
Data Mining by Scaling Up Open Source Software

Brian D. Ripley and Fei Chen
University of Oxford, Department of Statistics
1 South Parks Road
Oxford OX1 3TG, UK
{ripley,feic}@stats.ox.ac.uk

Data Mining is a modern buzzword for finding (useful) information from large (often massive)
databases. If has also been an opportunity for the re-invention (or re-marketing) of many ideas from
statistics and machine learning, and the marketing of many commercial programs for ‘data mining’.
In the words of Witten & Franke (2000, p. 26)

What’s the difference between machine learning and statistics? Cynics, looking wryly at the
explosion of commercial interest (and hype) in this area, equate data mining to statistics plus
marketing.

We are interested in applying good statistical practice to large datasets. This study has been
motivated1 by modelling of insurance databases. A modest database might contain a million insurance
proposals as well as the subsequent claims records, and motor insurance databases exist2 with over
60 million records. These are modest numbers alongside CRM3 applications of data mining, but do
have a clearly defined goal: a better formula for setting insurance premiums. They are not modest
numbers for standard statistical software, and we are exploring how Open Source software can be
adapted to meet the challenge. We have been working with the statistical systemR and the database
management systemsMySQL (Axmark et al., 2002) andPostgreSQL.

The anatomy of statistical software

Most statistical packages today are monolithic systems. The statistical software alone is respon-
sible for all tasks related to data analysis, from data management to data visualization. As data set
size grows, it is sometimes difficult to extend these systems to meet the new computational needs.
Although 1Gb memory is not uncommon these days, it is still a taxing job forR to fit models such as
a generalized linear model on data sets of the sizes sketched in the introduction.

Another limiting factor probably is network bandwidth. Large data sets tend to be stored in
databases. To fit a model usingR usually means that the data has to be transferred across a network
into R. As a result, computation time is dominated by the overhead of data transfer for large data sets.

An alternative is to take as much as possible out of the monolithic system and to design a mod-
ular system where different tasks run as separate processes on different processors (servers) outside
the statistical package (the statistics server).

We often find when fitting a statistical model that there are two types of computations, each
involving different amounts of data. One type requires the entire data set; the operations performed
on the data tend to be primitive, usually involving some sort of summarizing operation. The other
type requires more complicated manipulation of summary results, but the amount of data required is
small.

For example, in optimization we want to maximize some objective function,maxβ L(β, X),
that depends on some parameter vectorβ and some dataX. This is usually solved iteratively, and at
time stept + 1 we use an iterationβ(t+1) = β(t) + U(X, β(t)). HereU is a correction factor defined
by a particular algorithm and the objective functionL(·). The data-intensive part of the algorithm lies
in calculatingU . In all but the simplest algorithms, the calculation involves multiple steps; some of

1Fei Chen’s D. Phil studies have been sponsored by EMB, a firm of insurance actuaries.
2The State Farm Insurance Company in the U.S.A has more than 66 million insurance policies.
3Customer relationship management: stores tracking customers via ‘loyalty cards’.

them requireX, some of them are just a simple update of intermediate results. The parts that require
X are often fairly straightforward such as computing the objective function or its derivatives. For
example, the quasi-Newton method with BFGS update has the form

β(t+1) = β(t) +

(
−β(t)SST β(t)

ST β(t)S
− GGT

GT S

)
,

whereS = β(t+1) − β(t) andG = L′(X, β(t+1)) − L′(X, β(t)) . As we can see from the framed
boxes, the data-intensive part of the algorithm is straightforward (if the derivative is known).

Computing near the data

This observation suggests a distributed computing idea where we perform the data-intensive but
algorithmically less sophisticated operations on the entire data set near where this data set is located
The summary results (such as the value of an objective function or its derivatives) are sent back to the
server responsible for the overall algorithmic flow, e.g. constructing the correction factorU .

We have been using a component-based design where the responsibilities of model fitting, data
management and computation are delegated to different processors. A database system is responsible
for managing data, including creating model matrices. Low level linear algebra routines are com-
putational tasks. Communicating model formulas, managing algorithm flows as well as inter-system
communications during algorithm execution are all parts of model fitting.

The system consists of three main parts (see the figure): a statistics server, a data server and a
computing server. The computation server is a collection of processors awaiting jobs submitted from
the central server-the statistics server. The statistics server is essentially an overarching “operating
system”, which, by communicating with a server that embedsR, dictates how the data server and
the computation server are to interact with each other and how the computation server is to finish a
computational task.

What do we gain by distributing the computations? There is a large gain by running computa-
tions local to the database and so avoiding transferring large datasets across the network. It is also
convenient, and perhaps necessary, for the analysis to be run from the data analyst’s local workstation.
Our style (in common with many data analysts) is to look at a large number of graphical displays, and
performance considerations often demand the graphical software to run on the local machine: we are
envisaging applications in which the end user and the database server are connected over a wide-area
network.

