correction by using LVQ2.1 if the two
closest codebook vectors tox are of different classes, and

mi ←mi + εα(t)[x −mi] (4.5)

for ε around 0.1–0.5, for each of the two nearest codebook vectors if they are
of the same class asx . (The window is only used if the two codebook vectors
are of different classes.) This introduces a second element into the iteration, of
ensuring that the codebook vectors do not become too unrepresentative of their
class distribution. It does still allow the codebooks to drift to the centre of the
class distributions and even beyond, as Figure 4.7 shows.

The recommended procedure is to run OLVQ1 until convergence (usually
rapid) and then a moderate number of further steps of LVQ1 and/or LVQ3.

4.3 Forensic glass

Figure 1.4 suggests that nearest neighbour methods might work well, and the 1–
nearest neighbour classifier is (to date) unbeatable in this problem. We can estimate
a lower bound for the Bayes risk as 10% by the method of proposition 4.3.

library(class)
fgl0 <- fgl[,-10] # drop type
{ res <- fgl$type

for (i in sort(unique(rand))) {
cat("fold ",i,"\n", sep="")
sub <- rand == i
res[sub] <- knn(fgl0[!sub,], fgl0[sub,], fgl$type[!sub],

k=1)
}
res } -> res.knn1

4.3 Forensic glass 89

-1.0 -0.5 0.0 0.5 1.0

0.
0

0.
5

1.
0

Figure 4.7: Further results of LVQ with a larger codebook. This time the triangles show
the results from LVQ3.

> con(fgl$type, res.knn1)
WinF WinNF Veh Con Tabl Head

WinF 59 6 5 0 0 0
WinNF 12 57 3 3 1 0

Veh 2 4 11 0 0 0
Con 0 2 0 8 1 2
Tabl 1 0 0 1 6 1
Head 0 4 1 1 1 22

error rate = 23.83 %
> res.lb <- knn(fgl0, fgl0, fgl$type, k=3, prob=T, use.all=F)
> table(attr(res.lb, "prob"))
0.333333 0.666667 1

10 64 140
1/3 * (64/214) = 0.099688

Learning vector quantization

For LVQ as fork -nearest neighbour methods we have to select a suitable metric.
The following experiments used Euclidean distance on the original variables, but
the rescaled variables or Mahalanobis distance could also be tried.

cd0 <- lvqinit(fgl0, fgl$type, prior=rep(1,6)/6,k=3)
cd1 <- olvq1(fgl0, fgl$type, cd0)
con(fgl$type, lvqtest(cd1, fgl0))

We set an even prior over the classes as otherwise there are too few representatives
of the smaller classes. Our initialization code follows Kohonen’s in selecting the
number of representatives: in this problem 24 points are selected, four from each
class.

90 Near-neighbour Methods

CV.lvq <- function()
{

res <- fgl$type
for(i in sort(unique(rand))) {
cat("doing fold",i,"\n")
cd0 <- lvqinit(fgl0[rand != i,], fgl$type[rand != i],

prior=rep(1,6)/6, k=3)
cd1 <- olvq1(fgl0[rand != i,], fgl$type[rand != i], cd0)
cd1 <- lvq3(fgl0[rand != i,], fgl$type[rand != i],

cd1, niter=10000)
res[rand == i] <- lvqtest(cd1, fgl0[rand == i,])

}
res

}
con(fgl$type, CV.lvq())

WinF WinNF Veh Con Tabl Head
WinF 59 10 1 0 0 0

WinNF 10 61 1 2 2 0
Veh 6 8 3 0 0 0
Con 0 2 0 6 2 3
Tabl 0 0 0 2 7 0
Head 3 2 0 1 1 22

error rate = 26.17 %

Try Mahalanobis distance
fgl0 <- scale(princomp(fgl[,-10])$scores)
con(fgl$type, CV.lvq())

....
error rate = 35.05 %

The initialization is random, so your results are likely to differ.

91

Chapter 5

Assessing Performance

The background notes show thatif we can find the posterior probabilitiesp(c |x)
we can construct the best possible classifier. So performance assessment can be
split into determining if we have a good estimate of the posterior probabilities,
and direct assessment of performance.

5.1 Practical ways of performance assessment

The only really convincing way we have to compare generalization ability is to
try out various classifiers. We need atest set unused for any other purpose.

• This is an experiment, so it should be designed and analysed. Even specialist
statisticians forget this. Cohen (1995), Kleijnen (1987) and Kleijnen & van
Groenendaal (1992) discuss these issues in a way that may be accessible to
the neural network community.

• Comparisons between classifiers will normally be more precise that assess-
ments of the true risk.

• Standard errors of estimates decrease atO(n−1/2) so we often need a very
large test set to measure subtle differences in performance. For example, if
we count errors, we need differences of at least 5 and often 15 or more for
statistical significance (Ripley, 1994a; Ripley, 1996, p. 77).

Validation

The same ideas can be used to choose within classes of classifiers (for example the
number of hidden units). This is calledvalidation and needs a separate validation
set. A validation set can also be used to optimize over the weights in model
averaging (suggested as long ago as Stone, 1974).

