Support Vector Machines *
The Interface to 1ibsvm in package 1071

by David Meyer
Technische Universitat Wien, Austria
David.Meyer@ci.tuwien.ac.at

January 9, 2002

“Hype or Hallelujah?” is the provocative title used by Bennett & Campbell
(2000) in an overview of Support Vector Machines (SVM). SVMs are currently
a hot topic in the machine learning community, creating a similar enthusiasm at
the moment as Artificial Neural Networks used to do before. Far from being a
panacea, SVMs yet represent a powerful technique for general (nonlinear) classi-
fication, regression and outlier detection with an intuitive model representation.

The package e1071 offers an interface to the award-winning! C+-+-implementation
by Chih-Chung Chang and Chih-Jen Lin, 1ibsvm (current version: 2.31), fea-
turing:

e (- and v-classification
e one-class-classification (novelty detection)
e ¢ and v-regression
and includes:
e linear, polynomial, radial basis function, and sigmoidal kernels
e formula interface
o k-fold cross validation

For further implementation details on 1ibsvm, see Chang & Lin (2001).

Basic concept

SVMs were developed by Cortes & Vapnik (1995) for binary classification. Their
approach may be roughly sketched as follows:

Class separation: basically, we are looking for the optimal separating hyper-
plane between the two classes by maximizing the margin between the
classes’ closest points (see Figure 1)—the points lying on the boundaries
are called support vectors, and the middle of the margin is our optimal
separating hyperplane;

*A smaller version of this article appeared in R-News, Vol.1/3, 9.2001

IThe library won the IJCNN 2001 Challenge by solving two of three problems: the Gen-
eralization Ability Challenge (GAC) and the Text Decoding Challenge (TDC). For more
information, see: http://www.csie.ntu.edu.tw/“cjlin/papers/ijcnn.ps.gz.

David.Meyer@ci.tuwien.ac.at
http://www.csie.ntu.edu.tw/~cjlin/papers/ijcnn.ps.gz

Overlapping classes: data points on the “wrong” side of the discriminant
margin are weighted down to reduce their influence (“soft margin”);

Nonlinearity: when we cannot find a linear separator, data points are pro-
jected into an (usually) higher-dimensional space where the data points
effectively become linearly separable (this projection is realised via kernel
techniques);

Problem solution: the whole task can be formulated as a quadratic optimiza-
tion problem which can be solved by known techniques.

A program able to perform all these tasks is called a Support Vector Machine.

/ . Separating
Hyperplane

Margin

Support Vectors

Figure 1: Classification (linear separable case)

Several extensions have been developed; the ones currently included in 1ibsvm
are:

v-classification: this model allows for more control over the number of support
vectors (see Scholkopf et al., 2000) by specifying an additional parameter
v which approximates the fraction of support vectors;

One-class-classification: this model tries to find the support of a distribution
and thus allows for outlier /novelty detection;

Multi-class classification: basically, SVMs can only solve binary classifica-
tion problems. To allow for multi-class classification, libsvm uses the
one-against-one technique by fitting all binary subclassifiers and finding
the correct class by a voting mechanism;

e-regression: here, the data points lie in between the two borders of the margin
which is maximized under suitable conditions to avoid outlier inclusion;

v-regression: with analogue modifications of the regression model as in the
classification case.

Usage in R

The R interface to 1ibsvm in package 1071, svm(), was designed to be as
intuitive as possible. Models are fitted and new data are predicted as usual,
and both the vector/matrix and the formula interface are implemented. As
expected for R’s statistical functions, the engine tries to be smart about the
mode to be chosen, using the dependent variable’s type (y): if y is a factor,
the engine switches to classification mode, otherwise, it behaves as a regression
machine; if y is omitted, the engine assumes a novelty detection task.

Examples

In the following two examples, we demonstrate the practical use of svm()
along with a comparison to classification and regression trees as implemented
in rpart ().

