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Outline

• data visualization

– projection methods

– multi-dimensional scaling

– self-organizing maps

– clustering

• magnetic resonance imaging (MRI) of human brains

– partially supervised clustering

– ageing and Alzheimer’s Disease

• functional MRI

– makingt-statistic maps

– robustness and calibration



Visualization

Challenge is to explore data in more than two or perhaps three dimensions.

via projections

Principal components is the most obvious technique:kD projection of data
with largest variance matrix (in several senses). Usually ‘shear’ the view to
give uncorrelated axes.

Lots of other projections looking for ‘interesting’ views, for example group-
ings, outliers, clumping. Known as (exploratory)projection pursuit.

Implementation via numerical brute-force: freely available inXGobi.
‘Random’ searching (so-calledgrand tours) are not viable even in 5D.



Leptograpsus variegatus Crabs

200 crabs from Western Australia. Two colour forms, blue and orange;
collected 50 of each form of each sex. Are the colour forms species?

Measurements of carapace (shell) lengthCL and widthCW, the size of the
frontal lobeFL, rear widthRW and body depthBD
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(a) (b)

(c) (d)

Projections of theLeptograpsuscrabs data found by projection pursuit. View (a) is a
random projection. View (b) was found using the natural Hermite index, view (c) by
the Friedman–Tukey index and view (d) by Friedman’s (1987) index.



Independent Components Analysis

A ‘hot topic’ that has moved from field to field over the last decade.
Originally(?) used for blind source signal separation in geophysics.

A projection pursuit technique in which the objective is to findk indepen-
dent linear combinations. So minimize entropy difference between jointkD
projection distributions and the product of their marginals.

Many local minima. No guarantee that you will findk signals notk noise
sources. Choice ofk may be crucial.

Many impressive results: but often every other visualization technique finds
them. ‘In the land of the blind . . . .’

A close relative offactor analysisand other latent variable methods.



ICA experiment, from Deco & Obradovic (1996).



Multidimensional Scaling

Aim is to represent distances between points well.

Suppose we have distances(dij) between all pairs ofn points, or adissim-
ilarity matrix. Classical MDS plots the firstk principal components, and
minimizes ∑

i 6=j

d2
ij − d̃2

ij

where(d̃ij) are the Euclidean distances in thekD space.

More interested in getting small distances right. Sammon (1969) proposed

min E(d, d̃) =
1∑

i 6=j dij

∑
i 6=j

(dij − d̃ij)
2

dij



Shepard and Kruskal (1962–4) proposed only to preserve the ordering of
distances, minimizing

STRESS2 =

∑
i 6=j

[
θ(dij)− d̃ij

]2

∑
i 6=j d̃2

ij

over both the configuration of points and an increasing functionθ.

The optimization task is quite difficult and this can be slow.



Multidimensional scaling

-0.10

0.0

0.10

-1.5 -1.0 -0.5 0.0 0.5 1.0

Blue male
Blue female

Orange Male
Orange female

An order-preserving MDS plot of the (raw) crabs data.
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A Forensic Example

Data on 214 fragments of glass collected at scenes of crimes. Each has a
measured refractive index and composition (weight percent of oxides of Na,
Mg, Al, Si, K, Ca, Ba and Fe).

Grouped as window float glass (70), window non-float glass (76), vehicle
window glass (17) and other (containers, tableware, headlamps) (22).
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Kohonen’s Self-Organizing Maps

Kohonen describes his own motivation as:

‘I just wanted an algorithm that would effectively map similar
patterns (pattern vectors close to each other in the input signal
space) onto contiguous locations in the output space.’

Kohonen (1995, p. VI)

He interpreted ‘contiguous’ via a rectangular or hexagonal 2-D lattice.

In K-means clusteringthe data are split intoK groups, and each example
is assigned to the cluster whose representativemj is nearest to the example.
The cluster representatives (‘centre’) are then adjusted to be the centroid of
the group, and iteration gives a simple, finite, algorithm.



In SOM (self-organizing mapping) the representatives(mj) are arranged on
a regular grid, with representatives at nearby points on the grid are more
similar that those which are widely separated.