92 Assessing Performance

Cross-validation and cross-testing

With small datasets, separate training, validation and test sets seem wasteful. Can
we reuse just one set? InV -fold cross validation we divide the data intoV
roughly equal pieces (how?). Use one for validation,V − 1 for training, and
rotate. Similarly for testing: if we need both we nest or rotate.

What size shouldV be? The original proposal (Lunts & Brailovsky, 1967;
Lachenbruch, 1967; Stone, 1974) wasV = n , leave-one-out CV (often confused
with the distinct concept ofjackknifing). This is often too expensive, and also too
variable. TheV -fold variant was proposed by Toussaint & Donaldson (1970) and
more generally by Breimanet al. (1984). I usually useV = 5 or 10 .

How Do We Estimate Performance?

In supervised classification we should be interested in the achieved risk, as that
was the objective we set out to minimize. To estimate this on a test set we count
errors or add up losses. That can be a rather crude measure with high variance.

For validation we can choose whatever measure we wish. There is a lot to be
said forlog-probability scoring, that is

−
∑

i log p̂(ci |xi)

summed over the test set. This is estimating the crucial part of the Kullback-Leibler
divergenced(p, p̂) and has a lower variability than error-counting.

Smoothed or risk-averaged estimates

Suppose we see an example with featuresx . Then we only observe on the test
set one of the possible classesc . Our expected loss givenX = x is

e(x) =
∑

c

L
(
c, ĉ(x)

)
p(c |x)

Thus if we knew the posterior probabilities,we could estimate the risk by averaging
e(x) over the test set. As we do not know them, we could use our best estimates
to give

ẽ(x) =
∑

c

L
(
c, ĉ(x)

)
p̃(c |x)

and the resulting estimate of the risk is known as ansmoothed or risk-averaged
estimate. The idea goes back to Glick (1978); for more details see Ripley (1996,
pp. 75–6). The lossL

(
c, ĉ(x)

)
takes a small set of values;e(x) is much less

variable (often with variance reduced by a factor of 10). So we get a more precise
estimator of risk, and we do not even need to know the true classification!

Where is the catch?̃p(c |x) has to be a good estimate ofp(c |x) . Can we
check that? That is our next topic.

5.2 Calibration plots 93

5.2 Calibration plots

One measure that a suitable model forp(c |x) has been found is that the predicted
probabilities arewell calibrated, that is that a fraction of aboutp of the events
we predict with probabilityp actually occur. Methods for testing calibration of
probability forecasts have been developed in connection with weather forecasts
(Dawid, 1982, 1986).

For the forensic glass example we are making six probability forecasts for each
case, one for each class. To ensure that they are genuine forecasts, we should use
the cross-validation procedure. A minor change to the code gives the probability
predictions:

CVprobs <- function(fitfn, predfn, ...)
{

res <- matrix(, 214, 6)
for (i in sort(unique(rand))) {

cat("fold ",i,"\n", sep="")
learn <- fitfn(rand != i, ...)
res[rand == i,] <- predfn(learn, rand==i)

}
res

}
probs.multinom <- CVprobs(

function(x, ...) multinom(type ~ ., fgl[x,], ...),
function(obj, x) predict(obj, fgl[x,],type="probs"),
maxit=1000, trace=F)

predicted probability
0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

Figure 5.1: Calibration plot for multiple logistic fit to thefgl data.

We can plot these and smooth them by

probs.yes <- as.vector(class.ind(fgl$type))
probs <- as.vector(probs.multinom)
par(pty="s")

94 Assessing Performance

plot(c(0,1), c(0,1), type="n", xlab="predicted probability",
ylab="", xaxs="i", yaxs="i", las=1)

rug(probs[probs.yes==0], 0.02, side=1, lwd=0.5)
rug(probs[probs.yes==1], 0.02, side=3, lwd=0.5)
abline(0,1)
newp <- seq(0, 1, length=100)
lines(newp, predict(loess(probs.yes ~ probs, span=1), newp))

A method with an adaptive bandwidth such asloess is needed here, as the
distribution of points along thex axis can be very much more uneven than in
this example. The result is shown in Figure 5.1. This plot does show substantial
overconfidence in the predictions, especially at probabilities close to one. Indeed,
only 22/64 of the events predicted with probability greater than 0.9 occurred.
(The underlying cause is the multimodal nature of some of the underlying class
distributions.)

Where calibration plots are not straight, the best solution is to find a better
model. Sometimes the overconfidence is minor, and mainly attributable to the use
of plug-in rather than predictive estimates. Then the plot can be used to adjust
the probabilities (which may need then further adjustment to sum to one for more
than two classes).

predicted probability
0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Figure 5.2: Calibration plot for a two-class medical diagnosis problem.

More often we see something like figure 5.3 in which the extreme probabilities
(near zero or one) are estimated as too extreme. The reason is that we are not
using p̃(k |x) but p̂(k, |x; θ̂) , a plug-in estimate in which we assume that the
fitted parameterŝθ are the true weights (and that the neural network represents
the true posterior probabilities). We are ignoring the uncertainty in theθ̂ .