Classification

In this example, we use the glass data from the UCI Repository of Machine
Learning Databases (available in package mlbench) for classification. The task
is to predict the type of a glass on basis of its chemical analysis. We start by
splitting the data into a train and test set:

library(el1071)
library(rpart)
library(mlbench)
data(Glass)

split data into a train and test set

index <- 1:nrow(x)

testindex <- sample(index, trunc(length(index)/3))
testset <- x[testindex,]

trainset <- x[-testindex,]

Both for the SVM and the partitioning tree (via rpart()), we fit the model and
try to predict the test set values:

svm
svm.model <- svm(Type ~ ., data = trainset, cost = 100, gamma = 1)
svm.pred <- predict(svm.model, testset[,-10])

(The dependent variable, Type, has column number 10. cost is a general pe-
nalizing parameter for C-classification and gamma is the radial basis function-
specific kernel parameter.)

rpart
rpart.model <- rpart(Type ~ ., data = trainset)
rpart.pred <- predict(rpart.model, testset[,-10], type = "class")

http://www.ics.uci.edu/mlearn/MLRepository.html
http://www.ics.uci.edu/mlearn/MLRepository.html

Index Method \ Min. \ 1st Qu. \ Median \ Mean \ 3rd Qu. \ Max. ‘

accuracy rate | svim 0.55 0.63 0.68 0.68 0.70 | 0.79
rpart 0.49 0.63 0.65 0.66 0.70 | 0.79
kappa svm 0.40 0.51 0.56 0.56 0.61 | 0.72
rpart 0.33 0.49 0.52 0.53 0.59 | 0.70

Table 1: Performance of svm() and rpart () for classification (100 replications)

A cross-tabulation of the true versus the predicted values yields:

compute svm confusion matrix
table(pred = svm.pred, true = testset[,10])

true

pred 1 23567
18 72000
25190010
33 32000
50 40220
60 00030
72 00008

compute rpart confusion matrix
table(pred = rpart.pred, true = testset[,10])

true

pred 1 23567
18102220
29171020
30 41000
50 10020
60 00000O0
71 10008

Finally, we compare the performance of the two methods by computing the re-
spective accuracy rates and the kappa indices (as computed by classAgreement ()
also contained in package €1071). In Table 1, we summarize the results of 100
replications: svm() seems to perform slightly better than rpart().

Non-linear e-Regression

The regression capabilities of SVMs are demonstrated on the ozone data, also
contained in mlbench. Again, we split the data into a train and test set.

library(el1071)
library(rpart)
library(mlbench)
data(0zone)

split data into a train and test set
index <- 1:nrow(x)
testindex <- sample(index, trunc(length(index)/3))

Method \ Min. \ 1st Qu. \ Median \ Mean \ 3rd Qu. \ Max. ‘

svm 7.8 10.4 11.6 11.9 13.1 | 17.0
rpart 4.8 7.7 8.8 9.0 10.3 14.2

Table 2: Performance of svm() and rpart () for regression (mean squared error,
100 replications)

testset <- x[testindex,]
trainset <- x[-testindex,]

svm
svm.model <- svm(V4 ~ ., data = trainset, cost = 1000, gamma = 0.0001)
svm.pred <- predict(svm.model, testset[,-4])

rpart
rpart.model <- rpart(V4 ~ ., data = trainset)
rpart.pred <- predict(rpart.model, testset[,-4])

We compare the two methods by the mean squared error (MSE)—see Table 2.
Here, in contrast to classification, rpart () does a better job than svm().

Elements of the svm object

The function svm() returns an object of class “svm”, which partly includes the
following components:

SV: matrix of support vectors found;
labels: their labels in classification mode;

index: index of the support vectors in the input data (could be used e.g., for
their visualization as part of the data set).

If the cross-classification feature is enabled, the svm object will contain some
additional information described below.

Other main features

Class Weighting: if one wishes to weight the classes differently (e.g., in case
of asymmetric class sizes to avoid possibly overproportional influence of
bigger classes on the margin), weights may be specified in a vector with
named components. In case of two classes A and B, we could use something
like: m <- svm(x, y, class.weights = c(A = 0.3, B = 0.7))

Cross-classification: to assess the quality of the training result, we can per-
form a k-fold cross-classification on the training data by setting the pa-
rameter cross to k (default: 0). The svm object will then contain some
additional values, depending on whether classification or regression is per-
formed. Values for classification:

accuracies: vector of accuracy values for each of the k predictions

tot.accuracy: total accuracy
Values for regression:

MSE: vector of mean squared errors for each of the k predictions
tot.MSE: total mean squared error

scorrcoef: Squared correlation coefficient (of the predicted and the true
values of the dependent variable)

Tips on practical use

e Note that SVMs may be very sensible to the proper choice of parame-
ters, so allways check a range of parameter combinations, at least on a
reasonable subset of your data.

e For classification tasks, you will most likely use C-classification with the
RBF kernel (default), because of its good general performance and the
few number of parameters (only two: C and). The authors of 1ibsvm
suggest to try small and large values for C—like 1 to 1000—first, then to
decide which are better for the data by cross validation, and finally to try
several 7’s for the better C’s.

e Be careful with large datasets as training times may increase rather fast.

Model Formulations and Kernels
Dual representation of models implemented:

o (-classification:

1

min iaTQa —e'a

st. 0<<C,i=1,...,1, (1)
y a=0,

where e is the unity vector, C is the upper bound, Q is an [by [positive
semidefinite matrix, Qi; = v;y; K (7, z;), and K (z;,z;) = ¢(x;) " p(x;) is
the kernel.

e v-classification:

n;in %aTQa

s.t. 0<o; <1/l i=1,...,1, (2)
e a > v,
yTa:O.

where v € (0, 1].

e one-class classification:

1

min §aTQa

s.t. 0<o; <1/(W), i=1,...,1, (3)
ela=1,

e c-regression:

min l(a—a*)TQ(a—a*)—i—

o,a* 2
1 1
62(&1 +a;) + Zyz(CM —a;)
=1 =1
s.t. 0<a,of <C,i=1,...,1, (4)
!
Z(ai —af)=0
i=1
e v-regression:
1
min “(a—a")"Qla—a*) +2z (; —a)
o,o* 2
s.t. 0<aw,a; <C,i=1,...,1, (5)

e'(a—a*)=0

e'(a+a*)=Cv.

Available kernels:

’ kernel \ formula \ parameters ‘
linear u'v (none)
polynomial y(uTv +co)? ~,d, cg
radial basis fct. | exp{—v|lu—v|?} | v
sigmoid tanh{yu'v +co} | v,co

Conclusion

We hope that svm provides an easy-to-use interface to the world of SVMs, which
nowadays have become a popular technique in flexible modelling. There are
some drawbacks, though: SVMs scale rather badly with the data size due to
the quadratic optimization algorithm and the kernel transformation. Further-
more, the correct choice of kernel parameters is crucial for obtaining good re-
sults, which practically means that an extensive search must be conducted on

the parameter space before results can be trusted, and this often complicates
the task (the authors of libsvm currently conduct some work on methods of
efficient automatic parameter selection). Finally, the current implementation
is optimized for the radial basis function kernel only, which clearly might be
suboptimal for your data.

References

Bennett, K. P. & Campbell, C. (2000). Support vector machines: Hype or hal-
lelujah? SIGKDD Ezxplorations, 2(2). http://www.acm.org/sigs/sigkdd/
explorations/issue2-2/bennett.pdf.

Chang, C.-C. & Lin, C.-J. (2001). LIBSVM: a library for support vector
machines. Software available at http://www.csie.ntu.edu.tw/"cjlin/
libsvm, detailed documentation (algorithms, formulae, ...) can be found
in http://www.csie.ntu.edu.tw/"cjlin/papers/libsvm.ps.gz

Cortes, C. & Vapnik, V. (1995). Support-vector network. Machine Learning,
20, 1-25.

Scholkopf, B., Smola, A., Williamson, R. C., & Bartlett, P. (2000). New support
vector algorithms. Neural Computation, 12, 1207-1245.

Vapnik, V. (1998). Statistical learning theory. New York: Wiley.

http://www.acm.org/sigs/sigkdd/explorations/issue2-2/bennett.pdf
http://www.acm.org/sigs/sigkdd/explorations/issue2-2/bennett.pdf
http://www.csie.ntu.edu.tw/~cjlin/libsvm
http://www.csie.ntu.edu.tw/~cjlin/libsvm
http://www.csie.ntu.edu.tw/~cjlin/papers/libsvm.ps.gz