Examples are presented in turn until convergence. Themj are initially
assigned at random. Whenever an examplex is presented, the closest
representativemj is found. Then

mi←mi + α[x−mi] for all neighboursi .

Both the constantα and the definition of ‘neighbour’ change with time.

A cruder form of MDS, but one that scales to 100,000+ examples.
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SOM mapping of the crabs data to a6 × 6 grid. The labels of those examples mapped
to each cluster are distributed randomly within the circle representing the cluster.



Clustering

General idea is to divide data into groups such that the points within a group
are more similar to each other than to those in other groups.

Important details:

• The numberk of groups may or may not be known.

• May wish to allow ‘outliers’ assigned to no group.

• Could allow overlap in group membership (‘fuzzy clustering’).

Note that need a measure of (dis)similarity or distance between a point and
a group of points.



A Clustering of Cluster Methods

• Agglomerative hierarchical methods.

– Produces a set of clusterings, usually one for eachk = n, . . . , 2.

– Main differences are in calculating group–group dissimilarities from
point–point dissimilarities.

– Computationally easy.

• Optimal partitioning methods.

– Produces a clustering for fixedK.

– Need an initial clustering.

– Lots of criteria to optimize, some based on (joint normal) probability
models.

– Can have distinct ‘outlier’ group(s).

• Divisive hierarchical methods.

– Produces a set of clusterings, usually one for eachk = 2, . . . , K � n.

– Computationally nigh-impossible.

– Most available methods aremonothetic(split on one variable at each stage).



References

Comprehensive reference:
Gordon, A. D. (1999)Classification.Second Edition.

Good introduction:
Kaufman, L. and Rousseeuw, P. J. (1990)Finding Groups in Data.

An example

TheLeptograpsuscrabs data, with 4 groups (known in advance here). Same
information as available to projection pursuit and MDS.
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Left: True. Right: (K = 4)–means.
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Left: complete-link hierarchical clustering.

Right: ‘maximum likelihood’ clustering with ellipsoidal clusters.
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Left: Macnaughton-Smithet al.’s divisive method.

Right: ‘hardened’ classification from fuzzy clustering.

Alternative approach

Model as mixture of (multivariate) normal distributions. Hard, but some
progress with MCMC approaches in the Bayesian paradigm.



Case Study:

Magnetic Resonance Imaging

of Brain Structure

Joint work with Jonathan Marchini (EPSRC-funded D.Phil student).

Data, background and advice provided by Peter Styles (MRC Biochemical
and Clinical Magnetic Resonance Spectroscopy Unit, Oxford)



Neurological Change

Interest is in the change of tissue state and neurological function after
traumatic events such as a stroke or tumour growth and removal. The aim
here is to identify tissue as normal, impaired or dead, and to compare images
from a patient taken over a period of several months.

In MRI can trade temporal, spatial and spectral resolution. In MR spec-
troscopy the aim is a more detailed chemical analysis at a fairly low spatial
resolution. In principle chemical shift imaging provides a spectroscopic
view at each of a limited number of voxels: in practice certain aspects of
the chemical composition are concentrated on.



Pilot Study

Our initial work has been exploring ‘T1’ and ‘T2’ images (the conventional
MRI measurements) to classify brain tissue automatically, with the aim
of developing ideas to be applied to spectroscopic measurements at lower
resolutions.

Consider image to be made up of ‘white matter’, ‘grey matter’, ‘CSF’
(cerebro–spinal fluid) and ‘skull’.

Initial aim is reliable automatic segmentation.



Some Data

T1 (left) and T2 (right) MRI sections of a ‘normal’ human brain.

This slice is of172× 208 pixels. Imaging resolution was 1 x 1 x 5 mm.



Data from the same image in T1–T2 space.



Imaging Imperfections

The clusters in the T1–T2 plot were surprising diffuse. Known imperfec-
tions were:

(a) ‘Mixed voxel’ / ‘partial volume’ effects. The tissue within a voxel may
not be all of one class.

(b) A ‘bias field’ in which the mean intensity from a tissue type varies across
the image; mainly caused by inhomogeneity in the magnetic field.

(c) The ‘point spread function’. Because of bandwidth limitations in the
Fourier domain in which the image is acquired, the true observed image
is convolved with a spatial point spread function of ‘sinc’ (sin x/x) form.
The effect can sometimes be seen at sharp interfaces (most often the
skull / tissue interface) as a rippling effect, but is thought to be small.