If necessary, we can use such graphs to re-calibrate, but usually they indicate
a deeper problem. Calibration plots can help detect over-fitting: an example from
Mark Mathieson is shown in figures 5.4 and 5.5.

5.3 Performance summaries and ROC curves 95

0.0

0.2

0.4

0.6

0.8

1.0

0.0 0.2 0.4 0.6 0.8 1.0

Predicted probabilities - linear

0.0

0.2

0.4

0.6

0.8

1.0

0.0 0.2 0.4 0.6 0.8 1.0

Predicted probabilities - neural net

Figure 5.3: Calibration plots from a breast cancer prognosis study—the task is to predict
years to relapse as one of the classes 0, 1, 2, 3, 4+.

x1

x2

-4 -2 0 2 4 6

-4
-2

0
2

4

x1

x2

-4 -2 0 2 4 6

-4
-2

0
2

4

Figure 5.4: Three-class fits with the Bayes rule and fits from an ordinal neural network with
weight decay parameterλ . λ = 0 (left) and λ = 0.1 (right). The true class boundaries
are shown as solid lines, the fitted ones as dashed lines.

There is an extensive literature on probability forecasting: see Dawid (1986)
and Cooke (1991). This has usually been for the assessment of human experts,
but applies equally in machine learning. There are various aggregate scores that
say how well ‘experts’ are doing on a variety of predictions.Proper scoring rules
reward ‘experts’ who truly are expert. The most popular of these is the (half-)Brier
score, the sum of squares of one minus the predicted probability of the event that
happened, and especiallylog-probability scoring, the sum of minus the natural
logarithms of those probabilities.

5.3 Performance summaries and ROC curves

Suppose we have just two classes, in medical diagnosis normal or diseased. Then
class-conditional error rates have conventional names

specificity = Pr(predict normal| is normal)

96 Assessing Performance

Predicted probability

O
bs

er
ve

d
fr

eq
ue

nc
y

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Figure 5.5: Calibration plots for the fits in figure 5.4; the line forλ = 0.1 is dashed.

sensitivity = Pr(predict diseased| is diseased)

Considering these separately is usually an admission that losses other than zero-
one are appropriate.

False positives (1 - Specificity)

T
ru

e
P

os
iti

ve
s

(S
en

si
tiv

ity
)

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Figure 5.6: An ROC curve for the breast-cancer prognosis problem of figure 5.3.

Suppose our classifier outputs an approximation top(diseased|x) . Then we
get a family of classifiers by declaring ‘diseased’ ifp(diseased|x) > α and vary-
ing α ∈ (0, 1) . The ROC (receiver operating curve) is a plot of sensitivity against
1− specificity (Hand, 1997, Chapter 7). Figure 5.6 shows an example ROC. For
equal losses we want to minimize the sum of sensitivity and 1− specificity , or
sensitivity− specificity . The best choice ofα in that case corresponds to the
point at which the ROC has slope 1 (and we know corresponds toα = 0.5); in
this problem the sensitivity and specificity would be both about 0.8. As the ratio

5.4 Assessing generalization 97

of losses changes the optimal operating point moves along the curve, jumping
along any linear sections of the curve.

It is common in medicine to quote the area under the ROC curve. This is a
compromise between losses that may be irrelevant to the real problem, where for
example high sensitivity may be much more important than high specificity.

5.4 Assessing generalization

It can be very helpful to have some idea of theBayes risk, the smallest possible
expected loss. (Too many people assume that it is zero!) This is a measure of the
‘overlap’ of the classes.

We obviously need a very flexible classifier. We can do something withk -
nearest neighbour rules. A(k, �) -nn rule declares a class if it has at least�
representatives amongst thek nearest points inT , otherwise it declares ‘doubt’
D . We can use proposition 4.3 on page 81.

In the theory this result does not depend on the metric used to measure the dis-
tances; in practice it does. With small samples this method tends to underestimate
the lower bound on the Bayes risk (which is the safe direction).

Uniform Bounds

The theory pioneered by Vapnik and represented by Devroyeet al. (1996) concerns
universal procedures, which will with enough data get arbitrarily close to the
Bayes risk. Universal strong consistency (risk converging to the Bayes risk with
probability one over sequences of independent identically distributed training sets)
can be achieved byk -nn rules fork = o(n) and various other simple rules.

These limit results are proved by proving uniform bounds, and it has been
suggested that these be used directly. From a published paper:

‘If our network can be trained to classify correctly a fraction1 − (1 − β)ε
of the n training examples, the probability that its error—a measure of its
ability to generalize—is less thanε is at least1 − δ .’

(authorship suppressed to protect the guilty).
Let pmc denote the true error rate of a classifier, and̂pmc the error rate on a

training set of sizen . The theorems are of the form

Pr
{
p̂mc(g) < (1− β)pmc(g) and pmc(g) > ε for anyg ∈ F

}
< δ (5.1)

for n > n0(ε, δ,F) for a class of classifiersF . The probability is over the
random choice of training set of sizen . This says that however we choose the
classifier in the class, our observed error rate on the training set will be close to
true error rate of the classifier,for most training sets.

