Finding Needles in Haystacks:

Tools for Finding Structure in Large Datasets

Brian D. Ripley



Visualization

Challenge is to explore data in more than two or perhaps three dimensions.
via projections

Principal components is the most obvious technidti®projection of data
with largest variance matrix (in several senses). Usually ‘shear’ the view to
give uncorrelated axes.

Lots of other projections looking for ‘interesting’ views, for example group-
Ings, outliers, clumping. Known as (exploratoprbjection pursuit

Implementation via numerical brute-force: freely availablX(®obi.
‘Random’ searching (so-callegtand tourg are not viable even in 5D.



Glyph representations

There are many ways to represent each case by a small diagram, of which
Chernoff’s faces are the most (in)famous.

Wilkinson, L. (1999)The Grammar of Graphicsspringer.

These glyph plots do depend on the ordering of variables and perhaps also
their scaling, and they do rely on properties of human visual perception. So
they have rightly been criticised as subject to manipulation, and one should
be aware of the possibility that the effect may differ by viewer. (Especially

If colour is involved; it is amazingly common to overlook the prevalence of
red—green colour blindness.)
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Leptograpsus variegatus Crabs

200 crabs from Western Australia. Two colour forms, blue and orange;
collected 50 of each form of each sex. Are the colour forms species?

Measurements of carapace (shell) lengthand widthCw, the size of the
frontal lobeFL, rear widthRW and body deptisD.



Fig. 1. Dorsal view of carapace of Leptograpsus,
showing measurements taken. FL, width of
frontal region just anterior to frontal tubercles.
RW, width of posterior region. CL, length along
midline. CW, maximum width. The body depth
was also measured; in females but not in males
the abdomen was first displaced.
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First three principal components on log scale.
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Projections of théd_eptograpsusrabs data found by projection pursuit. View (a) is a
random projection. View (b) was found using the natural Hermite index, view (c) by
the Friedman—Tukey index and view (d) by Friedman’s (1987) index.



Independent Components Analysis

A ‘hot topic’ that has moved from field to field over the last decade.
Originally(?) used for blind source signal separation in geophysics.

A projection pursuit technique in which the objective is to finchdepen-
dent linear combinations. So minimize entropy difference betweenj@int
projection distributions and the product of their marginals.

Many local minima. No guarantee that you will fikdsignals nott noise
sources. Choice df may be crucial.

Many impressive results: but often every other visualization technique finds
them.‘In the land of the blind . .

A close relative ofactor analysisand other latent variable methods.
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|CA for the Crabs data
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Boxplots of four ‘signals’ recovered by ICA from theabs data.

There is a lot of arbitrariness in the use of ICA, in particular in choosing
the number of signals. We might have expected to need two here, when the
results are much less impressive.



Multidimensional Scaling

Aim is to represent distances between points well.

Suppose we have distances;) between all pairs of points, or adissim-
llarity matrix. Classical MDS plots the firgt principal components, and

minimizes
2 P
> & —d
i#]

where(d;;) are the Euclidean distances in thié space.

More interested in getting small distances right. Sammon (1969) proposed

~ 1 d;: — d;;)?
min F(d, d) = ( )




Shepard and Kruskal (1962—4) proposed only to preserve the ordering of
distances, minimizing

Sol00dy) — dig)”
2iti Uy

over both the configuration of points and an increasing function

STRESS? =

The optimization task is quite difficult and this can be slow.



Multidimensional scaling
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An order-preserving MDS plot of the (raw) crabs data.
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After re-scaling to (approximately) constant carapace area.



A Forensic Example

Data on 214 fragments of glass collected at scenes of crimes. Each has a
measured refractive index and composition (weight percent of oxides of Na,
Mg, Al, Si, K, Ca, Ba and Fe).

Grouped as window float glass (70), window non-float glass (76), vehicle
window glass (17) and other (containers, tableware, headlamps) (22).
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Strip plot by type of glass.
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Strip plot by type of analyte.
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Kohonen'’s Self-Organizing Maps

Kohonen describes his own motivation as:

‘| just wanted an algorithm that would effectively map similar
patterns (pattern vectors close to each other in the input signal
space) onto contiguous locations in the output space.’

Kohonen (1995, p. VI)

He interpreted ‘contiguous’ via a rectangular or hexagonal 2-D lattice.

In K-means clusteringhe data are split inté{ groups, and each example

IS assigned to the cluster whose representatiyaés nearest to the example.
The cluster representatives (‘centre’) are then adjusted to be the centroid of
the group, and iteration gives a simple, finite, algorithm.



In SOM (self-organizing mapping) the representatiyies ) are arranged on
a regular grid, with representatives at nearby points on the grid are more
similar that those which are widely separated.

Examples are presented in turn until convergence. #tjeare initially
assigned at random. Whenever an examples presented, the closest
representativen; is found. Then

m; < m,; + ajx — my] for all neighbours .

Both the constant and the definition of ‘neighbour’ change with time.

A cruder form of MDS, but one that scales to 100,000+ examples.
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SOM mapping of the crabs data t® & 6 hexagonal grid. The left panel is a stars plot
of the representatives. In the right panel the labels of those examples mapped to each
cluster are distributed randomly within the circle representing the cluster.
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Clustering

General idea is to divide data into groups such that the points within a group
are more similar to each other than to those in other groups.

Important details:

e The numbel of groups may or may not be known.
e May wish to allow ‘outliers’ assigned to no group.

e Could allow overlap in group membership (‘fuzzy clustering’).

Note that need a measure of (dis)similarity or distance between a point and
a group of points.



A Clustering of Cluster Methods

e Agglomerative hierarchical methods.

— Produces a set of clusterings, usually one for daehn, . . ., 2.

— Main differences are in calculating group—group dissimilarities from
point—point dissimilarities.

— Computationally easy.
e Optimal partitioning methods.

— Produces a clustering for fixed.
— Need an initial clustering.

— Lots of criteria to optimize, some based on (joint normal) probability
models.

— Can have distinct ‘outlier’ group(s).
e Divisive hierarchical methods.

— Produces a set of clusterings, usually one for daefe, ..., K < n.
— Computationally nigh-impossible.
— Most available methods ansonothetidsplit on one variable at each stage).



References

Comprehensive reference:
Gordon, A. D. (1999 lassification.Second Edition.

Good introduction:
Kaufman, L. and Rousseeuw, P. J. (1980)ding Groups in Data.

An example

TheLeptograpsusrabs data, with 4 groups (known in advance here). Same
iInformation as available to projection pursuit and MDS.
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Left: Macnaughton-Smitet al.'s divisive method.
Right: ‘hardened’ classification from fuzzy clustering.