Modelling the data

Each data point (representing a pixel) consists of one T1 and one T2 value

Observations come from a mixture of sources so we use a finite normal
mixture model

f (y; Ψ) =

g∑
i=1

πiφ(y; µi, Σi)

where the mixing proportions,πi, are non-negative and sum to one and
whereφ(y; µi, Σi) denotes the multivariate normal p.d.f with mean vector
µ and covariance matrixΣ.

Don’t believe what you are told: almost everything we were told about
image imperfections from the physics was clearly contradicted by the data.



Application/Results

6 component model

• CSF

• White matter

• Grey matter

• Skull type 1

• Skull type 2

• Outlier component (fixed mean and large variance)

Initial estimates chosen manually from one image and used in the classifi-
cation of other images.



A Second Dataset

T1 (left) and T2 (right) MRI sections of another ‘normal’ human brain.



Classification image (left) and associated T1/T2 plot (right)



Case Study:

Structural MRI of Ageing and Dementia

Joint work with Kevin Bradley, Radiologist at OPTIMA (Oxford Project to
Investigate Memory and Ageing).



Structural MRI of Ageing and Dementia

Everyone’s brain shrinks with age (0.4% per year), and not uniformly.

Disease processes, for example Alzheimer’s Disease (AD) change both the
overall rate and the differences in rates in different parts of the brain.
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Use serial structural MRI, probably of two measurementsn months apart.

How large shouldn be?

How many patients are needed? (Parallel study by Foxet al, 2000,Archives
of Neurology.)

Study with 39 subjects, most imaged 3 or 4 times over up to 15 months.

Three groups, ‘normal’ (32), ‘possible’ (2) and ‘probable (5).

Given the ages, expect a substantial fraction of ‘normals’ to have pre-clinical
AD.
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Statistical Analysis

Major source of variation is between subjects. Not many ‘abnormals’, and
usually the diseased group is more variable than the normals.

Choose to use linear mixed-effects models (NLME of Pinheiro & Bates).
Relative size of the random effects answers the questions.

How not to do it

Fox et al has 18 normals, 18 AD, 9 of each sex in each group. They used
the elementary sample-size formulae for detecting differences between two
arms of the trial.

Hypothesis was that a drug would give a 20% reduction in the excess overall
brain shrinkage in AD patients. Concluded that 168 subjects were needed in
each arm of the trial.

That’s the two-sided formula! What is the variability in the treatment group
(pilot size 0)?



Case Study:

Magnetic Resonance Imaging

of Brain Function

Joint work with Jonathan Marchini.

Data, background and advice provided by Stephen Smith (Oxford Centre
for Functional Magnetic Resonance Imaging of the Brain).



‘Functional’ Imaging

Functional PET and MRI are used for studies of brain function: give a
subject a task and see which area(s) of the brain ‘light up’.

Functional studies were done with PET in the late 1980s and early 1990s,
now fMRI is becoming possible (needs powerful magnets—that in Oxford
is 3 Tesla). Down to1× 1× 3 mm voxels.

PET has lower resolution, say3 × 3 × 7 mm voxels at best. So although
128 × 128 × 80 (say) grids might be used, this is done by subsampling.
Comparisons are made between PET images in two states (e.g. ‘rest’ and
‘stimulus’) and analysis is made on the difference image. PET images are
very noisy, and results are averaged across several subjects.

fMRI has a higher spatial resolution, and temporal resolution of around one
second. So most commonly stimuli are applied for a period of about 30 secs,
images taken around every 3 secs, with several repeats of the stimulus being
available for one subject.



The commonly addressed statistical issue is ‘has the brain state changed’,
and if so where?



A Look at Some Data
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A real response (solid line) in an area of activation from the visual experiment. The
periodic boxcar shape of the visual stimulus is shown below.



SPM

‘Statistical Parametric Mapping’ is a widely used program and methodology
of Friston and co-workers, originating with PET. The idea is to map ‘t-
statistic’ images, and to set a threshold for statistical significance.