The authors of the quote have (like many lawyers and judges) confused
Pr(A andB) with Pr(B |A) , for their quote means

Pr
{
pmc(ĉ) > ε

∣∣ p̂mc(ĉ) < (1− β)pmc(ĉ)
}

< δ

98 Assessing Performance

This is only implied by (5.1) (with a differentδ) if we can bound below the
probability of the conditioning term. We only have one training set, so how could
we possibly do that? Sadly, this is not an isolated example.

These bounds apply to any classifier: we also need results that relatepmc(ĉ)
to the Bayes risk. That is harder: for example Devroyeet al. prove consistency
for a projection pursuit regression trained by empirical risk minimization — and
we have no idea how to do that in practice.

99

References

Aitchison, J. and Dunsmore, I. R. (1975)Statistical Prediction Analysis. Cambridge:
Cambridge University Press. [69]

Aleksander, I. and Morton, H. (1990)An Introduction to Neural Computing. London:
Chapman & Hall. [58]

Anderson, E. (1935) The irises of the Gaspe peninsula.Bulletin of the American Iris Society
59, 2–5. [2]

Asimov, D. (1985) The grand tour: a tool for viewing multidimensional data.SIAM Journal
on Scientific and Statistical Computing 6, 128–143. [27]

Bates, D. M. and Watts, D. G. (1988)Nonlinear Regression Analysis and Its Applications.
New York: John Wiley and Sons. [61]

Best, D. J. and Rayner, J. C. W. (1988) A test for bivariate normality.Statistics and
Probability Letters 6, 407–412. [22]

Bishop, C. M. (1995)Neural Networks for Pattern Recognition. Oxford: Clarendon Press.
[59]

Bishop, Y. M. M., Fienberg, S. E. and Holland, P. W. (1975)Discrete Multivariate Analysis.
Cambridge, MA: MIT Press. [30]

Boser, B. E., Guyon, I. M. and Vapnik, V. N. (1992) A training algorithm for optimal
margin classifiers. InProceeedings of the 5th Annual ACM Workshop on Computational
Learning Theory., ed. D. Haussler, pp. 144–152. ACM Press. [76]

Breiman, L., Friedman, J. H., Olshen, R. A. and Stone, C. J. (1984)Classification and
Regression Trees. New York: Chapman & Hall / CRC Press. (Formerly Monterey:
Wadsworth and Brooks/Cole.). [36, 42, 92]

Bruckner, L. A. (1978) On Chernoff faces. InGraphical Representation of Multivariate
Data, ed. P. C. C. Wang, pp. 93–121. New York: Academic Press. [11]

Chang, C. L. (1974) Finding prototypes for nearest neighbor classifiers.IEEE Transactions
on Computers 23, 1179–1184. [85]

Chernoff, H. (1973) The use of faces to represent points ink -dimensional space graphically.
Journal of the American Statistical Association 68, 361–368. [11]

Ciampi, A., Chang, C.-H., Hogg, S. and McKinney, S. (1987) Recursive partitioning: A
versatile method for exploratory data analysis in biostatistics. InBiostatistics, eds I. B.
McNeil and G. J. Umphrey, pp. 23–50. New York: Reidel. [41]

Clark, L. A. and Pregibon, D. (1992) Tree-based models. InStatistical Models in S, eds
J. M. Chambers and T. J. Hastie, Chapter 9. New York: Chapman & Hall. [36, 40]

Cohen, P. R. (1995)Empirical Methods for Artificial Intelligence. Cambridge, MA: The
MIT Press. [91]

Comon, P. (1994) Independent component analysis — a new concept?Signal Processing
36, 287–314. [10]

100 References

Cook, D., Buja, A. and Cabrera, J. (1993) Projection pursuit indices based on orthonormal
function expansions.Journal of Computational and Graphical Statistics 2, 225–250.
[22, 23]

Cooke, R. M. (1991)Experts in Uncertainty. Opinion and Subjective Probability in Science.
New York: Oxford University Press. [95]

Cortes, C. and Vapnik, V. (1995) Support-vector networks.Machine Learning 20, 273–297.
[76]

Cover, T. M. and Hart, P. E. (1967) Nearest neighbor pattern classification.IEEE Transac-
tions on Information Theory 13, 21–27. [80]

Cox, T. F. and Cox, M. A. A. (2001)Multidimensional Scaling. Second Edition. Chapman
& Hall / CRC. [6, 8]

Cristianini, N. and Shawe-Taylor, J. (2000)An Introduction to Support Vector Machines
and other kernel-based learning methods. Cambridge: Cambridge University Press.
[76]

Cybenko, G. (1989) Approximation by superpositions of a sigmoidal function.Mathematics
of Controls, Signals, and Systems 2, 303–314. [60]

Dawid, A. P. (1982) The well-calibrated Bayesian (with discussion).Journal of the Amer-
ican Statistical Association 77, 605–613. [93]