Whether we need an additional pool of computation servers depends on the algorithm and the
hardware available. We are envisaging the use of algorithms such as the fitting of neural networks in
settings in which the database will reside on a relatively slow server. In our current implementation
this is not really exploited: we think of it as ‘future proofing’ the design.

The requirements that we have of a distributed computing system are simple.

1. We would like to assume that the end users operate in only one language,S, and thus avoid
having to issueSQL-like statements such asselect x from X from within R.

2. We would like to have transparency of computation from the perspective of the end user; that
is, we would like distributed computing to take place automatically as much as possible.

3. We need a system that can handle data sets of the scale of the introduction.

Computing near the data

?>=<89:;
(end user interface)

?>=<89:;R
Rgfed`abcServant

Computation ServerData ServerStatistics Server

?>=<89:;
MySQL

Node 1

Node 2

Node 3

Node 4

NodeN

?>=<89:;R

?>=<89:;R

?>=<89:;R

?>=<89:;R

?>=<89:;R

oo CORBA //

��

PVM													

DD															

zz

PVMvvvvvvvv

::vvvvvvvvvv

oo PVM //
dd

PVM
HHH

HHH
HH

$$HHHHHHHHHH

ZZ

PVM
55

55
55

55
55

55
5

��5
55

55
55

55
55

55
55

OO

��

This figure illustrates the idea and implementation of performing computation where the data
resides. The end user interface is accessible through the Statistics Server,R, which sends out job
requests for statistical analysis via aCORBA interface. The execution of an analysis actually takes
place on the data server,MySQL, through aCORBA servant running embeddedR. The servant thus
understands instructions sent by the statistics server and is able to execute anyR code. The computing
server, a cluster of processors each also running an embeddedR process, is available to the servant to
speed up computation usingPVM running on aN -node process grid.

A few of the details

The system Fei Chen has constructed is based on modifying theR version 1.6.x sources. In
order to hide details ofSQL from the end user, we decided that tables in databases should behave like
data frames. This means we first need to have a method inR to refer to these tables. Our solution is to
implement methods to attachMySQL databases as well as search paths of other (remote)R sessions.
In the first case, all data tables residing in the database are declared as external pointers.

Making references fromR to database tables is the first step toward transparent distributed
computing. The next functionality we needed to provide is to make external pointers behave as if they
wereR data frame objects. Then we can do things like

R> # initialization omitted
R> ls(corba:database:mysql)
[1] X Y Z
R> X[[1]]
CORBA: executing "X[[1]]" and returning
[1] 1 2 3 4 5 6 7 8 9 10

R> lm(x ~ y, data=X)
CORBA: executing "lm(x~y,data=X)" and returning
...

with data residing in theMySQL database.
Once all the pieces are in place, we can use code as follows (although obviously with a user-

friendly wrapper). The response and the model matrix are computed near the database, and the
weighted-least-squares fit is done on a2× 3 of computational nodes.

R> corba <- init.corba()
R> gridinfo <- init.grid(nprow=2, npcol=3, mb=2, nb=2)
R> eval.corba("db <- init.mysql()", corba)
R> eval.corba("attach.mysql(db)", corba)
R> attach.corba("database:mysql", corba);
R> ls(corba:database:mysql)
[1] X Y
R> names(X)
[1] "x1" "x2"
R> names(Y)
[1] "y"
R> fam <- poisson()
R> mustart <- Y + 0.1
R> eta <- fam$linkfun(mustart)
R> mu <- fam$linkinv(eta)
R> mu.eta.val <- fam$mu.eta(eta)
R> z <- eta + (y - mu)/mu.eta.val
R> w <- sqrt((mu.eta.val^2)/fam$var(mu)
R> mod <- terms(y ~ x1 + x2)
R> Xmod <- distribute.modelmatrix(X, mod, gridinfo)
R> Z <- distribute.scalapack(z, gridinfo)
R> W <- distribute.diag.scalapack(w, gridinfo)
R> XWmod <- pdgemm.scalapack(W, Xmod, gridinfo) # sqrt(w)%*%X
R> fit <- lm.fit.scalapack(XWmod, Z, gridinfo)
R> beta <- collect.scalapack(fit, m=3, n=1)
... repeat until convergence

REFERENCES

Axmark, D., Widenius, M., Cole, J., Lentz, A., and DuBois, P. (2002)MySQL Reference Man-
ual, http://www.mysql.org.

Blackford L.S. and 11 others (1997)ScaLAPACK Users’ Guide, SIAM.
Geist, A., Beguelin, A., Dongarra, J., Jiang, W., Manchek, R., and Sunderam, V. (1994)PVM:

Parallel Virtual Machine, A Users’ Guide and Tutorial for Networked Parallel Computing. MIT
Press.

Witten, I. H. and Franke, E. (2000)Data Mining. Practical Machine Learning Tools and
Techniques with Java Implementations, Morgan Kaufmann.

RÉSUMÉ