The t-statistic is in PET of a comparison between states over a number of
subjects, voxel by voxel. Thus the numerator is an average over subjects
of the difference in response in the two states, and the denominator is an
estimate of the standard error of the numerator.

The details differ widely between studies, in particular if a pixel-by-pixel or
global estimate of variance is used.

The details also vary widely between releases of and users of the programs.



Example PET Statistics Images

From Holmeset al (1996).

Mean difference image. Voxel-wise variance image.



Voxel-wiset–statistic image.

Smoothed variance image. Resultingt–statistic image.



The GLM approach

A SAS-ism: it means linear models. May take the autocorrelation of the
noise (in time) into account.

The signal is usually filtered by a matrixS, so the model becomes

SY = SXβ + Sε, ε ∼ N (0, σ2V (θ))

Two main issues:

1. What is the best estimatêβ of β?

2. What is a good (enough) estimate of its null-hypothesis variability,
var(β̂)? (For at-test of some component being non-zero.)



Multiple comparisons

Finding the voxel(s) with highest SPM values should detect the areas of the
brain with most change, but does not say they are significant changes. Thet

distributionmightapply at one voxel, but it does not apply to the voxel with
the largest response.

Conventional multiple comparison methods (e.g. Bonferroni) may over-
compensate if the voxel values are far from independent.

Three main approaches:

1. (High) level crossings of Gaussian stochastic processes
(Worsleyet al): Euler characteristics.

2. Randomization-based analysis (Holmeset al) across replications.

3. Variability within the time series at a voxel.



fMRI Example

Data on64 × 64 × 14 grid of voxels. (Illustrations omit top and bottom
slices and areas outside the brain, all of which show considerable activity,
probably due to registration effects.)

A series of 100 images at 3 sec intervals: a visual stimulus (a striped pattern)
was applied after 30 secs for 30 secs, and the A–B pattern repeated 5 times.
In addition, an auditory stimulus was applied with 39 sec ‘bursts’.

Conventionally the images are filtered in both space and time, both high-
pass time filtering to remove trends and low-pass spatial filtering to reduce
noise (and make the Euler characteristic results valid). The resultingt–
statistics images are shown on the next slide. These have variances estimated
for each voxel based on the time series at that voxel.



SPM99t–statistic images, with spatial smoothing on the right



Slice 5, with spatial smoothing on the right



A Closer Look at Some Data

A 9× 9 grid in an area of slice 5 containing activation.



Alternative Analyses

• Work with raw data.

• Non-parametric robust de-trending, Winsorizing if required.

• Work in spectral domain.

• Match a filter to the expected pattern of response (square wave input,
modified by the haemodynamic response).

• Non-parametric smooth estimation of the noise spectrum at a voxel,
locally smoothed across voxels.

• Response normalized by the noise variance should be Gumbel (with
known parameters) on log scale.

This produced much more extreme deviations from the background varia-
tion, and much more compact areas of response. 30–100 minutes for a brain
(in S / R on ca 400MHz PC).



Log abs filtered response, with small values coloured as background (red). Threshold

for display isp < 10−5 (and there are ca 20,000 voxels inside the brain here).



Trend-removal
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A voxel time series showing an obvious non-linear trend.

We used a running-lines smoother rejecting outliers (and Winsorizing the
results).
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Histogram of log filtered response, for an image with activation.

We can validate the distribution theory by looking at frequencies without
stimulus, and ‘null’ images.



Plotting p values

p-value image of slice 5
thresholded to show
p-values below10−4 and
overlaid onto an image of
the slice. Colours indicate
differential responses
within each cluster. An
area of activation is shown
in the visual cortex, as well
as a single ‘false-positive’,
that occurs outside of the
brain.
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Calibration

Before we worry about multiple comparisons, are thet-statistics (nearly)
t-distributed?

Few people have bothered to check, and those who did (Bullmore, Brammer
et al, 1996) found they were not.

We can use null experiments as
some sort of check.
In our analysis we can use other
frequencies to self-calibrate, but
wedon’t need to:

x

-lo
g(

1-
F

(x
))

0 5 10 15

0
5

10
15

0
-2

-4
-6

-8
P

-v
al

ue
 (

po
w

er
s 

of
 1

0)



Bullmore et al.
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AR(1) + non−linear detrending
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