Dawid, A. P. (1986) Probability forecasting. InEncyclopedia of Statistical Sciences, eds
S. Kotz, N. L. Johnson and C. B. Read, volume 7, pp. 210–218. New York: John Wiley
and Sons. [93, 95]

Devijver, P. A. and Kittler, J. V. (1982)Pattern Recognition: A Statistical Approach.
Englewood Cliffs, NJ: Prentice-Hall. [79, 81]

Devroye, L., Gÿorfi, L. and Lugosi, G. (1996)A Probabilistic Theory of Pattern Recogni-
tion. New York: Springer. [97, 98]

Diaconis, P. and Freedman, D. (1984) Asymptotics of graphical projection pursuit.Annals
of Statistics 12, 793–815. [20]

Duda, R. O., Hart, P. E. and Stork, D. G. (2001)Pattern Classification. Second Edition.
New York: John Wiley and Sons. [2]

Emerson, J. W. (1998) Mosaic displays in S-PLUS: a general implementation and a case
study.Statistical Computing and Graphics Newsletter 9(1), 17–23. [30]

Eslava-Ǵomez, G. (1989)Projection Pursuit and Other Graphical Methods for Multivariate
Data. D. Phil. thesis, University of Oxford. [23, 27]

Fauquet, C., Desbois, D., Fargette, D. and Vidal, G. (1988) Classification of furoviruses
based on the amino acid composition of their coat proteins. InViruses with Fungal
Vectors, eds J. I. Cooper and M. J. C. Asher, pp. 19–38. Edinburgh: Association of
Applied Biologists. [23, 24]

Fisher, R. A. (1936) The use of multiple measurements in taxonomic problems.Annals of
Eugenics (London) 7, 179–188. [2, 3]

Fisher, R. A. (1940) The precision of discriminant functions.Annals of Eugenics (London)
10, 422–429. [30]

Flury, B. and Riedwyl, H. (1981) Graphical representation of multivariate data by means
of asymmetrical faces.Journal of the American Statistical Association 76, 757–765.
[11]

Friedman, J. H. (1987) Exploratory projection pursuit.Journal of the American Statistical
Association 82, 249–266. [20, 21, 22]

References 101

Friedman, J. H. and Tukey, J. W. (1974) A projection pursuit algorithm for exploratory data
analysis.IEEE Transactions on Computers 23, 881–890. [20]

Friendly, M. (1994) Mosaic displays for multi-way contingency tables.Journal of the
American Statistical Association 89, 190–200. [30]

Friendly, M. (2000)Visualizing Categorical Data. Cary, NC: SAS Institute. [30]

Funahashi, K. (1989) On the approximate realization of continuous mappings by neural
networks.Neural Networks 2, 183–192. [60]

Gabriel, K. R. (1971) The biplot graphical display of matrices with application to principal
component analysis.Biometrika 58, 453–467. [9]

Gates, G. W. (1972) The reduced nearest neighbor rule.IEEE Transactions on Information
Theory 18, 431–433. [82, 84]

Glick, N. (1978) Additive estimators for probabilities of complete classification.Pattern
Recognition 10, 211–222. [92]

Gordon, A. D. (1999)Classification. Second Edition. London: Chapman & Hall / CRC.
[13]

Gower, J. C. and Hand, D. J. (1996)Biplots. London: Chapman & Hall. [9, 10, 32, 33,
34]

Greenacre, M. (1992) Correspondence analysis in medical research.Statistical Methods in
Medical Research 1, 97–117. [32, 33]

Hall, P. (1989) On polynomial-based projection indices for exploratory projection pursuit.
Annals of Statistics 17, 589–605. [22]

Hand, D., Mannila, H. and Smyth, P. (2001)Principles of Data Mining. Cambridge, MA:
The MIT Press. [2]

Hand, D. J. (1997)Construction and Assessment of Classification Rules. Chichester: Wiley.
[96]

Hand, D. J. and Batchelor, B. G. (1978) An edited condensed nearest neighbor rule.
Information Sciences 14, 171–180. [82]

Hart, P. E. (1968) The condensed nearest neighbor rule.IEEE Transactions on Information
Theory 14, 515–516. [82]

Hartigan, J. A. (1975)Clustering Algorithms. New York: John Wiley and Sons. [15]

Hartigan, J. A. and Kleiner, B. (1981) Mosaics for contingency tables. InComputer Science
and Statistics: Proceedings of the 13th Symposium on the Interface, ed. W. F. Eddy,
pp. 268–273. New York: Springer-Verlag. [30]

Hartigan, J. A. and Kleiner, B. (1984) A mosaic of television ratings.American Statistician
38, 32–35. [30]

Hartigan, J. A. and Wong, M. A. (1979) A K-means clustering algorithm.Applied Statistics
28, 100–108. [15]

Hastie, T. J., Tibshirani, R. J. and Friedman, J. (2001)The Elements of Statistical Learning.
Data Mining Inference and Prediction. New York: Springer-Verlag. [2, 10, 76, 77]

Haykin, S. (1994)Neural Networks. A Comprehensive Foundation. New York: Macmillan
College Publishing. [58]

Henrichon, Jr., E. G. and Fu, K.-S. (1969) A nonparametric partitioning procedure for
pattern classification.IEEE Transactions on Computers 18, 614–624. [36]

Hertz, J., Krogh, A. and Palmer, R. G. (1991)Introduction to the Theory of Neural
Computation. Redwood City, CA: Addison-Wesley. [59]

102 References

Hornik, K., Stinchcombe, M. and White, H. (1989) Multilayer feedforward networks are
universal approximators.Neural Networks 2, 359–366. [60]

Huber, P. J. (1985) Projection pursuit (with discussion).Annals of Statistics 13, 435–525.
[20, 27]

Hyvärinen, A., Karhunen, J. and Oja, E. (2001)Independent Component Analysis. New
York: John Wiley and Sons. [10]

Hyvärinen, A. and Oja, E. (2000) Independent component analysis. algorithms and appli-
cations.Neural Networks 13, 411–430. [10, 11]

Inselberg, A. (1984) The plane with parallel coordinates.The Visual Computer 1, 69–91.
[12]

Jackson, J. E. (1991)A User’s Guide to Principal Components. New York: John Wiley
and Sons. [6]

Jardine, N. and Sibson, R. (1971)Mathematical Taxonomy. London: John Wiley and Sons.
[6, 14]

Jolliffe, I. T. (1986)Principal Component Analysis. New York: Springer-Verlag. [6, 9]

Jones, M. C. and Sibson, R. (1987) What is projection pursuit? (with discussion).Journal
of the Royal Statistical Society A 150, 1–36. [20, 21, 22]

Kaufman, L. and Rousseeuw, P. J. (1990)Finding Groups in Data. An Introduction to
Cluster Analysis. New York: John Wiley and Sons. [6, 13, 14]

Kleijnen, J. P. C. (1987)Statistical Tools for Simulation Practitioners. New York: Marcel
Dekker. [91]

Kleijnen, J. P. C. and van Groenendaal, W. (1992)Simulation: A Statistical Perspective.
Chichester: Wiley. [91]

Knerr, S., Personnaz, L. and Dreyfus, G. (1990) Single-layer learning revisited: a stepwise
procedure for building and training a neural network. InNeuro-computing: Algo-
rithms, Architectures and Applications, eds F. Fogelman Soulié and J. H́erault. Berlin:
Springer-Verlag. [78]

Kohonen, T. (1990a) Improved versions of learning vector quantization. InProceedings
of the IEEE International Conference on Neural Networks, San Diego, volume I, pp.
545–550. New York: IEEE Press. [87]

Kohonen, T. (1990b) The self-organizing map.Proceedings IEEE 78, 1464–1480. [79]

Kohonen, T. (1990c) The self-organizing map.Proceedings of the IEEE 78, 1464–1480.
[86]

Kohonen, T. (1995)Self-Organizing Maps. Berlin: Springer-Verlag. [19, 79, 85, 87]

Kohonen, T., Kangas, T., Laaksonen, J. and Torkkola, K. (1992) LVQPAK. The learning
vector quantization program package version 2.1. Laboratory of Computer and Infor-
mation Science, Helsinki University of Technology. [Version 3.1 became available in
1995]. [86, 87]

Kruskal, J. B. (1969) Toward a practical method which helps uncover the structure of a
set of multivariate observations by finding the linear transformation which optimizes a
new ‘index of condensation’. InStatistical Computation, eds R. C. Milton and J. A.
Nelder, pp. 427–440. New York: Academic Press. [20]

Kruskal, J. B. (1972) Linear transformation of multivariate data to reveal clustering. In
Multidimensional Scaling: Theory and Application in the Behavioural Sciences, eds
R. N. Shephard, A. K. Romney and S. K. Nerlove, pp. 179–191. New York: Seminar
Press. [20]

References 103

Lachenbruch, P. (1967) An almost unbiased method of obtaining confidence intervals for
the probability of misclassification in discriminant analysis.Biometrics 23, 639–645.
[92]

Lee, T. W. (1998)Independent Component Analysis: Theory and Applications. Dordrecht:
Kluwer Academic Publishers. [10]

Lunts, A. L. and Brailovsky, V. L. (1967) Evaluation of attributes obtained in statistical
decision rules.Engineering Cybernetics 3, 98–109. [92]

Macnaughton-Smith, P., Williams, W. T., Dale, M. B. and Mockett, L. G. (1964) Dissimi-
larity analysis: A new technique of hierarchical sub-division.Nature 202, 1034–1035.
[14]

MacQueen, J. (1967) Some methods for classification and analysis of multivariate obser-
vations. InProceedings of the Fifth Berkeley Symposium on Mathematical Statistics
and Probability, eds L. M. Le Cam and J. Neyman, volume 1, pp. 281–297. Berkeley,
CA: University of California Press. [15]

McCulloch, W. S. and Pitts, W. (1943) A logical calculus of ideas immanent in neural
activity. Bulletin of Mathematical Biophysics 5, 115–133. [60]

McLachlan, G. J. (1992)Discriminant Analysis and Statistical Pattern Recognition. New
York: John Wiley and Sons. [3]

Michie, D. (1989) Problems of computer-aided concept formation. InApplications of
Expert Systems 2, ed. J. R. Quinlan, pp. 310–333. Glasgow: Turing Institute Press /
Addison-Wesley. [37]

Morgan, J. N. and Messenger, R. C. (1973) THAID: a Sequential Search Program for the
Analysis of Nominal Scale Dependent Variables. Survey Research Center, Institute for
Social Research, University of Michigan. [36]

Morgan, J. N. and Sonquist, J. A. (1963) Problems in the analysis of survey data, and a
proposal.Journal of the American Statistical Association 58, 415–434. [36]

Mosteller, F. and Tukey, J. W. (1977)Data Analysis and Regression. Reading, MA:
Addison-Wesley. [14]

Murtagh, F. and Herńandez-Pajares, M. (1995) The Kohonen self-organizing map method:
An assessment.Journal of Classification 12, 165–190. [20]

Posse, C. (1995) Tools for two-dimensional exploratory projection pursuit.Journal of
Computational and Graphical Statistics 4, 83–100. [23]

Quinlan, J. R. (1979) Discovering rules by induction from large collections of examples.
In Expert Systems in the Microelectronic Age, ed. D. Michie. Edinburgh: Edinburgh
University Press. [36]

Quinlan, J. R. (1983) Learning efficient classification procedures and their application to
chess end-games. InMachine Learning, eds R. S. Michalski, J. G. Carbonell and T. M.
Mitchell, pp. 463–482. Palo Alto: Tioga. [36]

Quinlan, J. R. (1986) Induction of decision trees.Machine Learning 1, 81–106. [36]

Quinlan, J. R. (1993)C4.5: Programs for Machine Learning. San Mateo, CA: Morgan
Kaufmann. [36]

Ripley, B. D. (1993) Statistical aspects of neural networks. InNetworks and Chaos —
Statistical and Probabilistic Aspects, eds O. E. Barndorff-Nielsen, J. L. Jensen and
W. S. Kendall, pp. 40–123. London: Chapman & Hall. [59, 61]

104 References

Ripley, B. D. (1994a) Neural networks and flexible regression and discrimination. In
Statistics and Images 2, ed. K. V. Mardia, volume 2 ofAdvances in Applied Statistics,
pp. 39–57. Abingdon: Carfax. [61, 91]

Ripley, B. D. (1994b) Neural networks and related methods for classification (with discus-
sion). Journal of the Royal Statistical Society series B 56, 409–456. [82]

Ripley, B. D. (1996)Pattern Recognition and Neural Networks. Cambridge: Cambridge
University Press. [i, 2, 8, 36, 42, 59, 69, 73, 79, 91, 92]

Roberts, S. and Tarassenko, L. (1995) Automated sleep EEG analysis using an RBF
network. InNeural Network Applications, ed. A. F. Murray, pp. 305–322. Dordrecht:
Kluwer Academic Publishers. [19]

Sammon, J. W. (1969) A non-linear mapping for data structure analysis.IEEE Transactions
on Computers C-18, 401–409. [7]

Sethi, I. K. and Sarvarayudu, G. P. R. (1982) Hierarchical classifier design using mutual
information.IEEE Transactions on Pattern Analysis and Machine Intelligence 4, 441–
445. [36]

Stace, C. (1991)New Flora of the British Isles. Cambridge: Cambridge University Press.
[37]

Stone, M. (1974) Cross-validatory choice and assessment of statistical predictions (with
discussion).Journal of the Royal Statistical Society B 36, 111–147. [91, 92]

Therneau, T. M. and Atkinson, E. J. (1997) An introduction to recursive partitioning using
the RPART routines. Technical report, Mayo Foundation. [36, 49]

Toussaint, G. and Donaldson, R. (1970) Algorithms for recognizing contour-traced hand-
printed characters.IEEE Transactions on Computers 19, 541–546. [92]

Vapnik, V. N. (1995)The Nature of Statistical Learning Theory. New York: Springer-
Verlag. [76]

Vapnik, V. N. (1998)Statistical Learning Theory. New York: John Wiley and Sons. [76]

Venables, W. N. and Ripley, B. D. (1999)Modern Applied Statistics with S-PLUS. Third
Edition. New York: Springer-Verlag. [i]

Venables, W. N. and Ripley, B. D. (2002)Modern Applied Statistics with S. Fourth Edition.
New York: Springer-Verlag. [i]

Vinod, H. (1969) Integer programming and the theory of grouping.Journal of the American
Statistical Association 64, 506–517. [16]

Wahba, G. and Wold, S. (1975) A completely automatic french curve.Communications in
Statistics 4, 1–17. [61]

Webb, A. (1999)Statistical Pattern Recognition. London: Arnold. [2]

Wegman, E. J. (1990) Hyperdimensional data analysis using parallel coordinates.Journal
of the American Statistical Association 85, 664–675. [12]

Wilkinson, L. (1999)The Grammar of Graphics. New York: Springer-Verlag. [11]

Wilson, S. R. (1982) Sound and exploratory data analysis. InCOMPSTAT 1982, Proceed-
ings in Computational Statistics, eds H. Caussinus, P. Ettinger and R. Tamassone, pp.
447–450. Vienna: Physica-Verlag. [3]

Witten, I. H. and Frank, E. (2000)Data Mining. Practical Machine Learning Tools and
Techniques with Java Implementations. San Francisco: Morgan Kaufmann. [2]

105

Index

Entries inthis font are names ofS objects.

agnes, 13, 14

batch methods, 58
batchSOM, 20
biplot, 9
biplot.correspondence, 32
biplots, 9–10, 32
brush, 3

calibration plot, 93–95
CART, 40
Chernoff’s faces, 11
clara, 13
classification

non-parametric, 79
classification trees, 36, 38–41
cluster analysis, 13–18
cmdscale, 6
codebook vectors, 85
corresp, 32, 33
correspondence analysis, 32

multiple, 33
plots, 32

cov.wt, 4
cross-validation, 42, 73, 74, 93
Cushing’s syndrome, 69–85
cutree, 14

daisy, 6, 14
data editing, 81–83
Datasets

caith, 30
cpus, 36, 49
crabs, 11, 19, 77
Cushings, 69–72, 83
farms, 34
fgl, 8, 54, 73, 93
housing, 30
iris, 4, 6, 49, 52
rock, 64, 66

shuttle, 37
state.x77, 10, 12
swiss.x, 14

decision trees, 36
dendrogram, 14
deviance, 40, 41
diana, 13, 14
Dirichlet tessellation, 79
dissimilarities, 6, 14

ultrametric, 14
dist, 6, 14
distance methods, 6
doubt reports, 79

editing, 81–83
emclust, 17
entropy, 41
estimation

maximum likelihood, 60

faces, 11
fanny, 13, 16
forensic glass, 73–76, 88

GGobi, 12
Gini index, 41
glyph representations, 11
grand tour, 27

hclust, 13, 14
Hermite polynomials, 23
Hessian, 64

ICA, see independent component anal-
ysis

independent component analysis, 10
Iris, key to British species, 37
isoMDS, 8

Jaccard coefficient, 6

106 Index

k-means, 85
K-means clustering, 15
k-medoids, 16
kmeans, 13, 15

lda, 69
learning vector quantization, 79, 89
Legendre series, 22
library

class, 79
cluster, 6, 13
e1071, 77
fastICA, 11
libsvm, 77
mclust, 18
nnet, 61
rpart, 36, 49

linear regression, 70
loadings, 4
local minima, 21
loess, 94
logarithmic scoring, 76
logistic regression, 73, 74
LVQ, 89
LVQ1, 86
LVQ2.1, 87
LVQ3, 88

machine learning, 36
mca, 34
McCulloch–Pitts model, 60
mclass, 18
mclust, 13, 18
me, 17, 18
mhclass, 18
mhtree, 18
missing values, 42
mixproj, 18
mixture models, 18
model formulae

for trees, 49
mona, 13
mosaic plots, 30
mreloc, 18
mstep, 18
multidimensional scaling, 6–8
multinom, 68, 77
multivariate analysis, 2

na.rpart, 57

nearest neighbour classifier, 19, 79, 88
nearest neighbour methods

data editing, 81–83
neural networks, 59–73

definitions, 58
nnet, 61, 66
nnet.Hess, 64

OLVQ1, 86, 88
on-line methods, 58
outliers, 21, 22, 27

pam, 13, 17
parallel coordinate plots, 12
parallelization, 58
partitioning methods, 37
PCA, see principal components analy-

sis
plclust, 14
plot

glyph, 11
parallel coordinate, 12
profile, 11
star, 11

plot.corresp, 33
plotcp, 51, 55
plots

biplot, 9–10
predict, 64
principal component analysis, 3–6

loadings, 5
scores, 5

principal coordinate analysis, 6
princomp, 4
print, 64
printcp, 50, 54
probability forecasts, 93
profile plots, 11
projection pursuit, 6

indices, 22
prune.rpart, 49

quadratic programming, 77

regression
trees, 36, 41

regularization, 60
reject option, see doubt reports
rpart, 49, 51
rule

Index 107

Bayes, 39

sammon, 7
Sammon mapping, 7
scaling, multidimensional, 6
screeplot, 5
self-organizing maps, 19
similarities, 6
similarity coefficient, 13
simple matching coefficient, 6
skip-layer connections, 59
SOM, 19
SOM, 20
sphering, 21
star plots, 11
stars, 11, 12, 19
summary, 64
summary.rpart, 54
support vector machines, 76
support vectors, 77
svm, 77, 78

trees
classification, 38–41
pruning, 42, 49, 54

cost-complexity, 42
error-rate, 42

regression, 41

ultrametric dissimilarity, 13
Unix, i

vcov.multinom, 69
vector quantization, 85

learning, 89
visualization, 20

grand tour, 27

Windows, i, 18

XGobi, 12

